Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecCSTab_VdwNone_GeomW4P1_c.c
1 /*
2  * Note: this file was generated by the Gromacs c kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 /*
34  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW4P1_VF_c
35  * Electrostatics interaction: CubicSplineTable
36  * VdW interaction:            None
37  * Geometry:                   Water4-Particle
38  * Calculate force/pot:        PotentialAndForce
39  */
40 void
41 nb_kernel_ElecCSTab_VdwNone_GeomW4P1_VF_c
42                     (t_nblist * gmx_restrict                nlist,
43                      rvec * gmx_restrict                    xx,
44                      rvec * gmx_restrict                    ff,
45                      t_forcerec * gmx_restrict              fr,
46                      t_mdatoms * gmx_restrict               mdatoms,
47                      nb_kernel_data_t * gmx_restrict        kernel_data,
48                      t_nrnb * gmx_restrict                  nrnb)
49 {
50     int              i_shift_offset,i_coord_offset,j_coord_offset;
51     int              j_index_start,j_index_end;
52     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
53     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
54     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
55     real             *shiftvec,*fshift,*x,*f;
56     int              vdwioffset1;
57     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
58     int              vdwioffset2;
59     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
60     int              vdwioffset3;
61     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
62     int              vdwjidx0;
63     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
64     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
65     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
66     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
67     real             velec,felec,velecsum,facel,crf,krf,krf2;
68     real             *charge;
69     int              vfitab;
70     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
71     real             *vftab;
72
73     x                = xx[0];
74     f                = ff[0];
75
76     nri              = nlist->nri;
77     iinr             = nlist->iinr;
78     jindex           = nlist->jindex;
79     jjnr             = nlist->jjnr;
80     shiftidx         = nlist->shift;
81     gid              = nlist->gid;
82     shiftvec         = fr->shift_vec[0];
83     fshift           = fr->fshift[0];
84     facel            = fr->epsfac;
85     charge           = mdatoms->chargeA;
86
87     vftab            = kernel_data->table_elec->data;
88     vftabscale       = kernel_data->table_elec->scale;
89
90     /* Setup water-specific parameters */
91     inr              = nlist->iinr[0];
92     iq1              = facel*charge[inr+1];
93     iq2              = facel*charge[inr+2];
94     iq3              = facel*charge[inr+3];
95
96     outeriter        = 0;
97     inneriter        = 0;
98
99     /* Start outer loop over neighborlists */
100     for(iidx=0; iidx<nri; iidx++)
101     {
102         /* Load shift vector for this list */
103         i_shift_offset   = DIM*shiftidx[iidx];
104         shX              = shiftvec[i_shift_offset+XX];
105         shY              = shiftvec[i_shift_offset+YY];
106         shZ              = shiftvec[i_shift_offset+ZZ];
107
108         /* Load limits for loop over neighbors */
109         j_index_start    = jindex[iidx];
110         j_index_end      = jindex[iidx+1];
111
112         /* Get outer coordinate index */
113         inr              = iinr[iidx];
114         i_coord_offset   = DIM*inr;
115
116         /* Load i particle coords and add shift vector */
117         ix1              = shX + x[i_coord_offset+DIM*1+XX];
118         iy1              = shY + x[i_coord_offset+DIM*1+YY];
119         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
120         ix2              = shX + x[i_coord_offset+DIM*2+XX];
121         iy2              = shY + x[i_coord_offset+DIM*2+YY];
122         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
123         ix3              = shX + x[i_coord_offset+DIM*3+XX];
124         iy3              = shY + x[i_coord_offset+DIM*3+YY];
125         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
126
127         fix1             = 0.0;
128         fiy1             = 0.0;
129         fiz1             = 0.0;
130         fix2             = 0.0;
131         fiy2             = 0.0;
132         fiz2             = 0.0;
133         fix3             = 0.0;
134         fiy3             = 0.0;
135         fiz3             = 0.0;
136
137         /* Reset potential sums */
138         velecsum         = 0.0;
139
140         /* Start inner kernel loop */
141         for(jidx=j_index_start; jidx<j_index_end; jidx++)
142         {
143             /* Get j neighbor index, and coordinate index */
144             jnr              = jjnr[jidx];
145             j_coord_offset   = DIM*jnr;
146
