Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_c
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0;
75     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77     real             velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     int              vfitab;
84     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
85     real             *vftab;
86
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = fr->epsfac;
99     charge           = mdatoms->chargeA;
100     nvdwtype         = fr->ntype;
101     vdwparam         = fr->nbfp;
102     vdwtype          = mdatoms->typeA;
103
104     vftab            = kernel_data->table_elec_vdw->data;
105     vftabscale       = kernel_data->table_elec_vdw->scale;
106
107     outeriter        = 0;
108     inneriter        = 0;
109
110     /* Start outer loop over neighborlists */
111     for(iidx=0; iidx<nri; iidx++)
112     {
113         /* Load shift vector for this list */
114         i_shift_offset   = DIM*shiftidx[iidx];
115         shX              = shiftvec[i_shift_offset+XX];
116         shY              = shiftvec[i_shift_offset+YY];
117         shZ              = shiftvec[i_shift_offset+ZZ];
118
119         /* Load limits for loop over neighbors */
120         j_index_start    = jindex[iidx];
121         j_index_end      = jindex[iidx+1];
122
123         /* Get outer coordinate index */
124         inr              = iinr[iidx];
125         i_coord_offset   = DIM*inr;
126
127         /* Load i particle coords and add shift vector */
128         ix0              = shX + x[i_coord_offset+DIM*0+XX];
129         iy0              = shY + x[i_coord_offset+DIM*0+YY];
130         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
131
132         fix0             = 0.0;
133         fiy0             = 0.0;
134         fiz0             = 0.0;
135
136         /* Load parameters for i particles */
137         iq0              = facel*charge[inr+0];
138         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140         /* Reset potential sums */
141         velecsum         = 0.0;
142         vvdwsum          = 0.0;
143
144         /* Start inner kernel loop */
145         for(jidx=j_index_start; jidx<j_index_end; jidx++)
146         {
147             /* Get j neighbor index, and coordinate index */
148             jnr              = jjnr[jidx];
149             j_coord_offset   = DIM*jnr;
150
151             /* load j atom coordinates */
152             jx0              = x[j_coord_offset+DIM*0+XX];
153             jy0              = x[j_coord_offset+DIM*0+YY];
154             jz0              = x[j_coord_offset+DIM*0+ZZ];
155
156             /* Calculate displacement vector */
157             dx00             = ix0 - jx0;
158             dy00             = iy0 - jy0;
159             dz00             = iz0 - jz0;
160
161             /* Calculate squared distance and things based on it */
162             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
163
164             rinv00           = gmx_invsqrt(rsq00);
165
166             /* Load parameters for j particles */
167             jq0              = charge[jnr+0];
168             vdwjidx0         = 2*vdwtype[jnr+0];
169
170             /**************************
171              * CALCULATE INTERACTIONS *
172              **************************/
173
174             r00              = rsq00*rinv00;
175
176             qq00             = iq0*jq0;
177             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
178             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
179
180             /* Calculate table index by multiplying r with table scale and truncate to integer */
181             rt               = r00*vftabscale;
182             vfitab           = rt;
183             vfeps            = rt-vfitab;
184             vfitab           = 3*4*vfitab;
185
186             /* CUBIC SPLINE TABLE ELECTROSTATICS */
187             Y                = vftab[vfitab];
188             F                = vftab[vfitab+1];
189             Geps             = vfeps*vftab[vfitab+2];
190             Heps2            = vfeps*vfeps*vftab[vfitab+3];
191             Fp               = F+Geps+Heps2;
192             VV               = Y+vfeps*Fp;
193             velec            = qq00*VV;
194             FF               = Fp+Geps+2.0*Heps2;
195             felec            = -qq00*FF*vftabscale*rinv00;
196
197             /* CUBIC SPLINE TABLE DISPERSION */
198             vfitab          += 4;
199             Y                = vftab[vfitab];
200             F                = vftab[vfitab+1];
201             Geps             = vfeps*vftab[vfitab+2];
202             Heps2            = vfeps*vfeps*vftab[vfitab+3];
203             Fp               = F+Geps+Heps2;
204             VV               = Y+vfeps*Fp;
205             vvdw6            = c6_00*VV;
206             FF               = Fp+Geps+2.0*Heps2;
207             fvdw6            = c6_00*FF;
208
209             /* CUBIC SPLINE TABLE REPULSION */
210             Y                = vftab[vfitab+4];
211             F                = vftab[vfitab+5];
212             Geps             = vfeps*vftab[vfitab+6];
213             Heps2            = vfeps*vfeps*vftab[vfitab+7];
214             Fp               = F+Geps+Heps2;
215             VV               = Y+vfeps*Fp;
