Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecCSTab_VdwCSTab_GeomW4W4_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 /*
48  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4W4_VF_c
49  * Electrostatics interaction: CubicSplineTable
50  * VdW interaction:            CubicSplineTable
51  * Geometry:                   Water4-Water4
52  * Calculate force/pot:        PotentialAndForce
53  */
54 void
55 nb_kernel_ElecCSTab_VdwCSTab_GeomW4W4_VF_c
56                     (t_nblist                    * gmx_restrict       nlist,
57                      rvec                        * gmx_restrict          xx,
58                      rvec                        * gmx_restrict          ff,
59                      t_forcerec                  * gmx_restrict          fr,
60                      t_mdatoms                   * gmx_restrict     mdatoms,
61                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62                      t_nrnb                      * gmx_restrict        nrnb)
63 {
64     int              i_shift_offset,i_coord_offset,j_coord_offset;
65     int              j_index_start,j_index_end;
66     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
69     real             *shiftvec,*fshift,*x,*f;
70     int              vdwioffset0;
71     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwioffset1;
73     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     int              vdwioffset2;
75     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwioffset3;
77     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78     int              vdwjidx0;
79     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     int              vdwjidx1;
81     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82     int              vdwjidx2;
83     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84     int              vdwjidx3;
85     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
86     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
87     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
88     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
89     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
90     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
91     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
92     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
93     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
94     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
95     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
96     real             velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     int              vfitab;
103     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
104     real             *vftab;
105
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = fr->epsfac;
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_elec_vdw->data;
124     vftabscale       = kernel_data->table_elec_vdw->scale;
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq1              = facel*charge[inr+1];
129     iq2              = facel*charge[inr+2];
130     iq3              = facel*charge[inr+3];
131     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
132
133     jq1              = charge[inr+1];
134     jq2              = charge[inr+2];
135     jq3              = charge[inr+3];
136     vdwjidx0         = 2*vdwtype[inr+0];
137     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
138     c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
139     qq11             = iq1*jq1;
140     qq12             = iq1*jq2;
141     qq13             = iq1*jq3;
142     qq21             = iq2*jq1;
143     qq22             = iq2*jq2;
144     qq23             = iq2*jq3;
145     qq31             = iq3*jq1;
146     qq32             = iq3*jq2;
147     qq33             = iq3*jq3;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157         shX              = shiftvec[i_shift_offset+XX];
158         shY              = shiftvec[i_shift_offset+YY];
159         shZ              = shiftvec[i_shift_offset+ZZ];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         ix0              = shX + x[i_coord_offset+DIM*0+XX];
171         iy0              = shY + x[i_coord_offset+DIM*0+YY];
172         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
173         ix1              = shX + x[i_coord_offset+DIM*1+XX];
174         iy1              = shY + x[i_coord_offset+DIM*1+YY];
175         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
176         ix2              = shX + x[i_coord_offset+DIM*2+XX];
177         iy2              = shY + x[i_coord_offset+DIM*2+YY];
178         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
179         ix3              = shX + x[i_coord_offset+DIM*3+XX];
180         iy3              = shY + x[i_coord_offset+DIM*3+YY];
181         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
182
183         fix0             = 0.0;
184         fiy0             = 0.0;
185         fiz0             = 0.0;
186         fix1             = 0.0;
187         fiy1             = 0.0;
188         fiz1             = 0.0;
189         fix2             = 0.0;
190         fiy2             = 0.0;
191         fiz2             = 0.0;
192         fix3             = 0.0;
193         fiy3             = 0.0;
194         fiz3             = 0.0;
195
196         /* Reset potential sums */
197         velecsum         = 0.0;
198         vvdwsum          = 0.0;
199
200         /* Start inner kernel loop */
201         for(jidx=j_index_start; jidx<j_index_end; jidx++)
202         {
203             /* Get j neighbor index, and coordinate index */
204             jnr              = jjnr[jidx];
205             j_coord_offset   = DIM*jnr;
206
207             /* load j atom coordinates */
208             jx0              = x[j_coord_offset+DIM*0+XX];
209             jy0              = x[j_coord_offset+DIM*0+YY];
210             jz0              = x[j_coord_offset+DIM*0+ZZ];
211             jx1              = x[j_coord_offset+DIM*1+XX];
212             jy1              = x[j_coord_offset+DIM*1+YY];
213             jz1              = x[j_coord_offset+DIM*1+ZZ];
214             jx2              = x[j_coord_offset+DIM*2+XX];
215             jy2              = x[j_coord_offset+DIM*2+YY];
216             jz2              = x[j_coord_offset+DIM*2+ZZ];
217             jx3              = x[j_coord_offset+DIM*3+XX];
218             jy3              = x[j_coord_offset+DIM*3+YY];
219             jz3              = x[j_coord_offset+DIM*3+ZZ];
220
221             /* Calculate displacement vector */
222             dx00             = ix0 - jx0;
223             dy00             = iy0 - jy0;
224             dz00             = iz0 - jz0;
225             dx11             = ix1 - jx1;
226             dy11             = iy1 - jy1;
227             dz11             = iz1 - jz1;
228             dx12             = ix1 - jx2;
229             dy12             = iy1 - jy2;
230             dz12             = iz1 - jz2;
231             dx13             = ix1 - jx3;
