Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 /*
48  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_c
49  * Electrostatics interaction: CubicSplineTable
50  * VdW interaction:            CubicSplineTable
51  * Geometry:                   Water4-Particle
52  * Calculate force/pot:        PotentialAndForce
53  */
54 void
55 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_c
56                     (t_nblist                    * gmx_restrict       nlist,
57                      rvec                        * gmx_restrict          xx,
58                      rvec                        * gmx_restrict          ff,
59                      t_forcerec                  * gmx_restrict          fr,
60                      t_mdatoms                   * gmx_restrict     mdatoms,
61                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62                      t_nrnb                      * gmx_restrict        nrnb)
63 {
64     int              i_shift_offset,i_coord_offset,j_coord_offset;
65     int              j_index_start,j_index_end;
66     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
69     real             *shiftvec,*fshift,*x,*f;
70     int              vdwioffset0;
71     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwioffset1;
73     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     int              vdwioffset2;
75     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwioffset3;
77     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78     int              vdwjidx0;
79     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
84     real             velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     int              vfitab;
91     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
92     real             *vftab;
93
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = fr->epsfac;
106     charge           = mdatoms->chargeA;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     vftab            = kernel_data->table_elec_vdw->data;
112     vftabscale       = kernel_data->table_elec_vdw->scale;
113
114     /* Setup water-specific parameters */
115     inr              = nlist->iinr[0];
116     iq1              = facel*charge[inr+1];
117     iq2              = facel*charge[inr+2];
118     iq3              = facel*charge[inr+3];
119     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
120
121     outeriter        = 0;
122     inneriter        = 0;
123
124     /* Start outer loop over neighborlists */
125     for(iidx=0; iidx<nri; iidx++)
126     {
127         /* Load shift vector for this list */
128         i_shift_offset   = DIM*shiftidx[iidx];
129         shX              = shiftvec[i_shift_offset+XX];
130         shY              = shiftvec[i_shift_offset+YY];
131         shZ              = shiftvec[i_shift_offset+ZZ];
132
133         /* Load limits for loop over neighbors */
134         j_index_start    = jindex[iidx];
135         j_index_end      = jindex[iidx+1];
136
137         /* Get outer coordinate index */
138         inr              = iinr[iidx];
139         i_coord_offset   = DIM*inr;
140
141         /* Load i particle coords and add shift vector */
142         ix0              = shX + x[i_coord_offset+DIM*0+XX];
143         iy0              = shY + x[i_coord_offset+DIM*0+YY];
144         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
145         ix1              = shX + x[i_coord_offset+DIM*1+XX];
146         iy1              = shY + x[i_coord_offset+DIM*1+YY];
147         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
148         ix2              = shX + x[i_coord_offset+DIM*2+XX];
149         iy2              = shY + x[i_coord_offset+DIM*2+YY];
150         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
151         ix3              = shX + x[i_coord_offset+DIM*3+XX];
152         iy3              = shY + x[i_coord_offset+DIM*3+YY];
153         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
154
155         fix0             = 0.0;
156         fiy0             = 0.0;
157         fiz0             = 0.0;
158         fix1             = 0.0;
159         fiy1             = 0.0;
160         fiz1             = 0.0;
161         fix2             = 0.0;
162         fiy2             = 0.0;
163         fiz2             = 0.0;
164         fix3             = 0.0;
165         fiy3             = 0.0;
166         fiz3             = 0.0;
167
168         /* Reset potential sums */
169         velecsum         = 0.0;
170         vvdwsum          = 0.0;