147             /* load j atom coordinates */
148             jx0              = x[j_coord_offset+DIM*0+XX];
149             jy0              = x[j_coord_offset+DIM*0+YY];
150             jz0              = x[j_coord_offset+DIM*0+ZZ];
151
152             /* Calculate displacement vector */
153             dx10             = ix1 - jx0;
154             dy10             = iy1 - jy0;
155             dz10             = iz1 - jz0;
156             dx20             = ix2 - jx0;
157             dy20             = iy2 - jy0;
158             dz20             = iz2 - jz0;
159             dx30             = ix3 - jx0;
160             dy30             = iy3 - jy0;
161             dz30             = iz3 - jz0;
162
163             /* Calculate squared distance and things based on it */
164             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
165             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
166             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
167
168             rinv10           = gmx_invsqrt(rsq10);
169             rinv20           = gmx_invsqrt(rsq20);
170             rinv30           = gmx_invsqrt(rsq30);
171
172             /* Load parameters for j particles */
173             jq0              = charge[jnr+0];
174
175             /**************************
176              * CALCULATE INTERACTIONS *
177              **************************/
178
179             r10              = rsq10*rinv10;
180
181             qq10             = iq1*jq0;
182
183             /* Calculate table index by multiplying r with table scale and truncate to integer */
184             rt               = r10*vftabscale;
185             vfitab           = rt;
186             vfeps            = rt-vfitab;
187             vfitab           = 1*4*vfitab;
188
189             /* CUBIC SPLINE TABLE ELECTROSTATICS */
190             Y                = vftab[vfitab];
191             F                = vftab[vfitab+1];
192             Geps             = vfeps*vftab[vfitab+2];
193             Heps2            = vfeps*vfeps*vftab[vfitab+3];
194             Fp               = F+Geps+Heps2;
195             VV               = Y+vfeps*Fp;
196             velec            = qq10*VV;
197             FF               = Fp+Geps+2.0*Heps2;
198             felec            = -qq10*FF*vftabscale*rinv10;
199
200             /* Update potential sums from outer loop */
201             velecsum        += velec;
202
203             fscal            = felec;
204
205             /* Calculate temporary vectorial force */
206             tx               = fscal*dx10;
207             ty               = fscal*dy10;
208             tz               = fscal*dz10;
209
210             /* Update vectorial force */
211             fix1            += tx;
212             fiy1            += ty;
213             fiz1            += tz;
214             f[j_coord_offset+DIM*0+XX] -= tx;
215             f[j_coord_offset+DIM*0+YY] -= ty;
216             f[j_coord_offset+DIM*0+ZZ] -= tz;
217
218             /**************************
219              * CALCULATE INTERACTIONS *
220              **************************/
221
222             r20              = rsq20*rinv20;
223
224             qq20             = iq2*jq0;
225
226             /* Calculate table index by multiplying r with table scale and truncate to integer */
227             rt               = r20*vftabscale;
228             vfitab           = rt;
229             vfeps            = rt-vfitab;
230             vfitab           = 1*4*vfitab;
231
232             /* CUBIC SPLINE TABLE ELECTROSTATICS */
233             Y                = vftab[vfitab];
234             F                = vftab[vfitab+1];
235             Geps             = vfeps*vftab[vfitab+2];
236             Heps2            = vfeps*vfeps*vftab[vfitab+3];
237             Fp               = F+Geps+Heps2;
238             VV               = Y+vfeps*Fp;
239             velec            = qq20*VV;
240             FF               = Fp+Geps+2.0*Heps2;
241             felec            = -qq20*FF*vftabscale*rinv20;
242
243             /* Update potential sums from outer loop */
244             velecsum        += velec;
245
246             fscal            = felec;
247
248             /* Calculate temporary vectorial force */
249             tx               = fscal*dx20;
250             ty               = fscal*dy20;
251             tz               = fscal*dz20;
252
253             /* Update vectorial force */
254             fix2            += tx;
255             fiy2            += ty;
256             fiz2            += tz;
257             f[j_coord_offset+DIM*0+XX] -= tx;
258             f[j_coord_offset+DIM*0+YY] -= ty;
259             f[j_coord_offset+DIM*0+ZZ] -= tz;
260
261             /**************************
262              * CALCULATE INTERACTIONS *
263              **************************/
264
265             r30              = rsq30*rinv30;
266
267             qq30             = iq3*jq0;
268
269             /* Calculate table index by multiplying r with table scale and truncate to integer */
