Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecCSTab_VdwBham_GeomW4P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwBham_GeomW4P1_VF_c
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            Buckingham
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwBham_GeomW4P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwioffset3;
79     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80     int              vdwjidx0;
81     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86     real             velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     int              vfitab;
93     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
94     real             *vftab;
95
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = fr->epsfac;
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_elec->data;
114     vftabscale       = kernel_data->table_elec->scale;
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq1              = facel*charge[inr+1];
119     iq2              = facel*charge[inr+2];
120     iq3              = facel*charge[inr+3];
121     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
122
123     outeriter        = 0;
124     inneriter        = 0;
125
126     /* Start outer loop over neighborlists */
127     for(iidx=0; iidx<nri; iidx++)
128     {
129         /* Load shift vector for this list */
130         i_shift_offset   = DIM*shiftidx[iidx];
131         shX              = shiftvec[i_shift_offset+XX];
132         shY              = shiftvec[i_shift_offset+YY];
133         shZ              = shiftvec[i_shift_offset+ZZ];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         ix0              = shX + x[i_coord_offset+DIM*0+XX];
145         iy0              = shY + x[i_coord_offset+DIM*0+YY];
146         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
147         ix1              = shX + x[i_coord_offset+DIM*1+XX];
148         iy1              = shY + x[i_coord_offset+DIM*1+YY];
149         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
150         ix2              = shX + x[i_coord_offset+DIM*2+XX];
151         iy2              = shY + x[i_coord_offset+DIM*2+YY];
152         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
153         ix3              = shX + x[i_coord_offset+DIM*3+XX];
154         iy3              = shY + x[i_coord_offset+DIM*3+YY];
155         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
156
157         fix0             = 0.0;
158         fiy0             = 0.0;
159         fiz0             = 0.0;
160         fix1             = 0.0;
161         fiy1             = 0.0;
162         fiz1             = 0.0;
163         fix2             = 0.0;
164         fiy2             = 0.0;
165         fiz2             = 0.0;
166         fix3             = 0.0;
167         fiy3             = 0.0;
168         fiz3             = 0.0;
169
170         /* Reset potential sums */
171         velecsum         = 0.0;
172         vvdwsum          = 0.0;
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end; jidx++)
176         {
177             /* Get j neighbor index, and coordinate index */
178             jnr              = jjnr[jidx];
179             j_coord_offset   = DIM*jnr;
180
181             /* load j atom coordinates */
182             jx0              = x[j_coord_offset+DIM*0+XX];
183             jy0              = x[j_coord_offset+DIM*0+YY];
184             jz0              = x[j_coord_offset+DIM*0+ZZ];
185
186             /* Calculate displacement vector */
187             dx00             = ix0 - jx0;
188             dy00             = iy0 - jy0;
189             dz00             = iz0 - jz0;
190             dx10             = ix1 - jx0;
191             dy10             = iy1 - jy0;
192             dz10             = iz1 - jz0;
193             dx20             = ix2 - jx0;
194             dy20             = iy2 - jy0;
195             dz20             = iz2 - jz0;
196             dx30             = ix3 - jx0;
197             dy30             = iy3 - jy0;
198             dz30             = iz3 - jz0;
199
200             /* Calculate squared distance and things based on it */
201             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
202             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
203             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
204             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
205
206             rinv00           = gmx_invsqrt(rsq00);
207             rinv10           = gmx_invsqrt(rsq10);
208             rinv20           = gmx_invsqrt(rsq20);
209             rinv30           = gmx_invsqrt(rsq30);
210
211             rinvsq00         = rinv00*rinv00;
212