171
172         /* Start inner kernel loop */
173         for(jidx=j_index_start; jidx<j_index_end; jidx++)
174         {
175             /* Get j neighbor index, and coordinate index */
176             jnr              = jjnr[jidx];
177             j_coord_offset   = DIM*jnr;
178
179             /* load j atom coordinates */
180             jx0              = x[j_coord_offset+DIM*0+XX];
181             jy0              = x[j_coord_offset+DIM*0+YY];
182             jz0              = x[j_coord_offset+DIM*0+ZZ];
183
184             /* Calculate displacement vector */
185             dx00             = ix0 - jx0;
186             dy00             = iy0 - jy0;
187             dz00             = iz0 - jz0;
188             dx10             = ix1 - jx0;
189             dy10             = iy1 - jy0;
190             dz10             = iz1 - jz0;
191             dx20             = ix2 - jx0;
192             dy20             = iy2 - jy0;
193             dz20             = iz2 - jz0;
194             dx30             = ix3 - jx0;
195             dy30             = iy3 - jy0;
196             dz30             = iz3 - jz0;
197
198             /* Calculate squared distance and things based on it */
199             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
200             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
201             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
202             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
203
204             rinv00           = gmx_invsqrt(rsq00);
205             rinv10           = gmx_invsqrt(rsq10);
206             rinv20           = gmx_invsqrt(rsq20);
207             rinv30           = gmx_invsqrt(rsq30);
208
209             /* Load parameters for j particles */
210             jq0              = charge[jnr+0];
211             vdwjidx0         = 2*vdwtype[jnr+0];
212
213             /**************************
214              * CALCULATE INTERACTIONS *
215              **************************/
216
217             r00              = rsq00*rinv00;
218
219             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
220             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
221
222             /* Calculate table index by multiplying r with table scale and truncate to integer */
223             rt               = r00*vftabscale;
224             vfitab           = rt;
225             vfeps            = rt-vfitab;
226             vfitab           = 3*4*vfitab;
227
228             /* CUBIC SPLINE TABLE DISPERSION */
229             vfitab          += 4;
230             Y                = vftab[vfitab];
231             F                = vftab[vfitab+1];
232             Geps             = vfeps*vftab[vfitab+2];
233             Heps2            = vfeps*vfeps*vftab[vfitab+3];
234             Fp               = F+Geps+Heps2;
235             VV               = Y+vfeps*Fp;
236             vvdw6            = c6_00*VV;
237             FF               = Fp+Geps+2.0*Heps2;
238             fvdw6            = c6_00*FF;
239
240             /* CUBIC SPLINE TABLE REPULSION */
241             Y                = vftab[vfitab+4];
242             F                = vftab[vfitab+5];
243             Geps             = vfeps*vftab[vfitab+6];
244             Heps2            = vfeps*vfeps*vftab[vfitab+7];
245             Fp               = F+Geps+Heps2;
246             VV               = Y+vfeps*Fp;
247             vvdw12           = c12_00*VV;
248             FF               = Fp+Geps+2.0*Heps2;
249             fvdw12           = c12_00*FF;
250             vvdw             = vvdw12+vvdw6;
251             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
252
253             /* Update potential sums from outer loop */
254             vvdwsum         += vvdw;
255
256             fscal            = fvdw;
257
258             /* Calculate temporary vectorial force */
259             tx               = fscal*dx00;
260             ty               = fscal*dy00;
261             tz               = fscal*dz00;
262
263             /* Update vectorial force */
264             fix0            += tx;
265             fiy0            += ty;
266             fiz0            += tz;
267             f[j_coord_offset+DIM*0+XX] -= tx;
268             f[j_coord_offset+DIM*0+YY] -= ty;
269             f[j_coord_offset+DIM*0+ZZ] -= tz;
270
271             /**************************
272              * CALCULATE INTERACTIONS *
273              **************************/
274
275             r10              = rsq10*rinv10;
