c46ab8752481d6355d8f517d019a452c9a6307de
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 /*
48  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_c
49  * Electrostatics interaction: CubicSplineTable
50  * VdW interaction:            CubicSplineTable
51  * Geometry:                   Particle-Particle
52  * Calculate force/pot:        PotentialAndForce
53  */
54 void
55 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_c
56                     (t_nblist                    * gmx_restrict       nlist,
57                      rvec                        * gmx_restrict          xx,
58                      rvec                        * gmx_restrict          ff,
59                      t_forcerec                  * gmx_restrict          fr,
60                      t_mdatoms                   * gmx_restrict     mdatoms,
61                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62                      t_nrnb                      * gmx_restrict        nrnb)
63 {
64     int              i_shift_offset,i_coord_offset,j_coord_offset;
65     int              j_index_start,j_index_end;
66     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
69     real             *shiftvec,*fshift,*x,*f;
70     int              vdwioffset0;
71     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0;
73     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
75     real             velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     int              nvdwtype;
78     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     int              vfitab;
82     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
83     real             *vftab;
84
85     x                = xx[0];
86     f                = ff[0];
87
88     nri              = nlist->nri;
89     iinr             = nlist->iinr;
90     jindex           = nlist->jindex;
91     jjnr             = nlist->jjnr;
92     shiftidx         = nlist->shift;
93     gid              = nlist->gid;
94     shiftvec         = fr->shift_vec[0];
95     fshift           = fr->fshift[0];
96     facel            = fr->epsfac;
97     charge           = mdatoms->chargeA;
98     nvdwtype         = fr->ntype;
99     vdwparam         = fr->nbfp;
100     vdwtype          = mdatoms->typeA;
101
102     vftab            = kernel_data->table_elec_vdw->data;
103     vftabscale       = kernel_data->table_elec_vdw->scale;
104
105     outeriter        = 0;
106     inneriter        = 0;
107
108     /* Start outer loop over neighborlists */
109     for(iidx=0; iidx<nri; iidx++)
110     {
111         /* Load shift vector for this list */
112         i_shift_offset   = DIM*shiftidx[iidx];
113         shX              = shiftvec[i_shift_offset+XX];
114         shY              = shiftvec[i_shift_offset+YY];
115         shZ              = shiftvec[i_shift_offset+ZZ];
116
117         /* Load limits for loop over neighbors */
118         j_index_start    = jindex[iidx];
119         j_index_end      = jindex[iidx+1];
120
121         /* Get outer coordinate index */
122         inr              = iinr[iidx];
123         i_coord_offset   = DIM*inr;
124
125         /* Load i particle coords and add shift vector */
126         ix0              = shX + x[i_coord_offset+DIM*0+XX];
127         iy0              = shY + x[i_coord_offset+DIM*0+YY];
128         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
129
130         fix0             = 0.0;
131         fiy0             = 0.0;
132         fiz0             = 0.0;
133
134         /* Load parameters for i particles */
135         iq0              = facel*charge[inr+0];
136         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
137
138         /* Reset potential sums */
139         velecsum         = 0.0;
140         vvdwsum          = 0.0;
141
142         /* Start inner kernel loop */
143         for(jidx=j_index_start; jidx<j_index_end; jidx++)
144         {
145             /* Get j neighbor index, and coordinate index */
146             jnr              = jjnr[jidx];
147             j_coord_offset   = DIM*jnr;
148
149             /* load j atom coordinates */
150             jx0              = x[j_coord_offset+DIM*0+XX];
151             jy0              = x[j_coord_offset+DIM*0+YY];
152             jz0              = x[j_coord_offset+DIM*0+ZZ];
153
154             /* Calculate displacement vector */
155             dx00             = ix0 - jx0;
156             dy00             = iy0 - jy0;
157             dz00             = iz0 - jz0;
158
159             /* Calculate squared distance and things based on it */
160             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
161
162             rinv00           = gmx_invsqrt(rsq00);
163
164             /* Load parameters for j particles */
165             jq0              = charge[jnr+0];
166             vdwjidx0         = 2*vdwtype[jnr+0];
167
168             /**************************
169              * CALCULATE INTERACTIONS *
170              **************************/
171
172             r00              = rsq00*rinv00;
173
174             qq00             = iq0*jq0;
175             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
176             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
177
178             /* Calculate table index by multiplying r with table scale and truncate to integer */
179             rt               = r00*vftabscale;
180             vfitab           = rt;
181             vfeps            = rt-vfitab;
182             vfitab           = 3*4*vfitab;
183
184             /* CUBIC SPLINE TABLE ELECTROSTATICS */
185             Y                = vftab[vfitab];
186             F                = vftab[vfitab+1];
187             Geps             = vfeps*vftab[vfitab+2];
188             Heps2            = vfeps*vfeps*vftab[vfitab+3];
189             Fp               = F+Geps+Heps2;