213             /* Load parameters for j particles */
214             jq0              = charge[jnr+0];
215             vdwjidx0         = 3*vdwtype[jnr+0];
216
217             /**************************
218              * CALCULATE INTERACTIONS *
219              **************************/
220
221             r00              = rsq00*rinv00;
222
223             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
224             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
225             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
226
227             /* BUCKINGHAM DISPERSION/REPULSION */
228             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
229             vvdw6            = c6_00*rinvsix;
230             br               = cexp2_00*r00;
231             vvdwexp          = cexp1_00*exp(-br);
232             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
233             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
234
235             /* Update potential sums from outer loop */
236             vvdwsum         += vvdw;
237
238             fscal            = fvdw;
239
240             /* Calculate temporary vectorial force */
241             tx               = fscal*dx00;
242             ty               = fscal*dy00;
243             tz               = fscal*dz00;
244
245             /* Update vectorial force */
246             fix0            += tx;
247             fiy0            += ty;
248             fiz0            += tz;
249             f[j_coord_offset+DIM*0+XX] -= tx;
250             f[j_coord_offset+DIM*0+YY] -= ty;
251             f[j_coord_offset+DIM*0+ZZ] -= tz;
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             r10              = rsq10*rinv10;
258
259             qq10             = iq1*jq0;
260
261             /* Calculate table index by multiplying r with table scale and truncate to integer */
262             rt               = r10*vftabscale;
263             vfitab           = rt;
264             vfeps            = rt-vfitab;
265             vfitab           = 1*4*vfitab;
266
267             /* CUBIC SPLINE TABLE ELECTROSTATICS */
268             Y                = vftab[vfitab];
269             F                = vftab[vfitab+1];
270             Geps             = vfeps*vftab[vfitab+2];
271             Heps2            = vfeps*vfeps*vftab[vfitab+3];
272             Fp               = F+Geps+Heps2;
273             VV               = Y+vfeps*Fp;
274             velec            = qq10*VV;
275             FF               = Fp+Geps+2.0*Heps2;
276             felec            = -qq10*FF*vftabscale*rinv10;
277
278             /* Update potential sums from outer loop */
279             velecsum        += velec;
280
281             fscal            = felec;
282
283             /* Calculate temporary vectorial force */
284             tx               = fscal*dx10;
285             ty               = fscal*dy10;
286             tz               = fscal*dz10;
287
288             /* Update vectorial force */
289             fix1            += tx;
290             fiy1            += ty;
291             fiz1            += tz;
292             f[j_coord_offset+DIM*0+XX] -= tx;
293             f[j_coord_offset+DIM*0+YY] -= ty;
294             f[j_coord_offset+DIM*0+ZZ] -= tz;
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             r20              = rsq20*rinv20;
301
302             qq20             = iq2*jq0;
303
304             /* Calculate table index by multiplying r with table scale and truncate to integer */
305             rt               = r20*vftabscale;
306             vfitab           = rt;
307             vfeps            = rt-vfitab;
308             vfitab           = 1*4*vfitab;
309
310             /* CUBIC SPLINE TABLE ELECTROSTATICS */
311             Y                = vftab[vfitab];
312             F                = vftab[vfitab+1];
313             Geps             = vfeps*vftab[vfitab+2];
314             Heps2            = vfeps*vfeps*vftab[vfitab+3];
315             Fp               = F+Geps+Heps2;
316             VV               = Y+vfeps*Fp;
317             velec            = qq20*VV;
318             FF               = Fp+Geps+2.0*Heps2;
319             felec            = -qq20*FF*vftabscale*rinv20;
320
321             /* Update potential sums from outer loop */
322             velecsum        += velec;
323
324             fscal            = felec;
325
326             /* Calculate temporary vectorial force */
327             tx               = fscal*dx20;
328             ty               = fscal*dy20;
329             tz               = fscal*dz20;
330
331             /* Update vectorial force */
332             fix2            += tx;