276
277             qq10             = iq1*jq0;
278
279             /* Calculate table index by multiplying r with table scale and truncate to integer */
280             rt               = r10*vftabscale;
281             vfitab           = rt;
282             vfeps            = rt-vfitab;
283             vfitab           = 3*4*vfitab;
284
285             /* CUBIC SPLINE TABLE ELECTROSTATICS */
286             Y                = vftab[vfitab];
287             F                = vftab[vfitab+1];
288             Geps             = vfeps*vftab[vfitab+2];
289             Heps2            = vfeps*vfeps*vftab[vfitab+3];
290             Fp               = F+Geps+Heps2;
291             VV               = Y+vfeps*Fp;
292             velec            = qq10*VV;
293             FF               = Fp+Geps+2.0*Heps2;
294             felec            = -qq10*FF*vftabscale*rinv10;
295
296             /* Update potential sums from outer loop */
297             velecsum        += velec;
298
299             fscal            = felec;
300
301             /* Calculate temporary vectorial force */
302             tx               = fscal*dx10;
303             ty               = fscal*dy10;
304             tz               = fscal*dz10;
305
306             /* Update vectorial force */
307             fix1            += tx;
308             fiy1            += ty;
309             fiz1            += tz;
310             f[j_coord_offset+DIM*0+XX] -= tx;
311             f[j_coord_offset+DIM*0+YY] -= ty;
312             f[j_coord_offset+DIM*0+ZZ] -= tz;
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             r20              = rsq20*rinv20;
319
320             qq20             = iq2*jq0;
321
322             /* Calculate table index by multiplying r with table scale and truncate to integer */
323             rt               = r20*vftabscale;
324             vfitab           = rt;
325             vfeps            = rt-vfitab;
326             vfitab           = 3*4*vfitab;
327
328             /* CUBIC SPLINE TABLE ELECTROSTATICS */
329             Y                = vftab[vfitab];
330             F                = vftab[vfitab+1];
331             Geps             = vfeps*vftab[vfitab+2];
332             Heps2            = vfeps*vfeps*vftab[vfitab+3];
333             Fp               = F+Geps+Heps2;
334             VV               = Y+vfeps*Fp;
335             velec            = qq20*VV;
336             FF               = Fp+Geps+2.0*Heps2;
337             felec            = -qq20*FF*vftabscale*rinv20;
338
339             /* Update potential sums from outer loop */
340             velecsum        += velec;
341
342             fscal            = felec;
343
344             /* Calculate temporary vectorial force */
345             tx               = fscal*dx20;
346             ty               = fscal*dy20;
347             tz               = fscal*dz20;
348
349             /* Update vectorial force */
350             fix2            += tx;
351             fiy2            += ty;
352             fiz2            += tz;
353             f[j_coord_offset+DIM*0+XX] -= tx;
354             f[j_coord_offset+DIM*0+YY] -= ty;
355             f[j_coord_offset+DIM*0+ZZ] -= tz;
356
357             /**************************
358              * CALCULATE INTERACTIONS *
359              **************************/
360
361             r30              = rsq30*rinv30;
362
363             qq30             = iq3*jq0;
364
365             /* Calculate table index by multiplying r with table scale and truncate to integer */
366             rt               = r30*vftabscale;
367             vfitab           = rt;
368             vfeps            = rt-vfitab;
369             vfitab           = 3*4*vfitab;
370
371             /* CUBIC SPLINE TABLE ELECTROSTATICS */
372             Y                = vftab[vfitab];
373             F                = vftab[vfitab+1];
374             Geps             = vfeps*vftab[vfitab+2];
375             Heps2            = vfeps*vfeps*vftab[vfitab+3];
376             Fp               = F+Geps+Heps2;
377             VV               = Y+vfeps*Fp;
378             velec            = qq30*VV;
379             FF               = Fp+Geps+2.0*Heps2;
380             felec            = -qq30*FF*vftabscale*rinv30;
381
382             /* Update potential sums from outer loop */
383             velecsum        += velec;
384
385             fscal            = felec;
386
387             /* Calculate temporary vectorial force */
388             tx               = fscal*dx30;
