Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecCoul_VdwBham_GeomW3W3_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 /*
48  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwBham_GeomW3W3_VF_c
49  * Electrostatics interaction: Coulomb
50  * VdW interaction:            Buckingham
51  * Geometry:                   Water3-Water3
52  * Calculate force/pot:        PotentialAndForce
53  */
54 void
55 nb_kernel_ElecCoul_VdwBham_GeomW3W3_VF_c
56                     (t_nblist                    * gmx_restrict       nlist,
57                      rvec                        * gmx_restrict          xx,
58                      rvec                        * gmx_restrict          ff,
59                      t_forcerec                  * gmx_restrict          fr,
60                      t_mdatoms                   * gmx_restrict     mdatoms,
61                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62                      t_nrnb                      * gmx_restrict        nrnb)
63 {
64     int              i_shift_offset,i_coord_offset,j_coord_offset;
65     int              j_index_start,j_index_end;
66     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
69     real             *shiftvec,*fshift,*x,*f;
70     int              vdwioffset0;
71     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwioffset1;
73     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     int              vdwioffset2;
75     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0;
77     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     int              vdwjidx1;
79     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
80     int              vdwjidx2;
81     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
82     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83     real             dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
84     real             dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
85     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
86     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
87     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
88     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
89     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
90     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
91     real             velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = fr->epsfac;
110     charge           = mdatoms->chargeA;
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     /* Setup water-specific parameters */
116     inr              = nlist->iinr[0];
117     iq0              = facel*charge[inr+0];
118     iq1              = facel*charge[inr+1];
119     iq2              = facel*charge[inr+2];
120     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
121
122     jq0              = charge[inr+0];
123     jq1              = charge[inr+1];
124     jq2              = charge[inr+2];
125     vdwjidx0         = 3*vdwtype[inr+0];
126     qq00             = iq0*jq0;
127     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
128     cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
129     cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
130     qq01             = iq0*jq1;
131     qq02             = iq0*jq2;
132     qq10             = iq1*jq0;
133     qq11             = iq1*jq1;
134     qq12             = iq1*jq2;
135     qq20             = iq2*jq0;
136     qq21             = iq2*jq1;
137     qq22             = iq2*jq2;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147         shX              = shiftvec[i_shift_offset+XX];
148         shY              = shiftvec[i_shift_offset+YY];
149         shZ              = shiftvec[i_shift_offset+ZZ];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         ix0              = shX + x[i_coord_offset+DIM*0+XX];
161         iy0              = shY + x[i_coord_offset+DIM*0+YY];
162         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
163         ix1              = shX + x[i_coord_offset+DIM*1+XX];
164         iy1              = shY + x[i_coord_offset+DIM*1+YY];
165         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
166         ix2              = shX + x[i_coord_offset+DIM*2+XX];
167         iy2              = shY + x[i_coord_offset+DIM*2+YY];
168         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
169
170         fix0             = 0.0;
171         fiy0             = 0.0;
172         fiz0             = 0.0;
173         fix1             = 0.0;
174         fiy1             = 0.0;
175         fiz1             = 0.0;
176         fix2             = 0.0;
177         fiy2             = 0.0;
178         fiz2             = 0.0;
179
180         /* Reset potential sums */
181         velecsum         = 0.0;
182         vvdwsum          = 0.0;