270             rt               = r30*vftabscale;
271             vfitab           = rt;
272             vfeps            = rt-vfitab;
273             vfitab           = 1*4*vfitab;
274
275             /* CUBIC SPLINE TABLE ELECTROSTATICS */
276             Y                = vftab[vfitab];
277             F                = vftab[vfitab+1];
278             Geps             = vfeps*vftab[vfitab+2];
279             Heps2            = vfeps*vfeps*vftab[vfitab+3];
280             Fp               = F+Geps+Heps2;
281             VV               = Y+vfeps*Fp;
282             velec            = qq30*VV;
283             FF               = Fp+Geps+2.0*Heps2;
284             felec            = -qq30*FF*vftabscale*rinv30;
285
286             /* Update potential sums from outer loop */
287             velecsum        += velec;
288
289             fscal            = felec;
290
291             /* Calculate temporary vectorial force */
292             tx               = fscal*dx30;
293             ty               = fscal*dy30;
294             tz               = fscal*dz30;
295
296             /* Update vectorial force */
297             fix3            += tx;
298             fiy3            += ty;
299             fiz3            += tz;
300             f[j_coord_offset+DIM*0+XX] -= tx;
301             f[j_coord_offset+DIM*0+YY] -= ty;
302             f[j_coord_offset+DIM*0+ZZ] -= tz;
303
304             /* Inner loop uses 126 flops */
305         }
306         /* End of innermost loop */
307
308         tx = ty = tz = 0;
309         f[i_coord_offset+DIM*1+XX] += fix1;
310         f[i_coord_offset+DIM*1+YY] += fiy1;
311         f[i_coord_offset+DIM*1+ZZ] += fiz1;
312         tx                         += fix1;
313         ty                         += fiy1;
314         tz                         += fiz1;
315         f[i_coord_offset+DIM*2+XX] += fix2;
316         f[i_coord_offset+DIM*2+YY] += fiy2;
317         f[i_coord_offset+DIM*2+ZZ] += fiz2;
318         tx                         += fix2;
319         ty                         += fiy2;
320         tz                         += fiz2;
321         f[i_coord_offset+DIM*3+XX] += fix3;
322         f[i_coord_offset+DIM*3+YY] += fiy3;
323         f[i_coord_offset+DIM*3+ZZ] += fiz3;
324         tx                         += fix3;
325         ty                         += fiy3;
326         tz                         += fiz3;
327         fshift[i_shift_offset+XX]  += tx;
328         fshift[i_shift_offset+YY]  += ty;
329         fshift[i_shift_offset+ZZ]  += tz;
330
331         ggid                        = gid[iidx];
332         /* Update potential energies */
333         kernel_data->energygrp_elec[ggid] += velecsum;
334
335         /* Increment number of inner iterations */
336         inneriter                  += j_index_end - j_index_start;
337
338         /* Outer loop uses 31 flops */
339     }
340
341     /* Increment number of outer iterations */
342     outeriter        += nri;
343
344     /* Update outer/inner flops */
345
346     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*31 + inneriter*126);
347 }
348 /*
349  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW4P1_F_c
350  * Electrostatics interaction: CubicSplineTable
351  * VdW interaction:            None
352  * Geometry:                   Water4-Particle
353  * Calculate force/pot:        Force
354  */
355 void
356 nb_kernel_ElecCSTab_VdwNone_GeomW4P1_F_c
357                     (t_nblist * gmx_restrict                nlist,
358                      rvec * gmx_restrict                    xx,
359                      rvec * gmx_restrict                    ff,
360                      t_forcerec * gmx_restrict              fr,
361                      t_mdatoms * gmx_restrict               mdatoms,
362                      nb_kernel_data_t * gmx_restrict        kernel_data,
363                      t_nrnb * gmx_restrict                  nrnb)
364 {
365     int              i_shift_offset,i_coord_offset,j_coord_offset;
366     int              j_index_start,j_index_end;
367     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
368     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
369     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
370     real             *shiftvec,*fshift,*x,*f;
371     int              vdwioffset1;
372     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
373     int              vdwioffset2;
374     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
375     int              vdwioffset3;
376     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
377     int              vdwjidx0;
378     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
379     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
380     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
381     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
382     real             velec,felec,velecsum,facel,crf,krf,krf2;
383     real             *charge;
384     int              vfitab;