389             ty               = fscal*dy30;
390             tz               = fscal*dz30;
391
392             /* Update vectorial force */
393             fix3            += tx;
394             fiy3            += ty;
395             fiz3            += tz;
396             f[j_coord_offset+DIM*0+XX] -= tx;
397             f[j_coord_offset+DIM*0+YY] -= ty;
398             f[j_coord_offset+DIM*0+ZZ] -= tz;
399
400             /* Inner loop uses 181 flops */
401         }
402         /* End of innermost loop */
403
404         tx = ty = tz = 0;
405         f[i_coord_offset+DIM*0+XX] += fix0;
406         f[i_coord_offset+DIM*0+YY] += fiy0;
407         f[i_coord_offset+DIM*0+ZZ] += fiz0;
408         tx                         += fix0;
409         ty                         += fiy0;
410         tz                         += fiz0;
411         f[i_coord_offset+DIM*1+XX] += fix1;
412         f[i_coord_offset+DIM*1+YY] += fiy1;
413         f[i_coord_offset+DIM*1+ZZ] += fiz1;
414         tx                         += fix1;
415         ty                         += fiy1;
416         tz                         += fiz1;
417         f[i_coord_offset+DIM*2+XX] += fix2;
418         f[i_coord_offset+DIM*2+YY] += fiy2;
419         f[i_coord_offset+DIM*2+ZZ] += fiz2;
420         tx                         += fix2;
421         ty                         += fiy2;
422         tz                         += fiz2;
423         f[i_coord_offset+DIM*3+XX] += fix3;
424         f[i_coord_offset+DIM*3+YY] += fiy3;
425         f[i_coord_offset+DIM*3+ZZ] += fiz3;
426         tx                         += fix3;
427         ty                         += fiy3;
428         tz                         += fiz3;
429         fshift[i_shift_offset+XX]  += tx;
430         fshift[i_shift_offset+YY]  += ty;
431         fshift[i_shift_offset+ZZ]  += tz;
432
433         ggid                        = gid[iidx];
434         /* Update potential energies */
435         kernel_data->energygrp_elec[ggid] += velecsum;
436         kernel_data->energygrp_vdw[ggid] += vvdwsum;
437
438         /* Increment number of inner iterations */
439         inneriter                  += j_index_end - j_index_start;
440
441         /* Outer loop uses 41 flops */
442     }
443
444     /* Increment number of outer iterations */
445     outeriter        += nri;
446
447     /* Update outer/inner flops */
448
449     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*181);
450 }
451 /*
452  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_c
453  * Electrostatics interaction: CubicSplineTable
454  * VdW interaction:            CubicSplineTable
455  * Geometry:                   Water4-Particle
456  * Calculate force/pot:        Force
457  */
458 void
459 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_c
460                     (t_nblist                    * gmx_restrict       nlist,
461                      rvec                        * gmx_restrict          xx,
462                      rvec                        * gmx_restrict          ff,
463                      t_forcerec                  * gmx_restrict          fr,
464                      t_mdatoms                   * gmx_restrict     mdatoms,
465                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
466                      t_nrnb                      * gmx_restrict        nrnb)
467 {
468     int              i_shift_offset,i_coord_offset,j_coord_offset;
469     int              j_index_start,j_index_end;
470     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
471     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
472     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
473     real             *shiftvec,*fshift,*x,*f;
474     int              vdwioffset0;
475     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
476     int              vdwioffset1;
477     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
478     int              vdwioffset2;
479     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
480     int              vdwioffset3;
481     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
482     int              vdwjidx0;
483     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
484     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
485     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
486     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
487     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
488     real             velec,felec,velecsum,facel,crf,krf,krf2;