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end; jidx++)
186         {
187             /* Get j neighbor index, and coordinate index */
188             jnr              = jjnr[jidx];
189             j_coord_offset   = DIM*jnr;
190
191             /* load j atom coordinates */
192             jx0              = x[j_coord_offset+DIM*0+XX];
193             jy0              = x[j_coord_offset+DIM*0+YY];
194             jz0              = x[j_coord_offset+DIM*0+ZZ];
195             jx1              = x[j_coord_offset+DIM*1+XX];
196             jy1              = x[j_coord_offset+DIM*1+YY];
197             jz1              = x[j_coord_offset+DIM*1+ZZ];
198             jx2              = x[j_coord_offset+DIM*2+XX];
199             jy2              = x[j_coord_offset+DIM*2+YY];
200             jz2              = x[j_coord_offset+DIM*2+ZZ];
201
202             /* Calculate displacement vector */
203             dx00             = ix0 - jx0;
204             dy00             = iy0 - jy0;
205             dz00             = iz0 - jz0;
206             dx01             = ix0 - jx1;
207             dy01             = iy0 - jy1;
208             dz01             = iz0 - jz1;
209             dx02             = ix0 - jx2;
210             dy02             = iy0 - jy2;
211             dz02             = iz0 - jz2;
212             dx10             = ix1 - jx0;
213             dy10             = iy1 - jy0;
214             dz10             = iz1 - jz0;
215             dx11             = ix1 - jx1;
216             dy11             = iy1 - jy1;
217             dz11             = iz1 - jz1;
218             dx12             = ix1 - jx2;
219             dy12             = iy1 - jy2;
220             dz12             = iz1 - jz2;
221             dx20             = ix2 - jx0;
222             dy20             = iy2 - jy0;
223             dz20             = iz2 - jz0;
224             dx21             = ix2 - jx1;
225             dy21             = iy2 - jy1;
226             dz21             = iz2 - jz1;
227             dx22             = ix2 - jx2;
228             dy22             = iy2 - jy2;
229             dz22             = iz2 - jz2;
230
231             /* Calculate squared distance and things based on it */
232             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
233             rsq01            = dx01*dx01+dy01*dy01+dz01*dz01;
234             rsq02            = dx02*dx02+dy02*dy02+dz02*dz02;
235             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
236             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
237             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
238             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
239             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
240             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
241
242             rinv00           = gmx_invsqrt(rsq00);
243             rinv01           = gmx_invsqrt(rsq01);
244             rinv02           = gmx_invsqrt(rsq02);
245             rinv10           = gmx_invsqrt(rsq10);
246             rinv11           = gmx_invsqrt(rsq11);
247             rinv12           = gmx_invsqrt(rsq12);
248             rinv20           = gmx_invsqrt(rsq20);
249             rinv21           = gmx_invsqrt(rsq21);
250             rinv22           = gmx_invsqrt(rsq22);
251
252             rinvsq00         = rinv00*rinv00;
253             rinvsq01         = rinv01*rinv01;
254             rinvsq02         = rinv02*rinv02;
255             rinvsq10         = rinv10*rinv10;
256             rinvsq11         = rinv11*rinv11;
257             rinvsq12         = rinv12*rinv12;
258             rinvsq20         = rinv20*rinv20;
259             rinvsq21         = rinv21*rinv21;
260             rinvsq22         = rinv22*rinv22;
261
262             /**************************
263              * CALCULATE INTERACTIONS *
264              **************************/
265
266             r00              = rsq00*rinv00;
267
268             /* COULOMB ELECTROSTATICS */
269             velec            = qq00*rinv00;
270             felec            = velec*rinvsq00;
271
272             /* BUCKINGHAM DISPERSION/REPULSION */
273             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
274             vvdw6            = c6_00*rinvsix;
275             br               = cexp2_00*r00;
276             vvdwexp          = cexp1_00*exp(-br);
277             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
278             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
279
280             /* Update potential sums from outer loop */
281             velecsum        += velec;
282             vvdwsum         += vvdw;
283
284             fscal            = felec+fvdw;
285
286             /* Calculate temporary vectorial force */
287             tx               = fscal*dx00;