216             vvdw12           = c12_00*VV;
217             FF               = Fp+Geps+2.0*Heps2;
218             fvdw12           = c12_00*FF;
219             vvdw             = vvdw12+vvdw6;
220             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
221
222             /* Update potential sums from outer loop */
223             velecsum        += velec;
224             vvdwsum         += vvdw;
225
226             fscal            = felec+fvdw;
227
228             /* Calculate temporary vectorial force */
229             tx               = fscal*dx00;
230             ty               = fscal*dy00;
231             tz               = fscal*dz00;
232
233             /* Update vectorial force */
234             fix0            += tx;
235             fiy0            += ty;
236             fiz0            += tz;
237             f[j_coord_offset+DIM*0+XX] -= tx;
238             f[j_coord_offset+DIM*0+YY] -= ty;
239             f[j_coord_offset+DIM*0+ZZ] -= tz;
240
241             /* Inner loop uses 73 flops */
242         }
243         /* End of innermost loop */
244
245         tx = ty = tz = 0;
246         f[i_coord_offset+DIM*0+XX] += fix0;
247         f[i_coord_offset+DIM*0+YY] += fiy0;
248         f[i_coord_offset+DIM*0+ZZ] += fiz0;
249         tx                         += fix0;
250         ty                         += fiy0;
251         tz                         += fiz0;
252         fshift[i_shift_offset+XX]  += tx;
253         fshift[i_shift_offset+YY]  += ty;
254         fshift[i_shift_offset+ZZ]  += tz;
255
256         ggid                        = gid[iidx];
257         /* Update potential energies */
258         kernel_data->energygrp_elec[ggid] += velecsum;
259         kernel_data->energygrp_vdw[ggid] += vvdwsum;
260
261         /* Increment number of inner iterations */
262         inneriter                  += j_index_end - j_index_start;
263
264         /* Outer loop uses 15 flops */
265     }
266
267     /* Increment number of outer iterations */
268     outeriter        += nri;
269
270     /* Update outer/inner flops */
271
272     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*73);
273 }
274 /*
275  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_c
276  * Electrostatics interaction: CubicSplineTable
277  * VdW interaction:            CubicSplineTable
278  * Geometry:                   Particle-Particle
279  * Calculate force/pot:        Force
280  */
281 void
282 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_c
283                     (t_nblist                    * gmx_restrict       nlist,
284                      rvec                        * gmx_restrict          xx,
285                      rvec                        * gmx_restrict          ff,
286                      t_forcerec                  * gmx_restrict          fr,
287                      t_mdatoms                   * gmx_restrict     mdatoms,
288                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
289                      t_nrnb                      * gmx_restrict        nrnb)
290 {
291     int              i_shift_offset,i_coord_offset,j_coord_offset;
292     int              j_index_start,j_index_end;
293     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
294     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
295     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
296     real             *shiftvec,*fshift,*x,*f;
297     int              vdwioffset0;
298     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
299     int              vdwjidx0;
300     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
301     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
302     real             velec,felec,velecsum,facel,crf,krf,krf2;
303     real             *charge;
304     int              nvdwtype;
305     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
306     int              *vdwtype;
307     real             *vdwparam;
308     int              vfitab;
309     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
310     real             *vftab;
311
312     x                = xx[0];
313     f                = ff[0];
314
315     nri              = nlist->nri;
316     iinr             = nlist->iinr;
317     jindex           = nlist->jindex;
318     jjnr             = nlist->jjnr;
319     shiftidx         = nlist->shift;
320     gid              = nlist->gid;
321     shiftvec         = fr->shift_vec[0];
322     fshift           = fr->fshift[0];
323     facel            = fr->epsfac;
324     charge           = mdatoms->chargeA;
325     nvdwtype         = fr->ntype;
326     vdwparam         = fr->nbfp;
327     vdwtype          = mdatoms->typeA;
328
329     vftab            = kernel_data->table_elec_vdw->data;
330     vftabscale       = kernel_data->table_elec_vdw->scale;
331
332     outeriter        = 0;
333     inneriter        = 0;
334
335     /* Start outer loop over neighborlists */
336     for(iidx=0; iidx<nri; iidx++)
337     {
338         /* Load shift vector for this list */
339         i_shift_offset   = DIM*shiftidx[iidx];
340         shX              = shiftvec[i_shift_offset+XX];
341         shY              = shiftvec[i_shift_offset+YY];
342         shZ              = shiftvec[i_shift_offset+ZZ];
343
344         /* Load limits for loop over neighbors */