232             dy13             = iy1 - jy3;
233             dz13             = iz1 - jz3;
234             dx21             = ix2 - jx1;
235             dy21             = iy2 - jy1;
236             dz21             = iz2 - jz1;
237             dx22             = ix2 - jx2;
238             dy22             = iy2 - jy2;
239             dz22             = iz2 - jz2;
240             dx23             = ix2 - jx3;
241             dy23             = iy2 - jy3;
242             dz23             = iz2 - jz3;
243             dx31             = ix3 - jx1;
244             dy31             = iy3 - jy1;
245             dz31             = iz3 - jz1;
246             dx32             = ix3 - jx2;
247             dy32             = iy3 - jy2;
248             dz32             = iz3 - jz2;
249             dx33             = ix3 - jx3;
250             dy33             = iy3 - jy3;
251             dz33             = iz3 - jz3;
252
253             /* Calculate squared distance and things based on it */
254             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
255             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
256             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
257             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
258             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
259             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
260             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
261             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
262             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
263             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
264
265             rinv00           = gmx_invsqrt(rsq00);
266             rinv11           = gmx_invsqrt(rsq11);
267             rinv12           = gmx_invsqrt(rsq12);
268             rinv13           = gmx_invsqrt(rsq13);
269             rinv21           = gmx_invsqrt(rsq21);
270             rinv22           = gmx_invsqrt(rsq22);
271             rinv23           = gmx_invsqrt(rsq23);
272             rinv31           = gmx_invsqrt(rsq31);
273             rinv32           = gmx_invsqrt(rsq32);
274             rinv33           = gmx_invsqrt(rsq33);
275
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             r00              = rsq00*rinv00;
281
282             /* Calculate table index by multiplying r with table scale and truncate to integer */
283             rt               = r00*vftabscale;
284             vfitab           = rt;
285             vfeps            = rt-vfitab;
286             vfitab           = 3*4*vfitab;
287
288             /* CUBIC SPLINE TABLE DISPERSION */
289             vfitab          += 4;
290             Y                = vftab[vfitab];
291             F                = vftab[vfitab+1];
292             Geps             = vfeps*vftab[vfitab+2];
293             Heps2            = vfeps*vfeps*vftab[vfitab+3];
294             Fp               = F+Geps+Heps2;
295             VV               = Y+vfeps*Fp;
296             vvdw6            = c6_00*VV;
297             FF               = Fp+Geps+2.0*Heps2;
298             fvdw6            = c6_00*FF;
299
300             /* CUBIC SPLINE TABLE REPULSION */
301             Y                = vftab[vfitab+4];
302             F                = vftab[vfitab+5];
303             Geps             = vfeps*vftab[vfitab+6];
304             Heps2            = vfeps*vfeps*vftab[vfitab+7];
305             Fp               = F+Geps+Heps2;
306             VV               = Y+vfeps*Fp;
307             vvdw12           = c12_00*VV;
308             FF               = Fp+Geps+2.0*Heps2;
309             fvdw12           = c12_00*FF;
310             vvdw             = vvdw12+vvdw6;
311             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
312
313             /* Update potential sums from outer loop */
314             vvdwsum         += vvdw;
315
316             fscal            = fvdw;
317
318             /* Calculate temporary vectorial force */
319             tx               = fscal*dx00;
320             ty               = fscal*dy00;
321             tz               = fscal*dz00;
322
323             /* Update vectorial force */
324             fix0            += tx;
325             fiy0            += ty;
326             fiz0            += tz;
327             f[j_coord_offset+DIM*0+XX] -= tx;
328             f[j_coord_offset+DIM*0+YY] -= ty;
329             f[j_coord_offset+DIM*0+ZZ] -= tz;
330
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             r11              = rsq11*rinv11;
336
337             /* Calculate table index by multiplying r with table scale and truncate to integer */
338             rt               = r11*vftabscale;
339             vfitab           = rt;
340             vfeps            = rt-vfitab;
341             vfitab           = 3*4*vfitab;
342
343             /* CUBIC SPLINE TABLE ELECTROSTATICS */
344             Y                = vftab[vfitab];
345             F                = vftab[vfitab+1];
346             Geps             = vfeps*vftab[vfitab+2];
347             Heps2            = vfeps*vfeps*vftab[vfitab+3];
348             Fp               = F+Geps+Heps2;
349             VV               = Y+vfeps*Fp;
350             velec            = qq11*VV;
351             FF               = Fp+Geps+2.0*Heps2;
352             felec            = -qq11*FF*vftabscale*rinv11;
353
354             /* Update potential sums from outer loop */
355             velecsum        += velec;
356
357             fscal            = felec;
358
359             /* Calculate temporary vectorial force */
360             tx               = fscal*dx11;
361             ty               = fscal*dy11;
362             tz               = fscal*dz11;
363
364             /* Update vectorial force */
365             fix1            += tx;
366             fiy1            += ty;
367             fiz1            += tz;
368             f[j_coord_offset+DIM*1+XX] -= tx;
369             f[j_coord_offset+DIM*1+YY] -= ty;
370             f[j_coord_offset+DIM*1+ZZ] -= tz;
371
372             /**************************
373              * CALCULATE INTERACTIONS *
374              **************************/
375
376             r12              = rsq12*rinv12;
377
378             /* Calculate table index by multiplying r with table scale and truncate to integer */
379             rt               = r12*vftabscale;
380             vfitab           = rt;
381             vfeps            = rt-vfitab;
382             vfitab           = 3*4*vfitab;
383
384             /* CUBIC SPLINE TABLE ELECTROSTATICS */
385             Y                = vftab[vfitab];
386             F                = vftab[vfitab+1];
387             Geps             = vfeps*vftab[vfitab+2];
388             Heps2            = vfeps*vfeps*vftab[vfitab+3];
389             Fp               = F+Geps+Heps2;
390             VV               = Y+vfeps*Fp;
391             velec            = qq12*VV;
392             FF               = Fp+Geps+2.0*Heps2;