333             fiy2            += ty;
334             fiz2            += tz;
335             f[j_coord_offset+DIM*0+XX] -= tx;
336             f[j_coord_offset+DIM*0+YY] -= ty;
337             f[j_coord_offset+DIM*0+ZZ] -= tz;
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             r30              = rsq30*rinv30;
344
345             qq30             = iq3*jq0;
346
347             /* Calculate table index by multiplying r with table scale and truncate to integer */
348             rt               = r30*vftabscale;
349             vfitab           = rt;
350             vfeps            = rt-vfitab;
351             vfitab           = 1*4*vfitab;
352
353             /* CUBIC SPLINE TABLE ELECTROSTATICS */
354             Y                = vftab[vfitab];
355             F                = vftab[vfitab+1];
356             Geps             = vfeps*vftab[vfitab+2];
357             Heps2            = vfeps*vfeps*vftab[vfitab+3];
358             Fp               = F+Geps+Heps2;
359             VV               = Y+vfeps*Fp;
360             velec            = qq30*VV;
361             FF               = Fp+Geps+2.0*Heps2;
362             felec            = -qq30*FF*vftabscale*rinv30;
363
364             /* Update potential sums from outer loop */
365             velecsum        += velec;
366
367             fscal            = felec;
368
369             /* Calculate temporary vectorial force */
370             tx               = fscal*dx30;
371             ty               = fscal*dy30;
372             tz               = fscal*dz30;
373
374             /* Update vectorial force */
375             fix3            += tx;
376             fiy3            += ty;
377             fiz3            += tz;
378             f[j_coord_offset+DIM*0+XX] -= tx;
379             f[j_coord_offset+DIM*0+YY] -= ty;
380             f[j_coord_offset+DIM*0+ZZ] -= tz;
381
382             /* Inner loop uses 187 flops */
383         }
384         /* End of innermost loop */
385
386         tx = ty = tz = 0;
387         f[i_coord_offset+DIM*0+XX] += fix0;
388         f[i_coord_offset+DIM*0+YY] += fiy0;
389         f[i_coord_offset+DIM*0+ZZ] += fiz0;
390         tx                         += fix0;
391         ty                         += fiy0;
392         tz                         += fiz0;
393         f[i_coord_offset+DIM*1+XX] += fix1;
394         f[i_coord_offset+DIM*1+YY] += fiy1;
395         f[i_coord_offset+DIM*1+ZZ] += fiz1;
396         tx                         += fix1;
397         ty                         += fiy1;
398         tz                         += fiz1;
399         f[i_coord_offset+DIM*2+XX] += fix2;
400         f[i_coord_offset+DIM*2+YY] += fiy2;
401         f[i_coord_offset+DIM*2+ZZ] += fiz2;
402         tx                         += fix2;
403         ty                         += fiy2;
404         tz                         += fiz2;
405         f[i_coord_offset+DIM*3+XX] += fix3;
406         f[i_coord_offset+DIM*3+YY] += fiy3;
407         f[i_coord_offset+DIM*3+ZZ] += fiz3;
408         tx                         += fix3;
409         ty                         += fiy3;
410         tz                         += fiz3;
411         fshift[i_shift_offset+XX]  += tx;
412         fshift[i_shift_offset+YY]  += ty;
413         fshift[i_shift_offset+ZZ]  += tz;
414
415         ggid                        = gid[iidx];
416         /* Update potential energies */
417         kernel_data->energygrp_elec[ggid] += velecsum;
418         kernel_data->energygrp_vdw[ggid] += vvdwsum;
419
420         /* Increment number of inner iterations */
421         inneriter                  += j_index_end - j_index_start;
422
423         /* Outer loop uses 41 flops */
424     }
425
426     /* Increment number of outer iterations */
427     outeriter        += nri;
428
429     /* Update outer/inner flops */
430
431     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*187);
432 }
433 /*
434  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwBham_GeomW4P1_F_c
435  * Electrostatics interaction: CubicSplineTable
436  * VdW interaction:            Buckingham
437  * Geometry:                   Water4-Particle
438  * Calculate force/pot:        Force
439  */
440 void
441 nb_kernel_ElecCSTab_VdwBham_GeomW4P1_F_c
442                     (t_nblist                    * gmx_restrict       nlist,
443                      rvec                        * gmx_restrict          xx,
444                      rvec                        * gmx_restrict          ff,
445                      t_forcerec                  * gmx_restrict          fr,
446                      t_mdatoms                   * gmx_restrict     mdatoms,
447                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