489     real             *charge;
490     int              nvdwtype;
491     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
492     int              *vdwtype;
493     real             *vdwparam;
494     int              vfitab;
495     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
496     real             *vftab;
497
498     x                = xx[0];
499     f                = ff[0];
500
501     nri              = nlist->nri;
502     iinr             = nlist->iinr;
503     jindex           = nlist->jindex;
504     jjnr             = nlist->jjnr;
505     shiftidx         = nlist->shift;
506     gid              = nlist->gid;
507     shiftvec         = fr->shift_vec[0];
508     fshift           = fr->fshift[0];
509     facel            = fr->epsfac;
510     charge           = mdatoms->chargeA;
511     nvdwtype         = fr->ntype;
512     vdwparam         = fr->nbfp;
513     vdwtype          = mdatoms->typeA;
514
515     vftab            = kernel_data->table_elec_vdw->data;
516     vftabscale       = kernel_data->table_elec_vdw->scale;
517
518     /* Setup water-specific parameters */
519     inr              = nlist->iinr[0];
520     iq1              = facel*charge[inr+1];
521     iq2              = facel*charge[inr+2];
522     iq3              = facel*charge[inr+3];
523     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
524
525     outeriter        = 0;
526     inneriter        = 0;
527
528     /* Start outer loop over neighborlists */
529     for(iidx=0; iidx<nri; iidx++)
530     {
531         /* Load shift vector for this list */
532         i_shift_offset   = DIM*shiftidx[iidx];
533         shX              = shiftvec[i_shift_offset+XX];
534         shY              = shiftvec[i_shift_offset+YY];
535         shZ              = shiftvec[i_shift_offset+ZZ];
536
537         /* Load limits for loop over neighbors */
538         j_index_start    = jindex[iidx];
539         j_index_end      = jindex[iidx+1];
540
541         /* Get outer coordinate index */
542         inr              = iinr[iidx];
543         i_coord_offset   = DIM*inr;
544
545         /* Load i particle coords and add shift vector */
546         ix0              = shX + x[i_coord_offset+DIM*0+XX];
547         iy0              = shY + x[i_coord_offset+DIM*0+YY];
548         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
549         ix1              = shX + x[i_coord_offset+DIM*1+XX];
550         iy1              = shY + x[i_coord_offset+DIM*1+YY];
551         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
552         ix2              = shX + x[i_coord_offset+DIM*2+XX];
553         iy2              = shY + x[i_coord_offset+DIM*2+YY];
554         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
555         ix3              = shX + x[i_coord_offset+DIM*3+XX];
556         iy3              = shY + x[i_coord_offset+DIM*3+YY];
557         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
558
559         fix0             = 0.0;
560         fiy0             = 0.0;
561         fiz0             = 0.0;
562         fix1             = 0.0;
563         fiy1             = 0.0;
564         fiz1             = 0.0;
565         fix2             = 0.0;
566         fiy2             = 0.0;
567         fiz2             = 0.0;
568         fix3             = 0.0;
569         fiy3             = 0.0;
570         fiz3             = 0.0;
571
572         /* Start inner kernel loop */
573         for(jidx=j_index_start; jidx<j_index_end; jidx++)
574         {
575             /* Get j neighbor index, and coordinate index */
576             jnr              = jjnr[jidx];
577             j_coord_offset   = DIM*jnr;
578
579             /* load j atom coordinates */
580             jx0              = x[j_coord_offset+DIM*0+XX];
581             jy0              = x[j_coord_offset+DIM*0+YY];
582             jz0              = x[j_coord_offset+DIM*0+ZZ];
583
584             /* Calculate displacement vector */
585             dx00             = ix0 - jx0;
586             dy00             = iy0 - jy0;
587             dz00             = iz0 - jz0;
588             dx10             = ix1 - jx0;
589             dy10             = iy1 - jy0;
590             dz10             = iz1 - jz0;
591             dx20             = ix2 - jx0;
592             dy20             = iy2 - jy0;
593             dz20             = iz2 - jz0;
594             dx30             = ix3 - jx0;
595             dy30             = iy3 - jy0;
596             dz30             = iz3 - jz0;
597