393             felec            = -qq12*FF*vftabscale*rinv12;
394
395             /* Update potential sums from outer loop */
396             velecsum        += velec;
397
398             fscal            = felec;
399
400             /* Calculate temporary vectorial force */
401             tx               = fscal*dx12;
402             ty               = fscal*dy12;
403             tz               = fscal*dz12;
404
405             /* Update vectorial force */
406             fix1            += tx;
407             fiy1            += ty;
408             fiz1            += tz;
409             f[j_coord_offset+DIM*2+XX] -= tx;
410             f[j_coord_offset+DIM*2+YY] -= ty;
411             f[j_coord_offset+DIM*2+ZZ] -= tz;
412
413             /**************************
414              * CALCULATE INTERACTIONS *
415              **************************/
416
417             r13              = rsq13*rinv13;
418
419             /* Calculate table index by multiplying r with table scale and truncate to integer */
420             rt               = r13*vftabscale;
421             vfitab           = rt;
422             vfeps            = rt-vfitab;
423             vfitab           = 3*4*vfitab;
424
425             /* CUBIC SPLINE TABLE ELECTROSTATICS */
426             Y                = vftab[vfitab];
427             F                = vftab[vfitab+1];
428             Geps             = vfeps*vftab[vfitab+2];
429             Heps2            = vfeps*vfeps*vftab[vfitab+3];
430             Fp               = F+Geps+Heps2;
431             VV               = Y+vfeps*Fp;
432             velec            = qq13*VV;
433             FF               = Fp+Geps+2.0*Heps2;
434             felec            = -qq13*FF*vftabscale*rinv13;
435
436             /* Update potential sums from outer loop */
437             velecsum        += velec;
438
439             fscal            = felec;
440
441             /* Calculate temporary vectorial force */
442             tx               = fscal*dx13;
443             ty               = fscal*dy13;
444             tz               = fscal*dz13;
445
446             /* Update vectorial force */
447             fix1            += tx;
448             fiy1            += ty;
449             fiz1            += tz;
450             f[j_coord_offset+DIM*3+XX] -= tx;
451             f[j_coord_offset+DIM*3+YY] -= ty;
452             f[j_coord_offset+DIM*3+ZZ] -= tz;
453
454             /**************************
455              * CALCULATE INTERACTIONS *
456              **************************/
457
458             r21              = rsq21*rinv21;
459
460             /* Calculate table index by multiplying r with table scale and truncate to integer */
461             rt               = r21*vftabscale;
462             vfitab           = rt;
463             vfeps            = rt-vfitab;
464             vfitab           = 3*4*vfitab;
465
466             /* CUBIC SPLINE TABLE ELECTROSTATICS */
467             Y                = vftab[vfitab];
468             F                = vftab[vfitab+1];
469             Geps             = vfeps*vftab[vfitab+2];
470             Heps2            = vfeps*vfeps*vftab[vfitab+3];
471             Fp               = F+Geps+Heps2;
472             VV               = Y+vfeps*Fp;
473             velec            = qq21*VV;
474             FF               = Fp+Geps+2.0*Heps2;
475             felec            = -qq21*FF*vftabscale*rinv21;
476
477             /* Update potential sums from outer loop */
478             velecsum        += velec;
479
480             fscal            = felec;
481
482             /* Calculate temporary vectorial force */
483             tx               = fscal*dx21;
484             ty               = fscal*dy21;
485             tz               = fscal*dz21;
486
487             /* Update vectorial force */
488             fix2            += tx;
489             fiy2            += ty;
490             fiz2            += tz;
491             f[j_coord_offset+DIM*1+XX] -= tx;
492             f[j_coord_offset+DIM*1+YY] -= ty;
493             f[j_coord_offset+DIM*1+ZZ] -= tz;
494
495             /**************************
496              * CALCULATE INTERACTIONS *
497              **************************/
498
499             r22              = rsq22*rinv22;
500
501             /* Calculate table index by multiplying r with table scale and truncate to integer */
502             rt               = r22*vftabscale;
503             vfitab           = rt;
504             vfeps            = rt-vfitab;
505             vfitab           = 3*4*vfitab;
506
507             /* CUBIC SPLINE TABLE ELECTROSTATICS */
508             Y                = vftab[vfitab];
509             F                = vftab[vfitab+1];
510             Geps             = vfeps*vftab[vfitab+2];
511             Heps2            = vfeps*vfeps*vftab[vfitab+3];
512             Fp               = F+Geps+Heps2;
513             VV               = Y+vfeps*Fp;
514             velec            = qq22*VV;
515             FF               = Fp+Geps+2.0*Heps2;
516             felec            = -qq22*FF*vftabscale*rinv22;
517
518             /* Update potential sums from outer loop */
519             velecsum        += velec;
520
521             fscal            = felec;
522
523             /* Calculate temporary vectorial force */
524             tx               = fscal*dx22;
525             ty               = fscal*dy22;
526             tz               = fscal*dz22;
527
528             /* Update vectorial force */
529             fix2            += tx;
530             fiy2            += ty;
531             fiz2            += tz;
532             f[j_coord_offset+DIM*2+XX] -= tx;
533             f[j_coord_offset+DIM*2+YY] -= ty;
534             f[j_coord_offset+DIM*2+ZZ] -= tz;
535
536             /**************************
537              * CALCULATE INTERACTIONS *
538              **************************/
539
540             r23              = rsq23*rinv23;
541
542             /* Calculate table index by multiplying r with table scale and truncate to integer */
543             rt               = r23*vftabscale;
544             vfitab           = rt;
545             vfeps            = rt-vfitab;
546             vfitab           = 3*4*vfitab;
547
548             /* CUBIC SPLINE TABLE ELECTROSTATICS */
549             Y                = vftab[vfitab];
550             F                = vftab[vfitab+1];
551             Geps             = vfeps*vftab[vfitab+2];
552             Heps2            = vfeps*vfeps*vftab[vfitab+3];
553             Fp               = F+Geps+Heps2;
554             VV               = Y+vfeps*Fp;
555             velec            = qq23*VV;
556             FF               = Fp+Geps+2.0*Heps2;
557             felec            = -qq23*FF*vftabscale*rinv23;
558
559             /* Update potential sums from outer loop */
560             velecsum        += velec;
561
562             fscal            = felec;
563
564             /* Calculate temporary vectorial force */
565             tx               = fscal*dx23;