448                      t_nrnb                      * gmx_restrict        nrnb)
449 {
450     int              i_shift_offset,i_coord_offset,j_coord_offset;
451     int              j_index_start,j_index_end;
452     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
453     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
454     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
455     real             *shiftvec,*fshift,*x,*f;
456     int              vdwioffset0;
457     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
458     int              vdwioffset1;
459     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
460     int              vdwioffset2;
461     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
462     int              vdwioffset3;
463     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
464     int              vdwjidx0;
465     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
466     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
467     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
468     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
469     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
470     real             velec,felec,velecsum,facel,crf,krf,krf2;
471     real             *charge;
472     int              nvdwtype;
473     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
474     int              *vdwtype;
475     real             *vdwparam;
476     int              vfitab;
477     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
478     real             *vftab;
479
480     x                = xx[0];
481     f                = ff[0];
482
483     nri              = nlist->nri;
484     iinr             = nlist->iinr;
485     jindex           = nlist->jindex;
486     jjnr             = nlist->jjnr;
487     shiftidx         = nlist->shift;
488     gid              = nlist->gid;
489     shiftvec         = fr->shift_vec[0];
490     fshift           = fr->fshift[0];
491     facel            = fr->epsfac;
492     charge           = mdatoms->chargeA;
493     nvdwtype         = fr->ntype;
494     vdwparam         = fr->nbfp;
495     vdwtype          = mdatoms->typeA;
496
497     vftab            = kernel_data->table_elec->data;
498     vftabscale       = kernel_data->table_elec->scale;
499
500     /* Setup water-specific parameters */
501     inr              = nlist->iinr[0];
502     iq1              = facel*charge[inr+1];
503     iq2              = facel*charge[inr+2];
504     iq3              = facel*charge[inr+3];
505     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
506
507     outeriter        = 0;
508     inneriter        = 0;
509
510     /* Start outer loop over neighborlists */
511     for(iidx=0; iidx<nri; iidx++)
512     {
513         /* Load shift vector for this list */
514         i_shift_offset   = DIM*shiftidx[iidx];
515         shX              = shiftvec[i_shift_offset+XX];
516         shY              = shiftvec[i_shift_offset+YY];
517         shZ              = shiftvec[i_shift_offset+ZZ];
518
519         /* Load limits for loop over neighbors */
520         j_index_start    = jindex[iidx];
521         j_index_end      = jindex[iidx+1];
522
523         /* Get outer coordinate index */
524         inr              = iinr[iidx];
525         i_coord_offset   = DIM*inr;
526
527         /* Load i particle coords and add shift vector */
528         ix0              = shX + x[i_coord_offset+DIM*0+XX];
529         iy0              = shY + x[i_coord_offset+DIM*0+YY];
530         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
531         ix1              = shX + x[i_coord_offset+DIM*1+XX];
532         iy1              = shY + x[i_coord_offset+DIM*1+YY];
533         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
534         ix2              = shX + x[i_coord_offset+DIM*2+XX];
535         iy2              = shY + x[i_coord_offset+DIM*2+YY];
536         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
537         ix3              = shX + x[i_coord_offset+DIM*3+XX];
538         iy3              = shY + x[i_coord_offset+DIM*3+YY];
539         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
540
541         fix0             = 0.0;
542         fiy0             = 0.0;
543         fiz0             = 0.0;
544         fix1             = 0.0;
545         fiy1             = 0.0;
546         fiz1             = 0.0;
547         fix2             = 0.0;
548         fiy2             = 0.0;
549         fiz2             = 0.0;
550         fix3             = 0.0;
551         fiy3             = 0.0;
552         fiz3             = 0.0;
553
554         /* Start inner kernel loop */
555         for(jidx=j_index_start; jidx<j_index_end; jidx++)