288             ty               = fscal*dy00;
289             tz               = fscal*dz00;
290
291             /* Update vectorial force */
292             fix0            += tx;
293             fiy0            += ty;
294             fiz0            += tz;
295             f[j_coord_offset+DIM*0+XX] -= tx;
296             f[j_coord_offset+DIM*0+YY] -= ty;
297             f[j_coord_offset+DIM*0+ZZ] -= tz;
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             /* COULOMB ELECTROSTATICS */
304             velec            = qq01*rinv01;
305             felec            = velec*rinvsq01;
306
307             /* Update potential sums from outer loop */
308             velecsum        += velec;
309
310             fscal            = felec;
311
312             /* Calculate temporary vectorial force */
313             tx               = fscal*dx01;
314             ty               = fscal*dy01;
315             tz               = fscal*dz01;
316
317             /* Update vectorial force */
318             fix0            += tx;
319             fiy0            += ty;
320             fiz0            += tz;
321             f[j_coord_offset+DIM*1+XX] -= tx;
322             f[j_coord_offset+DIM*1+YY] -= ty;
323             f[j_coord_offset+DIM*1+ZZ] -= tz;
324
325             /**************************
326              * CALCULATE INTERACTIONS *
327              **************************/
328
329             /* COULOMB ELECTROSTATICS */
330             velec            = qq02*rinv02;
331             felec            = velec*rinvsq02;
332
333             /* Update potential sums from outer loop */
334             velecsum        += velec;
335
336             fscal            = felec;
337
338             /* Calculate temporary vectorial force */
339             tx               = fscal*dx02;
340             ty               = fscal*dy02;
341             tz               = fscal*dz02;
342
343             /* Update vectorial force */
344             fix0            += tx;
345             fiy0            += ty;
346             fiz0            += tz;
347             f[j_coord_offset+DIM*2+XX] -= tx;
348             f[j_coord_offset+DIM*2+YY] -= ty;
349             f[j_coord_offset+DIM*2+ZZ] -= tz;
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             /* COULOMB ELECTROSTATICS */
356             velec            = qq10*rinv10;
357             felec            = velec*rinvsq10;
358
359             /* Update potential sums from outer loop */
360             velecsum        += velec;
361
362             fscal            = felec;
363
364             /* Calculate temporary vectorial force */
365             tx               = fscal*dx10;
366             ty               = fscal*dy10;
367             tz               = fscal*dz10;
368
369             /* Update vectorial force */
370             fix1            += tx;
371             fiy1            += ty;
372             fiz1            += tz;
373             f[j_coord_offset+DIM*0+XX] -= tx;
374             f[j_coord_offset+DIM*0+YY] -= ty;
375             f[j_coord_offset+DIM*0+ZZ] -= tz;
376
377             /**************************
378              * CALCULATE INTERACTIONS *
379              **************************/
380
381             /* COULOMB ELECTROSTATICS */
382             velec            = qq11*rinv11;
383             felec            = velec*rinvsq11;
384
385             /* Update potential sums from outer loop */
386             velecsum        += velec;
387
388             fscal            = felec;
389
390             /* Calculate temporary vectorial force */
391             tx               = fscal*dx11;
392             ty               = fscal*dy11;
393             tz               = fscal*dz11;
394
395             /* Update vectorial force */
396             fix1            += tx;
397             fiy1            += ty;
398             fiz1            += tz;
399             f[j_coord_offset+DIM*1+XX] -= tx;
400             f[j_coord_offset+DIM*1+YY] -= ty;
401             f[j_coord_offset+DIM*1+ZZ] -= tz;
402
403             /**************************
404              * CALCULATE INTERACTIONS *
405              **************************/
406
407             /* COULOMB ELECTROSTATICS */
408             velec            = qq12*rinv12;
409             felec            = velec*rinvsq12;
410
411             /* Update potential sums from outer loop */
412             velecsum        += velec;
413
414             fscal            = felec;
415
416             /* Calculate temporary vectorial force */
417             tx               = fscal*dx12;
418             ty               = fscal*dy12;
419             tz               = fscal*dz12;
420
421             /* Update vectorial force */
422             fix1            += tx;
423             fiy1            += ty;
424             fiz1            += tz;