566             ty               = fscal*dy23;
567             tz               = fscal*dz23;
568
569             /* Update vectorial force */
570             fix2            += tx;
571             fiy2            += ty;
572             fiz2            += tz;
573             f[j_coord_offset+DIM*3+XX] -= tx;
574             f[j_coord_offset+DIM*3+YY] -= ty;
575             f[j_coord_offset+DIM*3+ZZ] -= tz;
576
577             /**************************
578              * CALCULATE INTERACTIONS *
579              **************************/
580
581             r31              = rsq31*rinv31;
582
583             /* Calculate table index by multiplying r with table scale and truncate to integer */
584             rt               = r31*vftabscale;
585             vfitab           = rt;
586             vfeps            = rt-vfitab;
587             vfitab           = 3*4*vfitab;
588
589             /* CUBIC SPLINE TABLE ELECTROSTATICS */
590             Y                = vftab[vfitab];
591             F                = vftab[vfitab+1];
592             Geps             = vfeps*vftab[vfitab+2];
593             Heps2            = vfeps*vfeps*vftab[vfitab+3];
594             Fp               = F+Geps+Heps2;
595             VV               = Y+vfeps*Fp;
596             velec            = qq31*VV;
597             FF               = Fp+Geps+2.0*Heps2;
598             felec            = -qq31*FF*vftabscale*rinv31;
599
600             /* Update potential sums from outer loop */
601             velecsum        += velec;
602
603             fscal            = felec;
604
605             /* Calculate temporary vectorial force */
606             tx               = fscal*dx31;
607             ty               = fscal*dy31;
608             tz               = fscal*dz31;
609
610             /* Update vectorial force */
611             fix3            += tx;
612             fiy3            += ty;
613             fiz3            += tz;
614             f[j_coord_offset+DIM*1+XX] -= tx;
615             f[j_coord_offset+DIM*1+YY] -= ty;
616             f[j_coord_offset+DIM*1+ZZ] -= tz;
617
618             /**************************
619              * CALCULATE INTERACTIONS *
620              **************************/
621
622             r32              = rsq32*rinv32;
623
624             /* Calculate table index by multiplying r with table scale and truncate to integer */
625             rt               = r32*vftabscale;
626             vfitab           = rt;
627             vfeps            = rt-vfitab;
628             vfitab           = 3*4*vfitab;
629
630             /* CUBIC SPLINE TABLE ELECTROSTATICS */
631             Y                = vftab[vfitab];
632             F                = vftab[vfitab+1];
633             Geps             = vfeps*vftab[vfitab+2];
634             Heps2            = vfeps*vfeps*vftab[vfitab+3];
635             Fp               = F+Geps+Heps2;
636             VV               = Y+vfeps*Fp;
637             velec            = qq32*VV;
638             FF               = Fp+Geps+2.0*Heps2;
639             felec            = -qq32*FF*vftabscale*rinv32;
640
641             /* Update potential sums from outer loop */
642             velecsum        += velec;
643
644             fscal            = felec;
645
646             /* Calculate temporary vectorial force */
647             tx               = fscal*dx32;
648             ty               = fscal*dy32;
649             tz               = fscal*dz32;
650
651             /* Update vectorial force */
652             fix3            += tx;
653             fiy3            += ty;
654             fiz3            += tz;
655             f[j_coord_offset+DIM*2+XX] -= tx;
656             f[j_coord_offset+DIM*2+YY] -= ty;
657             f[j_coord_offset+DIM*2+ZZ] -= tz;
658
659             /**************************
660              * CALCULATE INTERACTIONS *
661              **************************/
662
663             r33              = rsq33*rinv33;
664
665             /* Calculate table index by multiplying r with table scale and truncate to integer */
666             rt               = r33*vftabscale;
667             vfitab           = rt;
668             vfeps            = rt-vfitab;
669             vfitab           = 3*4*vfitab;
670
671             /* CUBIC SPLINE TABLE ELECTROSTATICS */
672             Y                = vftab[vfitab];
673             F                = vftab[vfitab+1];
674             Geps             = vfeps*vftab[vfitab+2];
675             Heps2            = vfeps*vfeps*vftab[vfitab+3];
676             Fp               = F+Geps+Heps2;
677             VV               = Y+vfeps*Fp;
678             velec            = qq33*VV;
679             FF               = Fp+Geps+2.0*Heps2;
680             felec            = -qq33*FF*vftabscale*rinv33;
681
682             /* Update potential sums from outer loop */
683             velecsum        += velec;
684
685             fscal            = felec;
686
687             /* Calculate temporary vectorial force */
688             tx               = fscal*dx33;
689             ty               = fscal*dy33;
690             tz               = fscal*dz33;
691
692             /* Update vectorial force */
693             fix3            += tx;
694             fiy3            += ty;
695             fiz3            += tz;
696             f[j_coord_offset+DIM*3+XX] -= tx;
697             f[j_coord_offset+DIM*3+YY] -= ty;
698             f[j_coord_offset+DIM*3+ZZ] -= tz;
699
700             /* Inner loop uses 424 flops */
701         }
702         /* End of innermost loop */
703
704         tx = ty = tz = 0;
705         f[i_coord_offset+DIM*0+XX] += fix0;
706         f[i_coord_offset+DIM*0+YY] += fiy0;
707         f[i_coord_offset+DIM*0+ZZ] += fiz0;
708         tx                         += fix0;
709         ty                         += fiy0;
710         tz                         += fiz0;
711         f[i_coord_offset+DIM*1+XX] += fix1;
712         f[i_coord_offset+DIM*1+YY] += fiy1;
713         f[i_coord_offset+DIM*1+ZZ] += fiz1;
714         tx                         += fix1;
715         ty                         += fiy1;
716         tz                         += fiz1;
717         f[i_coord_offset+DIM*2+XX] += fix2;
718         f[i_coord_offset+DIM*2+YY] += fiy2;
719         f[i_coord_offset+DIM*2+ZZ] += fiz2;
720         tx                         += fix2;
721         ty                         += fiy2;
722         tz                         += fiz2;
723         f[i_coord_offset+DIM*3+XX] += fix3;
724         f[i_coord_offset+DIM*3+YY] += fiy3;
725         f[i_coord_offset+DIM*3+ZZ] += fiz3;
726         tx                         += fix3;
727         ty                         += fiy3;
728         tz                         += fiz3;
729         fshift[i_shift_offset+XX]  += tx;
730         fshift[i_shift_offset+YY]  += ty;
731         fshift[i_shift_offset+ZZ]  += tz;
732
733         ggid                        = gid[iidx];
734         /* Update potential energies */
735         kernel_data->energygrp_elec[ggid] += velecsum;
