Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecCSTab_VdwBham_GeomW3P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwBham_GeomW3P1_VF_c
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            Buckingham
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwBham_GeomW3P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0;
79     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83     real             velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     int              vfitab;
90     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
91     real             *vftab;
92
93     x                = xx[0];
94     f                = ff[0];
95
96     nri              = nlist->nri;
97     iinr             = nlist->iinr;
98     jindex           = nlist->jindex;
99     jjnr             = nlist->jjnr;
100     shiftidx         = nlist->shift;
101     gid              = nlist->gid;
102     shiftvec         = fr->shift_vec[0];
103     fshift           = fr->fshift[0];
104     facel            = fr->epsfac;
105     charge           = mdatoms->chargeA;
106     nvdwtype         = fr->ntype;
107     vdwparam         = fr->nbfp;
108     vdwtype          = mdatoms->typeA;
109
110     vftab            = kernel_data->table_elec->data;
111     vftabscale       = kernel_data->table_elec->scale;
112
113     /* Setup water-specific parameters */
114     inr              = nlist->iinr[0];
115     iq0              = facel*charge[inr+0];
116     iq1              = facel*charge[inr+1];
117     iq2              = facel*charge[inr+2];
118     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
119
120     outeriter        = 0;
121     inneriter        = 0;
122
123     /* Start outer loop over neighborlists */
124     for(iidx=0; iidx<nri; iidx++)
125     {
126         /* Load shift vector for this list */
127         i_shift_offset   = DIM*shiftidx[iidx];
128         shX              = shiftvec[i_shift_offset+XX];
129         shY              = shiftvec[i_shift_offset+YY];
130         shZ              = shiftvec[i_shift_offset+ZZ];
131
132         /* Load limits for loop over neighbors */
133         j_index_start    = jindex[iidx];
134         j_index_end      = jindex[iidx+1];
135
136         /* Get outer coordinate index */
137         inr              = iinr[iidx];
138         i_coord_offset   = DIM*inr;
139
140         /* Load i particle coords and add shift vector */
141         ix0              = shX + x[i_coord_offset+DIM*0+XX];
142         iy0              = shY + x[i_coord_offset+DIM*0+YY];
143         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
144         ix1              = shX + x[i_coord_offset+DIM*1+XX];
145         iy1              = shY + x[i_coord_offset+DIM*1+YY];
146         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
147         ix2              = shX + x[i_coord_offset+DIM*2+XX];
148         iy2              = shY + x[i_coord_offset+DIM*2+YY];
149         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
150
151         fix0             = 0.0;
152         fiy0             = 0.0;
153         fiz0             = 0.0;
154         fix1             = 0.0;
155         fiy1             = 0.0;
156         fiz1             = 0.0;
157         fix2             = 0.0;
158         fiy2             = 0.0;
159         fiz2             = 0.0;
160
161         /* Reset potential sums */
162         velecsum         = 0.0;
163         vvdwsum          = 0.0;
164
165         /* Start inner kernel loop */
166         for(jidx=j_index_start; jidx<j_index_end; jidx++)
167         {
168             /* Get j neighbor index, and coordinate index */
169             jnr              = jjnr[jidx];
170             j_coord_offset   = DIM*jnr;
171
172             /* load j atom coordinates */
173             jx0              = x[j_coord_offset+DIM*0+XX];
174             jy0              = x[j_coord_offset+DIM*0+YY];
175             jz0              = x[j_coord_offset+DIM*0+ZZ];
176
177             /* Calculate displacement vector */
178             dx00             = ix0 - jx0;
179             dy00             = iy0 - jy0;
180             dz00             = iz0 - jz0;
181             dx10             = ix1 - jx0;
182             dy10             = iy1 - jy0;
183             dz10             = iz1 - jz0;
184             dx20             = ix2 - jx0;
185             dy20             = iy2 - jy0;
186             dz20             = iz2 - jz0;
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
190             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
191             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
192
193             rinv00           = gmx_invsqrt(rsq00);
194             rinv10           = gmx_invsqrt(rsq10);
195             rinv20           = gmx_invsqrt(rsq20);
196
197             rinvsq00         = rinv00*rinv00;
198
199             /* Load parameters for j particles */
200             jq0              = charge[jnr+0];
201             vdwjidx0         = 3*vdwtype[jnr+0];
202
203             /**************************
204              * CALCULATE INTERACTIONS *
205              **************************/
206
207             r00              = rsq00*rinv00;
208
209             qq00             = iq0*jq0;
210             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
211             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
212             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
213
214             /* Calculate table index by multiplying r with table scale and truncate to integer */
215             rt               = r00*vftabscale;