425             f[j_coord_offset+DIM*2+XX] -= tx;
426             f[j_coord_offset+DIM*2+YY] -= ty;
427             f[j_coord_offset+DIM*2+ZZ] -= tz;
428
429             /**************************
430              * CALCULATE INTERACTIONS *
431              **************************/
432
433             /* COULOMB ELECTROSTATICS */
434             velec            = qq20*rinv20;
435             felec            = velec*rinvsq20;
436
437             /* Update potential sums from outer loop */
438             velecsum        += velec;
439
440             fscal            = felec;
441
442             /* Calculate temporary vectorial force */
443             tx               = fscal*dx20;
444             ty               = fscal*dy20;
445             tz               = fscal*dz20;
446
447             /* Update vectorial force */
448             fix2            += tx;
449             fiy2            += ty;
450             fiz2            += tz;
451             f[j_coord_offset+DIM*0+XX] -= tx;
452             f[j_coord_offset+DIM*0+YY] -= ty;
453             f[j_coord_offset+DIM*0+ZZ] -= tz;
454
455             /**************************
456              * CALCULATE INTERACTIONS *
457              **************************/
458
459             /* COULOMB ELECTROSTATICS */
460             velec            = qq21*rinv21;
461             felec            = velec*rinvsq21;
462
463             /* Update potential sums from outer loop */
464             velecsum        += velec;
465
466             fscal            = felec;
467
468             /* Calculate temporary vectorial force */
469             tx               = fscal*dx21;
470             ty               = fscal*dy21;
471             tz               = fscal*dz21;
472
473             /* Update vectorial force */
474             fix2            += tx;
475             fiy2            += ty;
476             fiz2            += tz;
477             f[j_coord_offset+DIM*1+XX] -= tx;
478             f[j_coord_offset+DIM*1+YY] -= ty;
479             f[j_coord_offset+DIM*1+ZZ] -= tz;
480
481             /**************************
482              * CALCULATE INTERACTIONS *
483              **************************/
484
485             /* COULOMB ELECTROSTATICS */
486             velec            = qq22*rinv22;
487             felec            = velec*rinvsq22;
488
489             /* Update potential sums from outer loop */
490             velecsum        += velec;
491
492             fscal            = felec;
493
494             /* Calculate temporary vectorial force */
495             tx               = fscal*dx22;
496             ty               = fscal*dy22;
497             tz               = fscal*dz22;
498
499             /* Update vectorial force */
500             fix2            += tx;
501             fiy2            += ty;
502             fiz2            += tz;
503             f[j_coord_offset+DIM*2+XX] -= tx;
504             f[j_coord_offset+DIM*2+YY] -= ty;
505             f[j_coord_offset+DIM*2+ZZ] -= tz;
506
507             /* Inner loop uses 282 flops */
508         }
509         /* End of innermost loop */
510
511         tx = ty = tz = 0;
512         f[i_coord_offset+DIM*0+XX] += fix0;
513         f[i_coord_offset+DIM*0+YY] += fiy0;
514         f[i_coord_offset+DIM*0+ZZ] += fiz0;
515         tx                         += fix0;
516         ty                         += fiy0;
517         tz                         += fiz0;
518         f[i_coord_offset+DIM*1+XX] += fix1;
519         f[i_coord_offset+DIM*1+YY] += fiy1;
520         f[i_coord_offset+DIM*1+ZZ] += fiz1;
521         tx                         += fix1;
522         ty                         += fiy1;
523         tz                         += fiz1;
524         f[i_coord_offset+DIM*2+XX] += fix2;
525         f[i_coord_offset+DIM*2+YY] += fiy2;
526         f[i_coord_offset+DIM*2+ZZ] += fiz2;
527         tx                         += fix2;
528         ty                         += fiy2;
529         tz                         += fiz2;
530         fshift[i_shift_offset+XX]  += tx;
531         fshift[i_shift_offset+YY]  += ty;
532         fshift[i_shift_offset+ZZ]  += tz;
533
534         ggid                        = gid[iidx];
535         /* Update potential energies */
536         kernel_data->energygrp_elec[ggid] += velecsum;
537         kernel_data->energygrp_vdw[ggid] += vvdwsum;
538
539         /* Increment number of inner iterations */
540         inneriter                  += j_index_end - j_index_start;
541
542         /* Outer loop uses 32 flops */
543     }
544
545     /* Increment number of outer iterations */
546     outeriter        += nri;
547
548     /* Update outer/inner flops */
549
550     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*282);
551 }
552 /*
553  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwBham_GeomW3W3_F_c