736         kernel_data->energygrp_vdw[ggid] += vvdwsum;
737
738         /* Increment number of inner iterations */
739         inneriter                  += j_index_end - j_index_start;
740
741         /* Outer loop uses 41 flops */
742     }
743
744     /* Increment number of outer iterations */
745     outeriter        += nri;
746
747     /* Update outer/inner flops */
748
749     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*424);
750 }
751 /*
752  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4W4_F_c
753  * Electrostatics interaction: CubicSplineTable
754  * VdW interaction:            CubicSplineTable
755  * Geometry:                   Water4-Water4
756  * Calculate force/pot:        Force
757  */
758 void
759 nb_kernel_ElecCSTab_VdwCSTab_GeomW4W4_F_c
760                     (t_nblist                    * gmx_restrict       nlist,
761                      rvec                        * gmx_restrict          xx,
762                      rvec                        * gmx_restrict          ff,
763                      t_forcerec                  * gmx_restrict          fr,
764                      t_mdatoms                   * gmx_restrict     mdatoms,
765                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
766                      t_nrnb                      * gmx_restrict        nrnb)
767 {
768     int              i_shift_offset,i_coord_offset,j_coord_offset;
769     int              j_index_start,j_index_end;
770     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
771     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
772     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
773     real             *shiftvec,*fshift,*x,*f;
774     int              vdwioffset0;
775     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
776     int              vdwioffset1;
777     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
778     int              vdwioffset2;
779     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
780     int              vdwioffset3;
781     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
782     int              vdwjidx0;
783     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
784     int              vdwjidx1;
785     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
786     int              vdwjidx2;
787     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
788     int              vdwjidx3;
789     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
790     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
791     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
792     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
793     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
794     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
795     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
796     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
797     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
798     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
799     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
800     real             velec,felec,velecsum,facel,crf,krf,krf2;
801     real             *charge;
802     int              nvdwtype;
803     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
804     int              *vdwtype;
805     real             *vdwparam;
806     int              vfitab;
807     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
808     real             *vftab;
809
810     x                = xx[0];
811     f                = ff[0];
812
813     nri              = nlist->nri;
814     iinr             = nlist->iinr;
815     jindex           = nlist->jindex;
816     jjnr             = nlist->jjnr;
817     shiftidx         = nlist->shift;
818     gid              = nlist->gid;
819     shiftvec         = fr->shift_vec[0];
820     fshift           = fr->fshift[0];
821     facel            = fr->epsfac;
822     charge           = mdatoms->chargeA;
823     nvdwtype         = fr->ntype;
824     vdwparam         = fr->nbfp;
825     vdwtype          = mdatoms->typeA;
826
827     vftab            = kernel_data->table_elec_vdw->data;
828     vftabscale       = kernel_data->table_elec_vdw->scale;
829
830     /* Setup water-specific parameters */
831     inr              = nlist->iinr[0];
832     iq1              = facel*charge[inr+1];
833     iq2              = facel*charge[inr+2];
834     iq3              = facel*charge[inr+3];
835     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
836
837     jq1              = charge[inr+1];
838     jq2              = charge[inr+2];
839     jq3              = charge[inr+3];
840     vdwjidx0         = 2*vdwtype[inr+0];
841     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
842     c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
843     qq11             = iq1*jq1;
844     qq12             = iq1*jq2;
845     qq13             = iq1*jq3;
846     qq21             = iq2*jq1;
847     qq22             = iq2*jq2;
848     qq23             = iq2*jq3;
849     qq31             = iq3*jq1;
850     qq32             = iq3*jq2;
851     qq33             = iq3*jq3;
852
853     outeriter        = 0;
854     inneriter        = 0;
855
856     /* Start outer loop over neighborlists */
857     for(iidx=0; iidx<nri; iidx++)
858     {
859         /* Load shift vector for this list */
860         i_shift_offset   = DIM*shiftidx[iidx];
861         shX              = shiftvec[i_shift_offset+XX];
862         shY              = shiftvec[i_shift_offset+YY];
863         shZ              = shiftvec[i_shift_offset+ZZ];
864
865         /* Load limits for loop over neighbors */
866         j_index_start    = jindex[iidx];
867         j_index_end      = jindex[iidx+1];
868
869         /* Get outer coordinate index */
870         inr              = iinr[iidx];
871         i_coord_offset   = DIM*inr;
872
873         /* Load i particle coords and add shift vector */
874         ix0              = shX + x[i_coord_offset+DIM*0+XX];
875         iy0              = shY + x[i_coord_offset+DIM*0+YY];
876         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
877         ix1              = shX + x[i_coord_offset+DIM*1+XX];
878         iy1              = shY + x[i_coord_offset+DIM*1+YY];
879         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
880         ix2              = shX + x[i_coord_offset+DIM*2+XX];
881         iy2              = shY + x[i_coord_offset+DIM*2+YY];
882         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
883         ix3              = shX + x[i_coord_offset+DIM*3+XX];
884         iy3              = shY + x[i_coord_offset+DIM*3+YY];
885         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
886
887         fix0             = 0.0;
888         fiy0             = 0.0;
889         fiz0             = 0.0;
890         fix1             = 0.0;
891         fiy1             = 0.0;
892         fiz1             = 0.0;
893         fix2             = 0.0;
894         fiy2             = 0.0;
895         fiz2             = 0.0;