345         j_index_start    = jindex[iidx];
346         j_index_end      = jindex[iidx+1];
347
348         /* Get outer coordinate index */
349         inr              = iinr[iidx];
350         i_coord_offset   = DIM*inr;
351
352         /* Load i particle coords and add shift vector */
353         ix0              = shX + x[i_coord_offset+DIM*0+XX];
354         iy0              = shY + x[i_coord_offset+DIM*0+YY];
355         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
356
357         fix0             = 0.0;
358         fiy0             = 0.0;
359         fiz0             = 0.0;
360
361         /* Load parameters for i particles */
362         iq0              = facel*charge[inr+0];
363         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
364
365         /* Start inner kernel loop */
366         for(jidx=j_index_start; jidx<j_index_end; jidx++)
367         {
368             /* Get j neighbor index, and coordinate index */
369             jnr              = jjnr[jidx];
370             j_coord_offset   = DIM*jnr;
371
372             /* load j atom coordinates */
373             jx0              = x[j_coord_offset+DIM*0+XX];
374             jy0              = x[j_coord_offset+DIM*0+YY];
375             jz0              = x[j_coord_offset+DIM*0+ZZ];
376
377             /* Calculate displacement vector */
378             dx00             = ix0 - jx0;
379             dy00             = iy0 - jy0;
380             dz00             = iz0 - jz0;
381
382             /* Calculate squared distance and things based on it */
383             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
384
385             rinv00           = gmx_invsqrt(rsq00);
386
387             /* Load parameters for j particles */
388             jq0              = charge[jnr+0];
389             vdwjidx0         = 2*vdwtype[jnr+0];
390
391             /**************************
392              * CALCULATE INTERACTIONS *
393              **************************/
394
395             r00              = rsq00*rinv00;
396
397             qq00             = iq0*jq0;
398             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
399             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
400
401             /* Calculate table index by multiplying r with table scale and truncate to integer */
402             rt               = r00*vftabscale;
403             vfitab           = rt;
404             vfeps            = rt-vfitab;
405             vfitab           = 3*4*vfitab;
406
407             /* CUBIC SPLINE TABLE ELECTROSTATICS */
408             F                = vftab[vfitab+1];
409             Geps             = vfeps*vftab[vfitab+2];
410             Heps2            = vfeps*vfeps*vftab[vfitab+3];
411             Fp               = F+Geps+Heps2;
412             FF               = Fp+Geps+2.0*Heps2;
413             felec            = -qq00*FF*vftabscale*rinv00;
414
415             /* CUBIC SPLINE TABLE DISPERSION */
416             vfitab          += 4;
417             F                = vftab[vfitab+1];
418             Geps             = vfeps*vftab[vfitab+2];
419             Heps2            = vfeps*vfeps*vftab[vfitab+3];
420             Fp               = F+Geps+Heps2;
421             FF               = Fp+Geps+2.0*Heps2;
422             fvdw6            = c6_00*FF;
423
424             /* CUBIC SPLINE TABLE REPULSION */
425             F                = vftab[vfitab+5];
426             Geps             = vfeps*vftab[vfitab+6];
427             Heps2            = vfeps*vfeps*vftab[vfitab+7];
428             Fp               = F+Geps+Heps2;
429             FF               = Fp+Geps+2.0*Heps2;
430             fvdw12           = c12_00*FF;
431             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
432
433             fscal            = felec+fvdw;
434
435             /* Calculate temporary vectorial force */
436             tx               = fscal*dx00;
437             ty               = fscal*dy00;
438             tz               = fscal*dz00;
439
440             /* Update vectorial force */
441             fix0            += tx;
442             fiy0            += ty;
443             fiz0            += tz;
444             f[j_coord_offset+DIM*0+XX] -= tx;
445             f[j_coord_offset+DIM*0+YY] -= ty;
446             f[j_coord_offset+DIM*0+ZZ] -= tz;
447
448             /* Inner loop uses 61 flops */
449         }
450         /* End of innermost loop */
451
452         tx = ty = tz = 0;
453         f[i_coord_offset+DIM*0+XX] += fix0;
454         f[i_coord_offset+DIM*0+YY] += fiy0;
455         f[i_coord_offset+DIM*0+ZZ] += fiz0;
456         tx                         += fix0;
457         ty                         += fiy0;
458         tz                         += fiz0;
459         fshift[i_shift_offset+XX]  += tx;
460         fshift[i_shift_offset+YY]  += ty;
461         fshift[i_shift_offset+ZZ]  += tz;
462
463         /* Increment number of inner iterations */
464         inneriter                  += j_index_end - j_index_start;
465
466         /* Outer loop uses 13 flops */
467     }
468
469     /* Increment number of outer iterations */
470     outeriter        += nri;
471
472     /* Update outer/inner flops */
473
474     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*61);
475 }