554  * Electrostatics interaction: Coulomb
555  * VdW interaction:            Buckingham
556  * Geometry:                   Water3-Water3
557  * Calculate force/pot:        Force
558  */
559 void
560 nb_kernel_ElecCoul_VdwBham_GeomW3W3_F_c
561                     (t_nblist                    * gmx_restrict       nlist,
562                      rvec                        * gmx_restrict          xx,
563                      rvec                        * gmx_restrict          ff,
564                      t_forcerec                  * gmx_restrict          fr,
565                      t_mdatoms                   * gmx_restrict     mdatoms,
566                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
567                      t_nrnb                      * gmx_restrict        nrnb)
568 {
569     int              i_shift_offset,i_coord_offset,j_coord_offset;
570     int              j_index_start,j_index_end;
571     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
572     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
573     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
574     real             *shiftvec,*fshift,*x,*f;
575     int              vdwioffset0;
576     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
577     int              vdwioffset1;
578     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
579     int              vdwioffset2;
580     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
581     int              vdwjidx0;
582     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
583     int              vdwjidx1;
584     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
585     int              vdwjidx2;
586     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
587     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
588     real             dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
589     real             dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
590     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
591     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
592     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
593     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
594     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
595     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
596     real             velec,felec,velecsum,facel,crf,krf,krf2;
597     real             *charge;
598     int              nvdwtype;
599     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
600     int              *vdwtype;
601     real             *vdwparam;
602
603     x                = xx[0];
604     f                = ff[0];
605
606     nri              = nlist->nri;
607     iinr             = nlist->iinr;
608     jindex           = nlist->jindex;
609     jjnr             = nlist->jjnr;
610     shiftidx         = nlist->shift;
611     gid              = nlist->gid;
612     shiftvec         = fr->shift_vec[0];
613     fshift           = fr->fshift[0];
614     facel            = fr->epsfac;
615     charge           = mdatoms->chargeA;
616     nvdwtype         = fr->ntype;
617     vdwparam         = fr->nbfp;
618     vdwtype          = mdatoms->typeA;
619
620     /* Setup water-specific parameters */
621     inr              = nlist->iinr[0];
622     iq0              = facel*charge[inr+0];
623     iq1              = facel*charge[inr+1];
624     iq2              = facel*charge[inr+2];
625     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
626
627     jq0              = charge[inr+0];
628     jq1              = charge[inr+1];
629     jq2              = charge[inr+2];
630     vdwjidx0         = 3*vdwtype[inr+0];
631     qq00             = iq0*jq0;
632     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
633     cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
634     cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
635     qq01             = iq0*jq1;
636     qq02             = iq0*jq2;
637     qq10             = iq1*jq0;
638     qq11             = iq1*jq1;
639     qq12             = iq1*jq2;
640     qq20             = iq2*jq0;
641     qq21             = iq2*jq1;
642     qq22             = iq2*jq2;
643
644     outeriter        = 0;
645     inneriter        = 0;
646
647     /* Start outer loop over neighborlists */
648     for(iidx=0; iidx<nri; iidx++)
649     {
650         /* Load shift vector for this list */
651         i_shift_offset   = DIM*shiftidx[iidx];
652         shX              = shiftvec[i_shift_offset+XX];
653         shY              = shiftvec[i_shift_offset+YY];
654         shZ              = shiftvec[i_shift_offset+ZZ];
655
656         /* Load limits for loop over neighbors */
657         j_index_start    = jindex[iidx];
658         j_index_end      = jindex[iidx+1];
659
660         /* Get outer coordinate index */