896         fix3             = 0.0;
897         fiy3             = 0.0;
898         fiz3             = 0.0;
899
900         /* Start inner kernel loop */
901         for(jidx=j_index_start; jidx<j_index_end; jidx++)
902         {
903             /* Get j neighbor index, and coordinate index */
904             jnr              = jjnr[jidx];
905             j_coord_offset   = DIM*jnr;
906
907             /* load j atom coordinates */
908             jx0              = x[j_coord_offset+DIM*0+XX];
909             jy0              = x[j_coord_offset+DIM*0+YY];
910             jz0              = x[j_coord_offset+DIM*0+ZZ];
911             jx1              = x[j_coord_offset+DIM*1+XX];
912             jy1              = x[j_coord_offset+DIM*1+YY];
913             jz1              = x[j_coord_offset+DIM*1+ZZ];
914             jx2              = x[j_coord_offset+DIM*2+XX];
915             jy2              = x[j_coord_offset+DIM*2+YY];
916             jz2              = x[j_coord_offset+DIM*2+ZZ];
917             jx3              = x[j_coord_offset+DIM*3+XX];
918             jy3              = x[j_coord_offset+DIM*3+YY];
919             jz3              = x[j_coord_offset+DIM*3+ZZ];
920
921             /* Calculate displacement vector */
922             dx00             = ix0 - jx0;
923             dy00             = iy0 - jy0;
924             dz00             = iz0 - jz0;
925             dx11             = ix1 - jx1;
926             dy11             = iy1 - jy1;
927             dz11             = iz1 - jz1;
928             dx12             = ix1 - jx2;
929             dy12             = iy1 - jy2;
930             dz12             = iz1 - jz2;
931             dx13             = ix1 - jx3;
932             dy13             = iy1 - jy3;
933             dz13             = iz1 - jz3;
934             dx21             = ix2 - jx1;
935             dy21             = iy2 - jy1;
936             dz21             = iz2 - jz1;
937             dx22             = ix2 - jx2;
938             dy22             = iy2 - jy2;
939             dz22             = iz2 - jz2;
940             dx23             = ix2 - jx3;
941             dy23             = iy2 - jy3;
942             dz23             = iz2 - jz3;
943             dx31             = ix3 - jx1;
944             dy31             = iy3 - jy1;
945             dz31             = iz3 - jz1;
946             dx32             = ix3 - jx2;
947             dy32             = iy3 - jy2;
948             dz32             = iz3 - jz2;
949             dx33             = ix3 - jx3;
950             dy33             = iy3 - jy3;
951             dz33             = iz3 - jz3;
952
953             /* Calculate squared distance and things based on it */
954             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
955             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
956             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
957             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
958             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
959             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
960             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
961             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
962             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
963             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
964
965             rinv00           = gmx_invsqrt(rsq00);
966             rinv11           = gmx_invsqrt(rsq11);
967             rinv12           = gmx_invsqrt(rsq12);
968             rinv13           = gmx_invsqrt(rsq13);
969             rinv21           = gmx_invsqrt(rsq21);
970             rinv22           = gmx_invsqrt(rsq22);
971             rinv23           = gmx_invsqrt(rsq23);
972             rinv31           = gmx_invsqrt(rsq31);
973             rinv32           = gmx_invsqrt(rsq32);
974             rinv33           = gmx_invsqrt(rsq33);
975
976             /**************************
977              * CALCULATE INTERACTIONS *
978              **************************/
979
980             r00              = rsq00*rinv00;
981
982             /* Calculate table index by multiplying r with table scale and truncate to integer */
983             rt               = r00*vftabscale;
984             vfitab           = rt;
985             vfeps            = rt-vfitab;
986             vfitab           = 3*4*vfitab;
987
988             /* CUBIC SPLINE TABLE DISPERSION */
989             vfitab          += 4;
990             F                = vftab[vfitab+1];
991             Geps             = vfeps*vftab[vfitab+2];
992             Heps2            = vfeps*vfeps*vftab[vfitab+3];
993             Fp               = F+Geps+Heps2;
994             FF               = Fp+Geps+2.0*Heps2;
995             fvdw6            = c6_00*FF;
996
997             /* CUBIC SPLINE TABLE REPULSION */
998             F                = vftab[vfitab+5];
999             Geps             = vfeps*vftab[vfitab+6];
1000             Heps2            = vfeps*vfeps*vftab[vfitab+7];
1001             Fp               = F+Geps+Heps2;
1002             FF               = Fp+Geps+2.0*Heps2;
1003             fvdw12           = c12_00*FF;
1004             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
1005
1006             fscal            = fvdw;
1007
1008             /* Calculate temporary vectorial force */
1009             tx               = fscal*dx00;
1010             ty               = fscal*dy00;
1011             tz               = fscal*dz00;
1012
1013             /* Update vectorial force */
1014             fix0            += tx;
1015             fiy0            += ty;
1016             fiz0            += tz;
1017             f[j_coord_offset+DIM*0+XX] -= tx;
1018             f[j_coord_offset+DIM*0+YY] -= ty;
1019             f[j_coord_offset+DIM*0+ZZ] -= tz;
1020
1021             /**************************
1022              * CALCULATE INTERACTIONS *
1023              **************************/
1024
1025             r11              = rsq11*rinv11;
1026
1027             /* Calculate table index by multiplying r with table scale and truncate to integer */
1028             rt               = r11*vftabscale;
1029             vfitab           = rt;
1030             vfeps            = rt-vfitab;
1031             vfitab           = 3*4*vfitab;
1032
1033             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1034             F                = vftab[vfitab+1];
1035             Geps             = vfeps*vftab[vfitab+2];
1036             Heps2            = vfeps*vfeps*vftab[vfitab+3];
1037             Fp               = F+Geps+Heps2;
1038             FF               = Fp+Geps+2.0*Heps2;
1039             felec            = -qq11*FF*vftabscale*rinv11;
1040
1041             fscal            = felec;
1042
1043             /* Calculate temporary vectorial force */
1044             tx               = fscal*dx11;
1045             ty               = fscal*dy11;
1046             tz               = fscal*dz11;
1047
1048             /* Update vectorial force */