598             /* Calculate squared distance and things based on it */
599             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
600             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
601             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
602             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
603
604             rinv00           = gmx_invsqrt(rsq00);
605             rinv10           = gmx_invsqrt(rsq10);
606             rinv20           = gmx_invsqrt(rsq20);
607             rinv30           = gmx_invsqrt(rsq30);
608
609             /* Load parameters for j particles */
610             jq0              = charge[jnr+0];
611             vdwjidx0         = 2*vdwtype[jnr+0];
612
613             /**************************
614              * CALCULATE INTERACTIONS *
615              **************************/
616
617             r00              = rsq00*rinv00;
618
619             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
620             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
621
622             /* Calculate table index by multiplying r with table scale and truncate to integer */
623             rt               = r00*vftabscale;
624             vfitab           = rt;
625             vfeps            = rt-vfitab;
626             vfitab           = 3*4*vfitab;
627
628             /* CUBIC SPLINE TABLE DISPERSION */
629             vfitab          += 4;
630             F                = vftab[vfitab+1];
631             Geps             = vfeps*vftab[vfitab+2];
632             Heps2            = vfeps*vfeps*vftab[vfitab+3];
633             Fp               = F+Geps+Heps2;
634             FF               = Fp+Geps+2.0*Heps2;
635             fvdw6            = c6_00*FF;
636
637             /* CUBIC SPLINE TABLE REPULSION */
638             F                = vftab[vfitab+5];
639             Geps             = vfeps*vftab[vfitab+6];
640             Heps2            = vfeps*vfeps*vftab[vfitab+7];
641             Fp               = F+Geps+Heps2;
642             FF               = Fp+Geps+2.0*Heps2;
643             fvdw12           = c12_00*FF;
644             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
645
646             fscal            = fvdw;
647
648             /* Calculate temporary vectorial force */
649             tx               = fscal*dx00;
650             ty               = fscal*dy00;
651             tz               = fscal*dz00;
652
653             /* Update vectorial force */
654             fix0            += tx;
655             fiy0            += ty;
656             fiz0            += tz;
657             f[j_coord_offset+DIM*0+XX] -= tx;
658             f[j_coord_offset+DIM*0+YY] -= ty;
659             f[j_coord_offset+DIM*0+ZZ] -= tz;
660
661             /**************************
662              * CALCULATE INTERACTIONS *
663              **************************/
664
665             r10              = rsq10*rinv10;
666
667             qq10             = iq1*jq0;
668
669             /* Calculate table index by multiplying r with table scale and truncate to integer */
670             rt               = r10*vftabscale;
671             vfitab           = rt;
672             vfeps            = rt-vfitab;
673             vfitab           = 3*4*vfitab;
674
675             /* CUBIC SPLINE TABLE ELECTROSTATICS */
676             F                = vftab[vfitab+1];
677             Geps             = vfeps*vftab[vfitab+2];
678             Heps2            = vfeps*vfeps*vftab[vfitab+3];
679             Fp               = F+Geps+Heps2;
680             FF               = Fp+Geps+2.0*Heps2;
681             felec            = -qq10*FF*vftabscale*rinv10;
682
683             fscal            = felec;
684
685             /* Calculate temporary vectorial force */
686             tx               = fscal*dx10;
687             ty               = fscal*dy10;
688             tz               = fscal*dz10;
689
690             /* Update vectorial force */
691             fix1            += tx;
692             fiy1            += ty;
693             fiz1            += tz;
694             f[j_coord_offset+DIM*0+XX] -= tx;
695             f[j_coord_offset+DIM*0+YY] -= ty;
696             f[j_coord_offset+DIM*0+ZZ] -= tz;
697
698             /**************************
699              * CALCULATE INTERACTIONS *
700              **************************/
701
702             r20              = rsq20*rinv20;
703
704             qq20             = iq2*jq0;
705