556         {
557             /* Get j neighbor index, and coordinate index */
558             jnr              = jjnr[jidx];
559             j_coord_offset   = DIM*jnr;
560
561             /* load j atom coordinates */
562             jx0              = x[j_coord_offset+DIM*0+XX];
563             jy0              = x[j_coord_offset+DIM*0+YY];
564             jz0              = x[j_coord_offset+DIM*0+ZZ];
565
566             /* Calculate displacement vector */
567             dx00             = ix0 - jx0;
568             dy00             = iy0 - jy0;
569             dz00             = iz0 - jz0;
570             dx10             = ix1 - jx0;
571             dy10             = iy1 - jy0;
572             dz10             = iz1 - jz0;
573             dx20             = ix2 - jx0;
574             dy20             = iy2 - jy0;
575             dz20             = iz2 - jz0;
576             dx30             = ix3 - jx0;
577             dy30             = iy3 - jy0;
578             dz30             = iz3 - jz0;
579
580             /* Calculate squared distance and things based on it */
581             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
582             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
583             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
584             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
585
586             rinv00           = gmx_invsqrt(rsq00);
587             rinv10           = gmx_invsqrt(rsq10);
588             rinv20           = gmx_invsqrt(rsq20);
589             rinv30           = gmx_invsqrt(rsq30);
590
591             rinvsq00         = rinv00*rinv00;
592
593             /* Load parameters for j particles */
594             jq0              = charge[jnr+0];
595             vdwjidx0         = 3*vdwtype[jnr+0];
596
597             /**************************
598              * CALCULATE INTERACTIONS *
599              **************************/
600
601             r00              = rsq00*rinv00;
602
603             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
604             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
605             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
606
607             /* BUCKINGHAM DISPERSION/REPULSION */
608             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
609             vvdw6            = c6_00*rinvsix;
610             br               = cexp2_00*r00;
611             vvdwexp          = cexp1_00*exp(-br);
612             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
613
614             fscal            = fvdw;
615
616             /* Calculate temporary vectorial force */
617             tx               = fscal*dx00;
618             ty               = fscal*dy00;
619             tz               = fscal*dz00;
620
621             /* Update vectorial force */
622             fix0            += tx;
623             fiy0            += ty;
624             fiz0            += tz;
625             f[j_coord_offset+DIM*0+XX] -= tx;
626             f[j_coord_offset+DIM*0+YY] -= ty;
627             f[j_coord_offset+DIM*0+ZZ] -= tz;
628
629             /**************************
630              * CALCULATE INTERACTIONS *
631              **************************/
632
633             r10              = rsq10*rinv10;
634
635             qq10             = iq1*jq0;
636
637             /* Calculate table index by multiplying r with table scale and truncate to integer */
638             rt               = r10*vftabscale;
639             vfitab           = rt;
640             vfeps            = rt-vfitab;
641             vfitab           = 1*4*vfitab;
642
643             /* CUBIC SPLINE TABLE ELECTROSTATICS */
644             F                = vftab[vfitab+1];
645             Geps             = vfeps*vftab[vfitab+2];
646             Heps2            = vfeps*vfeps*vftab[vfitab+3];
647             Fp               = F+Geps+Heps2;
648             FF               = Fp+Geps+2.0*Heps2;
649             felec            = -qq10*FF*vftabscale*rinv10;
650
651             fscal            = felec;
652
653             /* Calculate temporary vectorial force */
654             tx               = fscal*dx10;
655             ty               = fscal*dy10;
656             tz               = fscal*dz10;
657
658             /* Update vectorial force */
659             fix1            += tx;
660             fiy1            += ty;
661             fiz1            += tz;
662             f[j_coord_offset+DIM*0+XX] -= tx;
663             f[j_coord_offset+DIM*0+YY] -= ty;
664             f[j_coord_offset+DIM*0+ZZ] -= tz;
665
666             /**************************
667              * CALCULATE INTERACTIONS *