1049             fix1            += tx;
1050             fiy1            += ty;
1051             fiz1            += tz;
1052             f[j_coord_offset+DIM*1+XX] -= tx;
1053             f[j_coord_offset+DIM*1+YY] -= ty;
1054             f[j_coord_offset+DIM*1+ZZ] -= tz;
1055
1056             /**************************
1057              * CALCULATE INTERACTIONS *
1058              **************************/
1059
1060             r12              = rsq12*rinv12;
1061
1062             /* Calculate table index by multiplying r with table scale and truncate to integer */
1063             rt               = r12*vftabscale;
1064             vfitab           = rt;
1065             vfeps            = rt-vfitab;
1066             vfitab           = 3*4*vfitab;
1067
1068             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1069             F                = vftab[vfitab+1];
1070             Geps             = vfeps*vftab[vfitab+2];
1071             Heps2            = vfeps*vfeps*vftab[vfitab+3];
1072             Fp               = F+Geps+Heps2;
1073             FF               = Fp+Geps+2.0*Heps2;
1074             felec            = -qq12*FF*vftabscale*rinv12;
1075
1076             fscal            = felec;
1077
1078             /* Calculate temporary vectorial force */
1079             tx               = fscal*dx12;
1080             ty               = fscal*dy12;
1081             tz               = fscal*dz12;
1082
1083             /* Update vectorial force */
1084             fix1            += tx;
1085             fiy1            += ty;
1086             fiz1            += tz;
1087             f[j_coord_offset+DIM*2+XX] -= tx;
1088             f[j_coord_offset+DIM*2+YY] -= ty;
1089             f[j_coord_offset+DIM*2+ZZ] -= tz;
1090
1091             /**************************
1092              * CALCULATE INTERACTIONS *
1093              **************************/
1094
1095             r13              = rsq13*rinv13;
1096
1097             /* Calculate table index by multiplying r with table scale and truncate to integer */
1098             rt               = r13*vftabscale;
1099             vfitab           = rt;
1100             vfeps            = rt-vfitab;
1101             vfitab           = 3*4*vfitab;
1102
1103             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1104             F                = vftab[vfitab+1];
1105             Geps             = vfeps*vftab[vfitab+2];
1106             Heps2            = vfeps*vfeps*vftab[vfitab+3];
1107             Fp               = F+Geps+Heps2;
1108             FF               = Fp+Geps+2.0*Heps2;
1109             felec            = -qq13*FF*vftabscale*rinv13;
1110
1111             fscal            = felec;
1112
1113             /* Calculate temporary vectorial force */
1114             tx               = fscal*dx13;
1115             ty               = fscal*dy13;
1116             tz               = fscal*dz13;
1117
1118             /* Update vectorial force */
1119             fix1            += tx;
1120             fiy1            += ty;
1121             fiz1            += tz;
1122             f[j_coord_offset+DIM*3+XX] -= tx;
1123             f[j_coord_offset+DIM*3+YY] -= ty;
1124             f[j_coord_offset+DIM*3+ZZ] -= tz;
1125
1126             /**************************
1127              * CALCULATE INTERACTIONS *
1128              **************************/
1129
1130             r21              = rsq21*rinv21;
1131
1132             /* Calculate table index by multiplying r with table scale and truncate to integer */
1133             rt               = r21*vftabscale;
1134             vfitab           = rt;
1135             vfeps            = rt-vfitab;
1136             vfitab           = 3*4*vfitab;
1137
1138             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1139             F                = vftab[vfitab+1];
1140             Geps             = vfeps*vftab[vfitab+2];
1141             Heps2            = vfeps*vfeps*vftab[vfitab+3];
1142             Fp               = F+Geps+Heps2;
1143             FF               = Fp+Geps+2.0*Heps2;
1144             felec            = -qq21*FF*vftabscale*rinv21;
1145
1146             fscal            = felec;
1147
1148             /* Calculate temporary vectorial force */
1149             tx               = fscal*dx21;
1150             ty               = fscal*dy21;
1151             tz               = fscal*dz21;
1152
1153             /* Update vectorial force */
1154             fix2            += tx;
1155             fiy2            += ty;
1156             fiz2            += tz;
1157             f[j_coord_offset+DIM*1+XX] -= tx;
1158             f[j_coord_offset+DIM*1+YY] -= ty;
1159             f[j_coord_offset+DIM*1+ZZ] -= tz;
1160
1161             /**************************
1162              * CALCULATE INTERACTIONS *
1163              **************************/
1164
1165             r22              = rsq22*rinv22;
1166
1167             /* Calculate table index by multiplying r with table scale and truncate to integer */
1168             rt               = r22*vftabscale;
1169             vfitab           = rt;
1170             vfeps            = rt-vfitab;
1171             vfitab           = 3*4*vfitab;
1172
1173             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1174             F                = vftab[vfitab+1];
1175             Geps             = vfeps*vftab[vfitab+2];
1176             Heps2            = vfeps*vfeps*vftab[vfitab+3];
1177             Fp               = F+Geps+Heps2;
1178             FF               = Fp+Geps+2.0*Heps2;
1179             felec            = -qq22*FF*vftabscale*rinv22;
1180
1181             fscal            = felec;
1182
1183             /* Calculate temporary vectorial force */
1184             tx               = fscal*dx22;
1185             ty               = fscal*dy22;
1186             tz               = fscal*dz22;
1187
1188             /* Update vectorial force */
1189             fix2            += tx;
1190             fiy2            += ty;
1191             fiz2            += tz;
1192             f[j_coord_offset+DIM*2+XX] -= tx;
1193             f[j_coord_offset+DIM*2+YY] -= ty;
1194             f[j_coord_offset+DIM*2+ZZ] -= tz;
1195
1196             /**************************
1197              * CALCULATE INTERACTIONS *
1198              **************************/
1199
1200             r23              = rsq23*rinv23;
1201
1202             /* Calculate table index by multiplying r with table scale and truncate to integer */
1203             rt               = r23*vftabscale;
1204             vfitab           = rt;
1205             vfeps            = rt-vfitab;
1206             vfitab           = 3*4*vfitab;
1207
1208             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1209             F                = vftab[vfitab+1];
1210             Geps             = vfeps*vftab[vfitab+2];
1211             Heps2            = vfeps*vfeps*vftab[vfitab+3];
1212             Fp               = F+Geps+Heps2;