706             /* Calculate table index by multiplying r with table scale and truncate to integer */
707             rt               = r20*vftabscale;
708             vfitab           = rt;
709             vfeps            = rt-vfitab;
710             vfitab           = 3*4*vfitab;
711
712             /* CUBIC SPLINE TABLE ELECTROSTATICS */
713             F                = vftab[vfitab+1];
714             Geps             = vfeps*vftab[vfitab+2];
715             Heps2            = vfeps*vfeps*vftab[vfitab+3];
716             Fp               = F+Geps+Heps2;
717             FF               = Fp+Geps+2.0*Heps2;
718             felec            = -qq20*FF*vftabscale*rinv20;
719
720             fscal            = felec;
721
722             /* Calculate temporary vectorial force */
723             tx               = fscal*dx20;
724             ty               = fscal*dy20;
725             tz               = fscal*dz20;
726
727             /* Update vectorial force */
728             fix2            += tx;
729             fiy2            += ty;
730             fiz2            += tz;
731             f[j_coord_offset+DIM*0+XX] -= tx;
732             f[j_coord_offset+DIM*0+YY] -= ty;
733             f[j_coord_offset+DIM*0+ZZ] -= tz;
734
735             /**************************
736              * CALCULATE INTERACTIONS *
737              **************************/
738
739             r30              = rsq30*rinv30;
740
741             qq30             = iq3*jq0;
742
743             /* Calculate table index by multiplying r with table scale and truncate to integer */
744             rt               = r30*vftabscale;
745             vfitab           = rt;
746             vfeps            = rt-vfitab;
747             vfitab           = 3*4*vfitab;
748
749             /* CUBIC SPLINE TABLE ELECTROSTATICS */
750             F                = vftab[vfitab+1];
751             Geps             = vfeps*vftab[vfitab+2];
752             Heps2            = vfeps*vfeps*vftab[vfitab+3];
753             Fp               = F+Geps+Heps2;
754             FF               = Fp+Geps+2.0*Heps2;
755             felec            = -qq30*FF*vftabscale*rinv30;
756
757             fscal            = felec;
758
759             /* Calculate temporary vectorial force */
760             tx               = fscal*dx30;
761             ty               = fscal*dy30;
762             tz               = fscal*dz30;
763
764             /* Update vectorial force */
765             fix3            += tx;
766             fiy3            += ty;
767             fiz3            += tz;
768             f[j_coord_offset+DIM*0+XX] -= tx;
769             f[j_coord_offset+DIM*0+YY] -= ty;
770             f[j_coord_offset+DIM*0+ZZ] -= tz;
771
772             /* Inner loop uses 161 flops */
773         }
774         /* End of innermost loop */
775
776         tx = ty = tz = 0;
777         f[i_coord_offset+DIM*0+XX] += fix0;
778         f[i_coord_offset+DIM*0+YY] += fiy0;
779         f[i_coord_offset+DIM*0+ZZ] += fiz0;
780         tx                         += fix0;
781         ty                         += fiy0;
782         tz                         += fiz0;
783         f[i_coord_offset+DIM*1+XX] += fix1;
784         f[i_coord_offset+DIM*1+YY] += fiy1;
785         f[i_coord_offset+DIM*1+ZZ] += fiz1;
786         tx                         += fix1;
787         ty                         += fiy1;
788         tz                         += fiz1;
789         f[i_coord_offset+DIM*2+XX] += fix2;
790         f[i_coord_offset+DIM*2+YY] += fiy2;
791         f[i_coord_offset+DIM*2+ZZ] += fiz2;
792         tx                         += fix2;
793         ty                         += fiy2;
794         tz                         += fiz2;
795         f[i_coord_offset+DIM*3+XX] += fix3;
796         f[i_coord_offset+DIM*3+YY] += fiy3;
797         f[i_coord_offset+DIM*3+ZZ] += fiz3;
798         tx                         += fix3;
799         ty                         += fiy3;
800         tz                         += fiz3;
801         fshift[i_shift_offset+XX]  += tx;
802         fshift[i_shift_offset+YY]  += ty;
803         fshift[i_shift_offset+ZZ]  += tz;
804
805         /* Increment number of inner iterations */
806         inneriter                  += j_index_end - j_index_start;
807
808         /* Outer loop uses 39 flops */
809     }
810
811     /* Increment number of outer iterations */
812     outeriter        += nri;
813
814     /* Update outer/inner flops */
815
816     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*161);
817 }