661         inr              = iinr[iidx];
662         i_coord_offset   = DIM*inr;
663
664         /* Load i particle coords and add shift vector */
665         ix0              = shX + x[i_coord_offset+DIM*0+XX];
666         iy0              = shY + x[i_coord_offset+DIM*0+YY];
667         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
668         ix1              = shX + x[i_coord_offset+DIM*1+XX];
669         iy1              = shY + x[i_coord_offset+DIM*1+YY];
670         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
671         ix2              = shX + x[i_coord_offset+DIM*2+XX];
672         iy2              = shY + x[i_coord_offset+DIM*2+YY];
673         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
674
675         fix0             = 0.0;
676         fiy0             = 0.0;
677         fiz0             = 0.0;
678         fix1             = 0.0;
679         fiy1             = 0.0;
680         fiz1             = 0.0;
681         fix2             = 0.0;
682         fiy2             = 0.0;
683         fiz2             = 0.0;
684
685         /* Start inner kernel loop */
686         for(jidx=j_index_start; jidx<j_index_end; jidx++)
687         {
688             /* Get j neighbor index, and coordinate index */
689             jnr              = jjnr[jidx];
690             j_coord_offset   = DIM*jnr;
691
692             /* load j atom coordinates */
693             jx0              = x[j_coord_offset+DIM*0+XX];
694             jy0              = x[j_coord_offset+DIM*0+YY];
695             jz0              = x[j_coord_offset+DIM*0+ZZ];
696             jx1              = x[j_coord_offset+DIM*1+XX];
697             jy1              = x[j_coord_offset+DIM*1+YY];
698             jz1              = x[j_coord_offset+DIM*1+ZZ];
699             jx2              = x[j_coord_offset+DIM*2+XX];
700             jy2              = x[j_coord_offset+DIM*2+YY];
701             jz2              = x[j_coord_offset+DIM*2+ZZ];
702
703             /* Calculate displacement vector */
704             dx00             = ix0 - jx0;
705             dy00             = iy0 - jy0;
706             dz00             = iz0 - jz0;
707             dx01             = ix0 - jx1;
708             dy01             = iy0 - jy1;
709             dz01             = iz0 - jz1;
710             dx02             = ix0 - jx2;
711             dy02             = iy0 - jy2;
712             dz02             = iz0 - jz2;
713             dx10             = ix1 - jx0;
714             dy10             = iy1 - jy0;
715             dz10             = iz1 - jz0;
716             dx11             = ix1 - jx1;
717             dy11             = iy1 - jy1;
718             dz11             = iz1 - jz1;
719             dx12             = ix1 - jx2;
720             dy12             = iy1 - jy2;
721             dz12             = iz1 - jz2;
722             dx20             = ix2 - jx0;
723             dy20             = iy2 - jy0;
724             dz20             = iz2 - jz0;
725             dx21             = ix2 - jx1;
726             dy21             = iy2 - jy1;
727             dz21             = iz2 - jz1;
728             dx22             = ix2 - jx2;
729             dy22             = iy2 - jy2;
730             dz22             = iz2 - jz2;
731
732             /* Calculate squared distance and things based on it */
733             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
734             rsq01            = dx01*dx01+dy01*dy01+dz01*dz01;
735             rsq02            = dx02*dx02+dy02*dy02+dz02*dz02;
736             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
737             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
738             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
739             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
740             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
741             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
742
743             rinv00           = gmx_invsqrt(rsq00);
744             rinv01           = gmx_invsqrt(rsq01);
745             rinv02           = gmx_invsqrt(rsq02);
746             rinv10           = gmx_invsqrt(rsq10);
747             rinv11           = gmx_invsqrt(rsq11);
748             rinv12           = gmx_invsqrt(rsq12);
749             rinv20           = gmx_invsqrt(rsq20);
750             rinv21           = gmx_invsqrt(rsq21);
751             rinv22           = gmx_invsqrt(rsq22);
752
753             rinvsq00         = rinv00*rinv00;
754             rinvsq01         = rinv01*rinv01;
755             rinvsq02         = rinv02*rinv02;
756             rinvsq10         = rinv10*rinv10;
757             rinvsq11         = rinv11*rinv11;
758             rinvsq12         = rinv12*rinv12;
759             rinvsq20         = rinv20*rinv20;