1213             FF               = Fp+Geps+2.0*Heps2;
1214             felec            = -qq23*FF*vftabscale*rinv23;
1215
1216             fscal            = felec;
1217
1218             /* Calculate temporary vectorial force */
1219             tx               = fscal*dx23;
1220             ty               = fscal*dy23;
1221             tz               = fscal*dz23;
1222
1223             /* Update vectorial force */
1224             fix2            += tx;
1225             fiy2            += ty;
1226             fiz2            += tz;
1227             f[j_coord_offset+DIM*3+XX] -= tx;
1228             f[j_coord_offset+DIM*3+YY] -= ty;
1229             f[j_coord_offset+DIM*3+ZZ] -= tz;
1230
1231             /**************************
1232              * CALCULATE INTERACTIONS *
1233              **************************/
1234
1235             r31              = rsq31*rinv31;
1236
1237             /* Calculate table index by multiplying r with table scale and truncate to integer */
1238             rt               = r31*vftabscale;
1239             vfitab           = rt;
1240             vfeps            = rt-vfitab;
1241             vfitab           = 3*4*vfitab;
1242
1243             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1244             F                = vftab[vfitab+1];
1245             Geps             = vfeps*vftab[vfitab+2];
1246             Heps2            = vfeps*vfeps*vftab[vfitab+3];
1247             Fp               = F+Geps+Heps2;
1248             FF               = Fp+Geps+2.0*Heps2;
1249             felec            = -qq31*FF*vftabscale*rinv31;
1250
1251             fscal            = felec;
1252
1253             /* Calculate temporary vectorial force */
1254             tx               = fscal*dx31;
1255             ty               = fscal*dy31;
1256             tz               = fscal*dz31;
1257
1258             /* Update vectorial force */
1259             fix3            += tx;
1260             fiy3            += ty;
1261             fiz3            += tz;
1262             f[j_coord_offset+DIM*1+XX] -= tx;
1263             f[j_coord_offset+DIM*1+YY] -= ty;
1264             f[j_coord_offset+DIM*1+ZZ] -= tz;
1265
1266             /**************************
1267              * CALCULATE INTERACTIONS *
1268              **************************/
1269
1270             r32              = rsq32*rinv32;
1271
1272             /* Calculate table index by multiplying r with table scale and truncate to integer */
1273             rt               = r32*vftabscale;
1274             vfitab           = rt;
1275             vfeps            = rt-vfitab;
1276             vfitab           = 3*4*vfitab;
1277
1278             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1279             F                = vftab[vfitab+1];
1280             Geps             = vfeps*vftab[vfitab+2];
1281             Heps2            = vfeps*vfeps*vftab[vfitab+3];
1282             Fp               = F+Geps+Heps2;
1283             FF               = Fp+Geps+2.0*Heps2;
1284             felec            = -qq32*FF*vftabscale*rinv32;
1285
1286             fscal            = felec;
1287
1288             /* Calculate temporary vectorial force */
1289             tx               = fscal*dx32;
1290             ty               = fscal*dy32;
1291             tz               = fscal*dz32;
1292
1293             /* Update vectorial force */
1294             fix3            += tx;
1295             fiy3            += ty;
1296             fiz3            += tz;
1297             f[j_coord_offset+DIM*2+XX] -= tx;
1298             f[j_coord_offset+DIM*2+YY] -= ty;
1299             f[j_coord_offset+DIM*2+ZZ] -= tz;
1300
1301             /**************************
1302              * CALCULATE INTERACTIONS *
1303              **************************/
1304
1305             r33              = rsq33*rinv33;
1306
1307             /* Calculate table index by multiplying r with table scale and truncate to integer */
1308             rt               = r33*vftabscale;
1309             vfitab           = rt;
1310             vfeps            = rt-vfitab;
1311             vfitab           = 3*4*vfitab;
1312
1313             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1314             F                = vftab[vfitab+1];
1315             Geps             = vfeps*vftab[vfitab+2];
1316             Heps2            = vfeps*vfeps*vftab[vfitab+3];
1317             Fp               = F+Geps+Heps2;
1318             FF               = Fp+Geps+2.0*Heps2;
1319             felec            = -qq33*FF*vftabscale*rinv33;
1320
1321             fscal            = felec;
1322
1323             /* Calculate temporary vectorial force */
1324             tx               = fscal*dx33;
1325             ty               = fscal*dy33;
1326             tz               = fscal*dz33;
1327
1328             /* Update vectorial force */
1329             fix3            += tx;
1330             fiy3            += ty;
1331             fiz3            += tz;
1332             f[j_coord_offset+DIM*3+XX] -= tx;
1333             f[j_coord_offset+DIM*3+YY] -= ty;
1334             f[j_coord_offset+DIM*3+ZZ] -= tz;
1335
1336             /* Inner loop uses 380 flops */
1337         }
1338         /* End of innermost loop */
1339
1340         tx = ty = tz = 0;
1341         f[i_coord_offset+DIM*0+XX] += fix0;
1342         f[i_coord_offset+DIM*0+YY] += fiy0;
1343         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1344         tx                         += fix0;
1345         ty                         += fiy0;
1346         tz                         += fiz0;
1347         f[i_coord_offset+DIM*1+XX] += fix1;
1348         f[i_coord_offset+DIM*1+YY] += fiy1;
1349         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1350         tx                         += fix1;
1351         ty                         += fiy1;
1352         tz                         += fiz1;
1353         f[i_coord_offset+DIM*2+XX] += fix2;
1354         f[i_coord_offset+DIM*2+YY] += fiy2;
1355         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1356         tx                         += fix2;
1357         ty                         += fiy2;
1358         tz                         += fiz2;
1359         f[i_coord_offset+DIM*3+XX] += fix3;
1360         f[i_coord_offset+DIM*3+YY] += fiy3;
1361         f[i_coord_offset+DIM*3+ZZ] += fiz3;
1362         tx                         += fix3;
1363         ty                         += fiy3;
1364         tz                         += fiz3;
1365         fshift[i_shift_offset+XX]  += tx;
1366         fshift[i_shift_offset+YY]  += ty;
1367         fshift[i_shift_offset+ZZ]  += tz;
1368
1369         /* Increment number of inner iterations */
1370         inneriter                  += j_index_end - j_index_start;
1371
1372         /* Outer loop uses 39 flops */
1373     }
1374
1375     /* Increment number of outer iterations */
1376     outeriter        += nri;
1377
1378     /* Update outer/inner flops */
1379
1380     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*380);
1381 }