190             VV               = Y+vfeps*Fp;
191             velec            = qq00*VV;
192             FF               = Fp+Geps+2.0*Heps2;
193             felec            = -qq00*FF*vftabscale*rinv00;
194
195             /* CUBIC SPLINE TABLE DISPERSION */
196             vfitab          += 4;
197             Y                = vftab[vfitab];
198             F                = vftab[vfitab+1];
199             Geps             = vfeps*vftab[vfitab+2];
200             Heps2            = vfeps*vfeps*vftab[vfitab+3];
201             Fp               = F+Geps+Heps2;
202             VV               = Y+vfeps*Fp;
203             vvdw6            = c6_00*VV;
204             FF               = Fp+Geps+2.0*Heps2;
205             fvdw6            = c6_00*FF;
206
207             /* CUBIC SPLINE TABLE REPULSION */
208             Y                = vftab[vfitab+4];
209             F                = vftab[vfitab+5];
210             Geps             = vfeps*vftab[vfitab+6];
211             Heps2            = vfeps*vfeps*vftab[vfitab+7];
212             Fp               = F+Geps+Heps2;
213             VV               = Y+vfeps*Fp;
214             vvdw12           = c12_00*VV;
215             FF               = Fp+Geps+2.0*Heps2;
216             fvdw12           = c12_00*FF;
217             vvdw             = vvdw12+vvdw6;
218             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
219
220             /* Update potential sums from outer loop */
221             velecsum        += velec;
222             vvdwsum         += vvdw;
223
224             fscal            = felec+fvdw;
225
226             /* Calculate temporary vectorial force */
227             tx               = fscal*dx00;
228             ty               = fscal*dy00;
229             tz               = fscal*dz00;
230
231             /* Update vectorial force */
232             fix0            += tx;
233             fiy0            += ty;
234             fiz0            += tz;
235             f[j_coord_offset+DIM*0+XX] -= tx;
236             f[j_coord_offset+DIM*0+YY] -= ty;
237             f[j_coord_offset+DIM*0+ZZ] -= tz;
238
239             /* Inner loop uses 73 flops */
240         }
241         /* End of innermost loop */
242
243         tx = ty = tz = 0;
244         f[i_coord_offset+DIM*0+XX] += fix0;
245         f[i_coord_offset+DIM*0+YY] += fiy0;
246         f[i_coord_offset+DIM*0+ZZ] += fiz0;
247         tx                         += fix0;
248         ty                         += fiy0;
249         tz                         += fiz0;
250         fshift[i_shift_offset+XX]  += tx;
251         fshift[i_shift_offset+YY]  += ty;
252         fshift[i_shift_offset+ZZ]  += tz;
253
254         ggid                        = gid[iidx];
255         /* Update potential energies */
256         kernel_data->energygrp_elec[ggid] += velecsum;
257         kernel_data->energygrp_vdw[ggid] += vvdwsum;
258
259         /* Increment number of inner iterations */
260         inneriter                  += j_index_end - j_index_start;
261
262         /* Outer loop uses 15 flops */
263     }
264
265     /* Increment number of outer iterations */
266     outeriter        += nri;
267
268     /* Update outer/inner flops */
269
270     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*73);
271 }
272 /*
273  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_c
274  * Electrostatics interaction: CubicSplineTable
275  * VdW interaction:            CubicSplineTable
276  * Geometry:                   Particle-Particle
277  * Calculate force/pot:        Force
278  */
279 void
280 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_c
281                     (t_nblist                    * gmx_restrict       nlist,
282                      rvec                        * gmx_restrict          xx,
283                      rvec                        * gmx_restrict          ff,
284                      t_forcerec                  * gmx_restrict          fr,
285                      t_mdatoms                   * gmx_restrict     mdatoms,
286                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
287                      t_nrnb                      * gmx_restrict        nrnb)
288 {
289     int              i_shift_offset,i_coord_offset,j_coord_offset;
290     int              j_index_start,j_index_end;
291     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
292     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
293     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
294     real             *shiftvec,*fshift,*x,*f;
295     int              vdwioffset0;
296     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
297     int              vdwjidx0;
298     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
299     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
300     real             velec,felec,velecsum,facel,crf,krf,krf2;
301     real             *charge;
302     int              nvdwtype;
303     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
304     int              *vdwtype;
305     real             *vdwparam;
306     int              vfitab;
307     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
308     real             *vftab;
309
310     x                = xx[0];
311     f                = ff[0];
312
313     nri              = nlist->nri;
314     iinr             = nlist->iinr;
315     jindex           = nlist->jindex;
316     jjnr             = nlist->jjnr;
317     shiftidx         = nlist->shift;
318     gid              = nlist->gid;
319     shiftvec         = fr->shift_vec[0];
320     fshift           = fr->fshift[0];
321     facel            = fr->epsfac;
322     charge           = mdatoms->chargeA;
323     nvdwtype         = fr->ntype;
324     vdwparam         = fr->nbfp;
325     vdwtype          = mdatoms->typeA;
326
327     vftab            = kernel_data->table_elec_vdw->data;