760             rinvsq21         = rinv21*rinv21;
761             rinvsq22         = rinv22*rinv22;
762
763             /**************************
764              * CALCULATE INTERACTIONS *
765              **************************/
766
767             r00              = rsq00*rinv00;
768
769             /* COULOMB ELECTROSTATICS */
770             velec            = qq00*rinv00;
771             felec            = velec*rinvsq00;
772
773             /* BUCKINGHAM DISPERSION/REPULSION */
774             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
775             vvdw6            = c6_00*rinvsix;
776             br               = cexp2_00*r00;
777             vvdwexp          = cexp1_00*exp(-br);
778             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
779
780             fscal            = felec+fvdw;
781
782             /* Calculate temporary vectorial force */
783             tx               = fscal*dx00;
784             ty               = fscal*dy00;
785             tz               = fscal*dz00;
786
787             /* Update vectorial force */
788             fix0            += tx;
789             fiy0            += ty;
790             fiz0            += tz;
791             f[j_coord_offset+DIM*0+XX] -= tx;
792             f[j_coord_offset+DIM*0+YY] -= ty;
793             f[j_coord_offset+DIM*0+ZZ] -= tz;
794
795             /**************************
796              * CALCULATE INTERACTIONS *
797              **************************/
798
799             /* COULOMB ELECTROSTATICS */
800             velec            = qq01*rinv01;
801             felec            = velec*rinvsq01;
802
803             fscal            = felec;
804
805             /* Calculate temporary vectorial force */
806             tx               = fscal*dx01;
807             ty               = fscal*dy01;
808             tz               = fscal*dz01;
809
810             /* Update vectorial force */
811             fix0            += tx;
812             fiy0            += ty;
813             fiz0            += tz;
814             f[j_coord_offset+DIM*1+XX] -= tx;
815             f[j_coord_offset+DIM*1+YY] -= ty;
816             f[j_coord_offset+DIM*1+ZZ] -= tz;
817
818             /**************************
819              * CALCULATE INTERACTIONS *
820              **************************/
821
822             /* COULOMB ELECTROSTATICS */
823             velec            = qq02*rinv02;
824             felec            = velec*rinvsq02;
825
826             fscal            = felec;
827
828             /* Calculate temporary vectorial force */
829             tx               = fscal*dx02;
830             ty               = fscal*dy02;
831             tz               = fscal*dz02;
832
833             /* Update vectorial force */
834             fix0            += tx;
835             fiy0            += ty;
836             fiz0            += tz;
837             f[j_coord_offset+DIM*2+XX] -= tx;
838             f[j_coord_offset+DIM*2+YY] -= ty;
839             f[j_coord_offset+DIM*2+ZZ] -= tz;
840
841             /**************************
842              * CALCULATE INTERACTIONS *
843              **************************/
844
845             /* COULOMB ELECTROSTATICS */
846             velec            = qq10*rinv10;
847             felec            = velec*rinvsq10;
848
849             fscal            = felec;
850
851             /* Calculate temporary vectorial force */
852             tx               = fscal*dx10;
853             ty               = fscal*dy10;
854             tz               = fscal*dz10;
855
856             /* Update vectorial force */
857             fix1            += tx;
858             fiy1            += ty;
859             fiz1            += tz;
860             f[j_coord_offset+DIM*0+XX] -= tx;
861             f[j_coord_offset+DIM*0+YY] -= ty;
862             f[j_coord_offset+DIM*0+ZZ] -= tz;
863
864             /**************************
865              * CALCULATE INTERACTIONS *
866              **************************/
867
868             /* COULOMB ELECTROSTATICS */
869             velec            = qq11*rinv11;
870             felec            = velec*rinvsq11;
871
872             fscal            = felec;
873
874             /* Calculate temporary vectorial force */
875             tx               = fscal*dx11;
876             ty               = fscal*dy11;
877             tz               = fscal*dz11;
878
879             /* Update vectorial force */
880             fix1            += tx;
881             fiy1            += ty;
882             fiz1            += tz;
883             f[j_coord_offset+DIM*1+XX] -= tx;
884             f[j_coord_offset+DIM*1+YY] -= ty;
885             f[j_coord_offset+DIM*1+ZZ] -= tz;
886
887             /**************************
888              * CALCULATE INTERACTIONS *