385     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
386     real             *vftab;
387
388     x                = xx[0];
389     f                = ff[0];
390
391     nri              = nlist->nri;
392     iinr             = nlist->iinr;
393     jindex           = nlist->jindex;
394     jjnr             = nlist->jjnr;
395     shiftidx         = nlist->shift;
396     gid              = nlist->gid;
397     shiftvec         = fr->shift_vec[0];
398     fshift           = fr->fshift[0];
399     facel            = fr->epsfac;
400     charge           = mdatoms->chargeA;
401
402     vftab            = kernel_data->table_elec->data;
403     vftabscale       = kernel_data->table_elec->scale;
404
405     /* Setup water-specific parameters */
406     inr              = nlist->iinr[0];
407     iq1              = facel*charge[inr+1];
408     iq2              = facel*charge[inr+2];
409     iq3              = facel*charge[inr+3];
410
411     outeriter        = 0;
412     inneriter        = 0;
413
414     /* Start outer loop over neighborlists */
415     for(iidx=0; iidx<nri; iidx++)
416     {
417         /* Load shift vector for this list */
418         i_shift_offset   = DIM*shiftidx[iidx];
419         shX              = shiftvec[i_shift_offset+XX];
420         shY              = shiftvec[i_shift_offset+YY];
421         shZ              = shiftvec[i_shift_offset+ZZ];
422
423         /* Load limits for loop over neighbors */
424         j_index_start    = jindex[iidx];
425         j_index_end      = jindex[iidx+1];
426
427         /* Get outer coordinate index */
428         inr              = iinr[iidx];
429         i_coord_offset   = DIM*inr;
430
431         /* Load i particle coords and add shift vector */
432         ix1              = shX + x[i_coord_offset+DIM*1+XX];
433         iy1              = shY + x[i_coord_offset+DIM*1+YY];
434         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
435         ix2              = shX + x[i_coord_offset+DIM*2+XX];
436         iy2              = shY + x[i_coord_offset+DIM*2+YY];
437         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
438         ix3              = shX + x[i_coord_offset+DIM*3+XX];
439         iy3              = shY + x[i_coord_offset+DIM*3+YY];
440         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
441
442         fix1             = 0.0;
443         fiy1             = 0.0;
444         fiz1             = 0.0;
445         fix2             = 0.0;
446         fiy2             = 0.0;
447         fiz2             = 0.0;
448         fix3             = 0.0;
449         fiy3             = 0.0;
450         fiz3             = 0.0;
451
452         /* Start inner kernel loop */
453         for(jidx=j_index_start; jidx<j_index_end; jidx++)
454         {
455             /* Get j neighbor index, and coordinate index */
456             jnr              = jjnr[jidx];
457             j_coord_offset   = DIM*jnr;
458
459             /* load j atom coordinates */
460             jx0              = x[j_coord_offset+DIM*0+XX];
461             jy0              = x[j_coord_offset+DIM*0+YY];
462             jz0              = x[j_coord_offset+DIM*0+ZZ];
463
464             /* Calculate displacement vector */
465             dx10             = ix1 - jx0;
466             dy10             = iy1 - jy0;
467             dz10             = iz1 - jz0;
468             dx20             = ix2 - jx0;
469             dy20             = iy2 - jy0;
470             dz20             = iz2 - jz0;
471             dx30             = ix3 - jx0;
472             dy30             = iy3 - jy0;
473             dz30             = iz3 - jz0;
474
475             /* Calculate squared distance and things based on it */
476             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
477             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
478             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
479
480             rinv10           = gmx_invsqrt(rsq10);
481             rinv20           = gmx_invsqrt(rsq20);
482             rinv30           = gmx_invsqrt(rsq30);
483
484             /* Load parameters for j particles */
485             jq0              = charge[jnr+0];
486
487             /**************************
488              * CALCULATE INTERACTIONS *
489              **************************/
490
491             r10              = rsq10*rinv10;
492
493             qq10             = iq1*jq0;
494
495             /* Calculate table index by multiplying r with table scale and truncate to integer */
496             rt               = r10*vftabscale;
497             vfitab           = rt;
498             vfeps            = rt-vfitab;
499             vfitab           = 1*4*vfitab;
500
501             /* CUBIC SPLINE TABLE ELECTROSTATICS */
502             F                = vftab[vfitab+1];
503             Geps             = vfeps*vftab[vfitab+2];
504             Heps2            = vfeps*vfeps*vftab[vfitab+3];
505             Fp               = F+Geps+Heps2;
506             FF               = Fp+Geps+2.0*Heps2;