328     vftabscale       = kernel_data->table_elec_vdw->scale;
329
330     outeriter        = 0;
331     inneriter        = 0;
332
333     /* Start outer loop over neighborlists */
334     for(iidx=0; iidx<nri; iidx++)
335     {
336         /* Load shift vector for this list */
337         i_shift_offset   = DIM*shiftidx[iidx];
338         shX              = shiftvec[i_shift_offset+XX];
339         shY              = shiftvec[i_shift_offset+YY];
340         shZ              = shiftvec[i_shift_offset+ZZ];
341
342         /* Load limits for loop over neighbors */
343         j_index_start    = jindex[iidx];
344         j_index_end      = jindex[iidx+1];
345
346         /* Get outer coordinate index */
347         inr              = iinr[iidx];
348         i_coord_offset   = DIM*inr;
349
350         /* Load i particle coords and add shift vector */
351         ix0              = shX + x[i_coord_offset+DIM*0+XX];
352         iy0              = shY + x[i_coord_offset+DIM*0+YY];
353         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
354
355         fix0             = 0.0;
356         fiy0             = 0.0;
357         fiz0             = 0.0;
358
359         /* Load parameters for i particles */
360         iq0              = facel*charge[inr+0];
361         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
362
363         /* Start inner kernel loop */
364         for(jidx=j_index_start; jidx<j_index_end; jidx++)
365         {
366             /* Get j neighbor index, and coordinate index */
367             jnr              = jjnr[jidx];
368             j_coord_offset   = DIM*jnr;
369
370             /* load j atom coordinates */
371             jx0              = x[j_coord_offset+DIM*0+XX];
372             jy0              = x[j_coord_offset+DIM*0+YY];
373             jz0              = x[j_coord_offset+DIM*0+ZZ];
374
375             /* Calculate displacement vector */
376             dx00             = ix0 - jx0;
377             dy00             = iy0 - jy0;
378             dz00             = iz0 - jz0;
379
380             /* Calculate squared distance and things based on it */
381             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
382
383             rinv00           = gmx_invsqrt(rsq00);
384
385             /* Load parameters for j particles */
386             jq0              = charge[jnr+0];
387             vdwjidx0         = 2*vdwtype[jnr+0];
388
389             /**************************
390              * CALCULATE INTERACTIONS *
391              **************************/
392
393             r00              = rsq00*rinv00;
394
395             qq00             = iq0*jq0;
396             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
397             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
398
399             /* Calculate table index by multiplying r with table scale and truncate to integer */
400             rt               = r00*vftabscale;
401             vfitab           = rt;
402             vfeps            = rt-vfitab;
403             vfitab           = 3*4*vfitab;
404
405             /* CUBIC SPLINE TABLE ELECTROSTATICS */
406             F                = vftab[vfitab+1];
407             Geps             = vfeps*vftab[vfitab+2];
408             Heps2            = vfeps*vfeps*vftab[vfitab+3];
409             Fp               = F+Geps+Heps2;
410             FF               = Fp+Geps+2.0*Heps2;
411             felec            = -qq00*FF*vftabscale*rinv00;
412
413             /* CUBIC SPLINE TABLE DISPERSION */
414             vfitab          += 4;
415             F                = vftab[vfitab+1];
416             Geps             = vfeps*vftab[vfitab+2];
417             Heps2            = vfeps*vfeps*vftab[vfitab+3];
418             Fp               = F+Geps+Heps2;
419             FF               = Fp+Geps+2.0*Heps2;
420             fvdw6            = c6_00*FF;
421
422             /* CUBIC SPLINE TABLE REPULSION */
423             F                = vftab[vfitab+5];
424             Geps             = vfeps*vftab[vfitab+6];
425             Heps2            = vfeps*vfeps*vftab[vfitab+7];
426             Fp               = F+Geps+Heps2;
427             FF               = Fp+Geps+2.0*Heps2;
428             fvdw12           = c12_00*FF;
429             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
430
431             fscal            = felec+fvdw;
432
433             /* Calculate temporary vectorial force */
434             tx               = fscal*dx00;
435             ty               = fscal*dy00;
436             tz               = fscal*dz00;
437
438             /* Update vectorial force */
439             fix0            += tx;
440             fiy0            += ty;
441             fiz0            += tz;
442             f[j_coord_offset+DIM*0+XX] -= tx;
443             f[j_coord_offset+DIM*0+YY] -= ty;
444             f[j_coord_offset+DIM*0+ZZ] -= tz;
445
446             /* Inner loop uses 61 flops */
447         }
448         /* End of innermost loop */
449
450         tx = ty = tz = 0;
451         f[i_coord_offset+DIM*0+XX] += fix0;
452         f[i_coord_offset+DIM*0+YY] += fiy0;
453         f[i_coord_offset+DIM*0+ZZ] += fiz0;
454         tx                         += fix0;
455         ty                         += fiy0;
456         tz                         += fiz0;
457         fshift[i_shift_offset+XX]  += tx;
458         fshift[i_shift_offset+YY]  += ty;
459         fshift[i_shift_offset+ZZ]  += tz;
460
461         /* Increment number of inner iterations */
462         inneriter                  += j_index_end - j_index_start;
463
464         /* Outer loop uses 13 flops */
465     }
466
467     /* Increment number of outer iterations */
468     outeriter        += nri;
469
470     /* Update outer/inner flops */
471
472     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*61);
473 }