889              **************************/
890
891             /* COULOMB ELECTROSTATICS */
892             velec            = qq12*rinv12;
893             felec            = velec*rinvsq12;
894
895             fscal            = felec;
896
897             /* Calculate temporary vectorial force */
898             tx               = fscal*dx12;
899             ty               = fscal*dy12;
900             tz               = fscal*dz12;
901
902             /* Update vectorial force */
903             fix1            += tx;
904             fiy1            += ty;
905             fiz1            += tz;
906             f[j_coord_offset+DIM*2+XX] -= tx;
907             f[j_coord_offset+DIM*2+YY] -= ty;
908             f[j_coord_offset+DIM*2+ZZ] -= tz;
909
910             /**************************
911              * CALCULATE INTERACTIONS *
912              **************************/
913
914             /* COULOMB ELECTROSTATICS */
915             velec            = qq20*rinv20;
916             felec            = velec*rinvsq20;
917
918             fscal            = felec;
919
920             /* Calculate temporary vectorial force */
921             tx               = fscal*dx20;
922             ty               = fscal*dy20;
923             tz               = fscal*dz20;
924
925             /* Update vectorial force */
926             fix2            += tx;
927             fiy2            += ty;
928             fiz2            += tz;
929             f[j_coord_offset+DIM*0+XX] -= tx;
930             f[j_coord_offset+DIM*0+YY] -= ty;
931             f[j_coord_offset+DIM*0+ZZ] -= tz;
932
933             /**************************
934              * CALCULATE INTERACTIONS *
935              **************************/
936
937             /* COULOMB ELECTROSTATICS */
938             velec            = qq21*rinv21;
939             felec            = velec*rinvsq21;
940
941             fscal            = felec;
942
943             /* Calculate temporary vectorial force */
944             tx               = fscal*dx21;
945             ty               = fscal*dy21;
946             tz               = fscal*dz21;
947
948             /* Update vectorial force */
949             fix2            += tx;
950             fiy2            += ty;
951             fiz2            += tz;
952             f[j_coord_offset+DIM*1+XX] -= tx;
953             f[j_coord_offset+DIM*1+YY] -= ty;
954             f[j_coord_offset+DIM*1+ZZ] -= tz;
955
956             /**************************
957              * CALCULATE INTERACTIONS *
958              **************************/
959
960             /* COULOMB ELECTROSTATICS */
961             velec            = qq22*rinv22;
962             felec            = velec*rinvsq22;
963
964             fscal            = felec;
965
966             /* Calculate temporary vectorial force */
967             tx               = fscal*dx22;
968             ty               = fscal*dy22;
969             tz               = fscal*dz22;
970
971             /* Update vectorial force */
972             fix2            += tx;
973             fiy2            += ty;
974             fiz2            += tz;
975             f[j_coord_offset+DIM*2+XX] -= tx;
976             f[j_coord_offset+DIM*2+YY] -= ty;
977             f[j_coord_offset+DIM*2+ZZ] -= tz;
978
979             /* Inner loop uses 270 flops */
980         }
981         /* End of innermost loop */
982
983         tx = ty = tz = 0;
984         f[i_coord_offset+DIM*0+XX] += fix0;
985         f[i_coord_offset+DIM*0+YY] += fiy0;
986         f[i_coord_offset+DIM*0+ZZ] += fiz0;
987         tx                         += fix0;
988         ty                         += fiy0;
989         tz                         += fiz0;
990         f[i_coord_offset+DIM*1+XX] += fix1;
991         f[i_coord_offset+DIM*1+YY] += fiy1;
992         f[i_coord_offset+DIM*1+ZZ] += fiz1;
993         tx                         += fix1;
994         ty                         += fiy1;
995         tz                         += fiz1;
996         f[i_coord_offset+DIM*2+XX] += fix2;
997         f[i_coord_offset+DIM*2+YY] += fiy2;
998         f[i_coord_offset+DIM*2+ZZ] += fiz2;
999         tx                         += fix2;
1000         ty                         += fiy2;
1001         tz                         += fiz2;
1002         fshift[i_shift_offset+XX]  += tx;
1003         fshift[i_shift_offset+YY]  += ty;
1004         fshift[i_shift_offset+ZZ]  += tz;
1005
1006         /* Increment number of inner iterations */
1007         inneriter                  += j_index_end - j_index_start;
1008
1009         /* Outer loop uses 30 flops */
1010     }
1011
1012     /* Increment number of outer iterations */
1013     outeriter        += nri;
1014
1015     /* Update outer/inner flops */
1016
1017     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*270);
1018 }