507             felec            = -qq10*FF*vftabscale*rinv10;
508
509             fscal            = felec;
510
511             /* Calculate temporary vectorial force */
512             tx               = fscal*dx10;
513             ty               = fscal*dy10;
514             tz               = fscal*dz10;
515
516             /* Update vectorial force */
517             fix1            += tx;
518             fiy1            += ty;
519             fiz1            += tz;
520             f[j_coord_offset+DIM*0+XX] -= tx;
521             f[j_coord_offset+DIM*0+YY] -= ty;
522             f[j_coord_offset+DIM*0+ZZ] -= tz;
523
524             /**************************
525              * CALCULATE INTERACTIONS *
526              **************************/
527
528             r20              = rsq20*rinv20;
529
530             qq20             = iq2*jq0;
531
532             /* Calculate table index by multiplying r with table scale and truncate to integer */
533             rt               = r20*vftabscale;
534             vfitab           = rt;
535             vfeps            = rt-vfitab;
536             vfitab           = 1*4*vfitab;
537
538             /* CUBIC SPLINE TABLE ELECTROSTATICS */
539             F                = vftab[vfitab+1];
540             Geps             = vfeps*vftab[vfitab+2];
541             Heps2            = vfeps*vfeps*vftab[vfitab+3];
542             Fp               = F+Geps+Heps2;
543             FF               = Fp+Geps+2.0*Heps2;
544             felec            = -qq20*FF*vftabscale*rinv20;
545
546             fscal            = felec;
547
548             /* Calculate temporary vectorial force */
549             tx               = fscal*dx20;
550             ty               = fscal*dy20;
551             tz               = fscal*dz20;
552
553             /* Update vectorial force */
554             fix2            += tx;
555             fiy2            += ty;
556             fiz2            += tz;
557             f[j_coord_offset+DIM*0+XX] -= tx;
558             f[j_coord_offset+DIM*0+YY] -= ty;
559             f[j_coord_offset+DIM*0+ZZ] -= tz;
560
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             r30              = rsq30*rinv30;
566
567             qq30             = iq3*jq0;
568
569             /* Calculate table index by multiplying r with table scale and truncate to integer */
570             rt               = r30*vftabscale;
571             vfitab           = rt;
572             vfeps            = rt-vfitab;
573             vfitab           = 1*4*vfitab;
574
575             /* CUBIC SPLINE TABLE ELECTROSTATICS */
576             F                = vftab[vfitab+1];
577             Geps             = vfeps*vftab[vfitab+2];
578             Heps2            = vfeps*vfeps*vftab[vfitab+3];
579             Fp               = F+Geps+Heps2;
580             FF               = Fp+Geps+2.0*Heps2;
581             felec            = -qq30*FF*vftabscale*rinv30;
582
583             fscal            = felec;
584
585             /* Calculate temporary vectorial force */
586             tx               = fscal*dx30;
587             ty               = fscal*dy30;
588             tz               = fscal*dz30;
589
590             /* Update vectorial force */
591             fix3            += tx;
592             fiy3            += ty;
593             fiz3            += tz;
594             f[j_coord_offset+DIM*0+XX] -= tx;
595             f[j_coord_offset+DIM*0+YY] -= ty;
596             f[j_coord_offset+DIM*0+ZZ] -= tz;
597
598             /* Inner loop uses 114 flops */
599         }
600         /* End of innermost loop */
601
602         tx = ty = tz = 0;
603         f[i_coord_offset+DIM*1+XX] += fix1;
604         f[i_coord_offset+DIM*1+YY] += fiy1;
605         f[i_coord_offset+DIM*1+ZZ] += fiz1;
606         tx                         += fix1;
607         ty                         += fiy1;
608         tz                         += fiz1;
609         f[i_coord_offset+DIM*2+XX] += fix2;
610         f[i_coord_offset+DIM*2+YY] += fiy2;
611         f[i_coord_offset+DIM*2+ZZ] += fiz2;
612         tx                         += fix2;
613         ty                         += fiy2;
614         tz                         += fiz2;
615         f[i_coord_offset+DIM*3+XX] += fix3;
616         f[i_coord_offset+DIM*3+YY] += fiy3;
617         f[i_coord_offset+DIM*3+ZZ] += fiz3;
618         tx                         += fix3;
619         ty                         += fiy3;
620         tz                         += fiz3;
621         fshift[i_shift_offset+XX]  += tx;
622         fshift[i_shift_offset+YY]  += ty;
623         fshift[i_shift_offset+ZZ]  += tz;
624
625         /* Increment number of inner iterations */
626         inneriter                  += j_index_end - j_index_start;
627
628         /* Outer loop uses 30 flops */
629     }
630
631     /* Increment number of outer iterations */
632     outeriter        += nri;
633
634     /* Update outer/inner flops */
635
636     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*30 + inneriter*114);
637 }