668              **************************/
669
670             r20              = rsq20*rinv20;
671
672             qq20             = iq2*jq0;
673
674             /* Calculate table index by multiplying r with table scale and truncate to integer */
675             rt               = r20*vftabscale;
676             vfitab           = rt;
677             vfeps            = rt-vfitab;
678             vfitab           = 1*4*vfitab;
679
680             /* CUBIC SPLINE TABLE ELECTROSTATICS */
681             F                = vftab[vfitab+1];
682             Geps             = vfeps*vftab[vfitab+2];
683             Heps2            = vfeps*vfeps*vftab[vfitab+3];
684             Fp               = F+Geps+Heps2;
685             FF               = Fp+Geps+2.0*Heps2;
686             felec            = -qq20*FF*vftabscale*rinv20;
687
688             fscal            = felec;
689
690             /* Calculate temporary vectorial force */
691             tx               = fscal*dx20;
692             ty               = fscal*dy20;
693             tz               = fscal*dz20;
694
695             /* Update vectorial force */
696             fix2            += tx;
697             fiy2            += ty;
698             fiz2            += tz;
699             f[j_coord_offset+DIM*0+XX] -= tx;
700             f[j_coord_offset+DIM*0+YY] -= ty;
701             f[j_coord_offset+DIM*0+ZZ] -= tz;
702
703             /**************************
704              * CALCULATE INTERACTIONS *
705              **************************/
706
707             r30              = rsq30*rinv30;
708
709             qq30             = iq3*jq0;
710
711             /* Calculate table index by multiplying r with table scale and truncate to integer */
712             rt               = r30*vftabscale;
713             vfitab           = rt;
714             vfeps            = rt-vfitab;
715             vfitab           = 1*4*vfitab;
716
717             /* CUBIC SPLINE TABLE ELECTROSTATICS */
718             F                = vftab[vfitab+1];
719             Geps             = vfeps*vftab[vfitab+2];
720             Heps2            = vfeps*vfeps*vftab[vfitab+3];
721             Fp               = F+Geps+Heps2;
722             FF               = Fp+Geps+2.0*Heps2;
723             felec            = -qq30*FF*vftabscale*rinv30;
724
725             fscal            = felec;
726
727             /* Calculate temporary vectorial force */
728             tx               = fscal*dx30;
729             ty               = fscal*dy30;
730             tz               = fscal*dz30;
731
732             /* Update vectorial force */
733             fix3            += tx;
734             fiy3            += ty;
735             fiz3            += tz;
736             f[j_coord_offset+DIM*0+XX] -= tx;
737             f[j_coord_offset+DIM*0+YY] -= ty;
738             f[j_coord_offset+DIM*0+ZZ] -= tz;
739
740             /* Inner loop uses 172 flops */
741         }
742         /* End of innermost loop */
743
744         tx = ty = tz = 0;
745         f[i_coord_offset+DIM*0+XX] += fix0;
746         f[i_coord_offset+DIM*0+YY] += fiy0;
747         f[i_coord_offset+DIM*0+ZZ] += fiz0;
748         tx                         += fix0;
749         ty                         += fiy0;
750         tz                         += fiz0;
751         f[i_coord_offset+DIM*1+XX] += fix1;
752         f[i_coord_offset+DIM*1+YY] += fiy1;
753         f[i_coord_offset+DIM*1+ZZ] += fiz1;
754         tx                         += fix1;
755         ty                         += fiy1;
756         tz                         += fiz1;
757         f[i_coord_offset+DIM*2+XX] += fix2;
758         f[i_coord_offset+DIM*2+YY] += fiy2;
759         f[i_coord_offset+DIM*2+ZZ] += fiz2;
760         tx                         += fix2;
761         ty                         += fiy2;
762         tz                         += fiz2;
763         f[i_coord_offset+DIM*3+XX] += fix3;
764         f[i_coord_offset+DIM*3+YY] += fiy3;
765         f[i_coord_offset+DIM*3+ZZ] += fiz3;
766         tx                         += fix3;
767         ty                         += fiy3;
768         tz                         += fiz3;
769         fshift[i_shift_offset+XX]  += tx;
770         fshift[i_shift_offset+YY]  += ty;
771         fshift[i_shift_offset+ZZ]  += tz;
772
773         /* Increment number of inner iterations */
774         inneriter                  += j_index_end - j_index_start;
775
776         /* Outer loop uses 39 flops */
777     }
778
779     /* Increment number of outer iterations */
780     outeriter        += nri;
781
782     /* Update outer/inner flops */
783
784     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*172);
785 }