216             vfitab           = rt;
217             vfeps            = rt-vfitab;
218             vfitab           = 1*4*vfitab;
219
220             /* CUBIC SPLINE TABLE ELECTROSTATICS */
221             Y                = vftab[vfitab];
222             F                = vftab[vfitab+1];
223             Geps             = vfeps*vftab[vfitab+2];
224             Heps2            = vfeps*vfeps*vftab[vfitab+3];
225             Fp               = F+Geps+Heps2;
226             VV               = Y+vfeps*Fp;
227             velec            = qq00*VV;
228             FF               = Fp+Geps+2.0*Heps2;
229             felec            = -qq00*FF*vftabscale*rinv00;
230
231             /* BUCKINGHAM DISPERSION/REPULSION */
232             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
233             vvdw6            = c6_00*rinvsix;
234             br               = cexp2_00*r00;
235             vvdwexp          = cexp1_00*exp(-br);
236             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
237             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
238
239             /* Update potential sums from outer loop */
240             velecsum        += velec;
241             vvdwsum         += vvdw;
242
243             fscal            = felec+fvdw;
244
245             /* Calculate temporary vectorial force */
246             tx               = fscal*dx00;
247             ty               = fscal*dy00;
248             tz               = fscal*dz00;
249
250             /* Update vectorial force */
251             fix0            += tx;
252             fiy0            += ty;
253             fiz0            += tz;
254             f[j_coord_offset+DIM*0+XX] -= tx;
255             f[j_coord_offset+DIM*0+YY] -= ty;
256             f[j_coord_offset+DIM*0+ZZ] -= tz;
257
258             /**************************
259              * CALCULATE INTERACTIONS *
260              **************************/
261
262             r10              = rsq10*rinv10;
263
264             qq10             = iq1*jq0;
265
266             /* Calculate table index by multiplying r with table scale and truncate to integer */
267             rt               = r10*vftabscale;
268             vfitab           = rt;
269             vfeps            = rt-vfitab;
270             vfitab           = 1*4*vfitab;
271
272             /* CUBIC SPLINE TABLE ELECTROSTATICS */
273             Y                = vftab[vfitab];
274             F                = vftab[vfitab+1];
275             Geps             = vfeps*vftab[vfitab+2];
276             Heps2            = vfeps*vfeps*vftab[vfitab+3];
277             Fp               = F+Geps+Heps2;
278             VV               = Y+vfeps*Fp;
279             velec            = qq10*VV;
280             FF               = Fp+Geps+2.0*Heps2;
281             felec            = -qq10*FF*vftabscale*rinv10;
282
283             /* Update potential sums from outer loop */
284             velecsum        += velec;
285
286             fscal            = felec;
287
288             /* Calculate temporary vectorial force */
289             tx               = fscal*dx10;
290             ty               = fscal*dy10;
291             tz               = fscal*dz10;
292
293             /* Update vectorial force */
294             fix1            += tx;
295             fiy1            += ty;
296             fiz1            += tz;
297             f[j_coord_offset+DIM*0+XX] -= tx;
298             f[j_coord_offset+DIM*0+YY] -= ty;
299             f[j_coord_offset+DIM*0+ZZ] -= tz;
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             r20              = rsq20*rinv20;
306
307             qq20             = iq2*jq0;
308
309             /* Calculate table index by multiplying r with table scale and truncate to integer */
310             rt               = r20*vftabscale;
311             vfitab           = rt;
312             vfeps            = rt-vfitab;
313             vfitab           = 1*4*vfitab;
314
315             /* CUBIC SPLINE TABLE ELECTROSTATICS */
316             Y                = vftab[vfitab];
317             F                = vftab[vfitab+1];
318             Geps             = vfeps*vftab[vfitab+2];
319             Heps2            = vfeps*vfeps*vftab[vfitab+3];
320             Fp               = F+Geps+Heps2;
321             VV               = Y+vfeps*Fp;
322             velec            = qq20*VV;
323             FF               = Fp+Geps+2.0*Heps2;
324             felec            = -qq20*FF*vftabscale*rinv20;
325
326             /* Update potential sums from outer loop */
327             velecsum        += velec;
328
329             fscal            = felec;
330
331             /* Calculate temporary vectorial force */
332             tx               = fscal*dx20;
333             ty               = fscal*dy20;
334             tz               = fscal*dz20;
335
336             /* Update vectorial force */
337             fix2            += tx;
338             fiy2            += ty;
339             fiz2            += tz;
340             f[j_coord_offset+DIM*0+XX] -= tx;
341             f[j_coord_offset+DIM*0+YY] -= ty;
342             f[j_coord_offset+DIM*0+ZZ] -= tz;
343
344             /* Inner loop uses 165 flops */
345         }
346         /* End of innermost loop */
347
348         tx = ty = tz = 0;
349         f[i_coord_offset+DIM*0+XX] += fix0;
350         f[i_coord_offset+DIM*0+YY] += fiy0;
351         f[i_coord_offset+DIM*0+ZZ] += fiz0;
352         tx                         += fix0;
353         ty                         += fiy0;
354         tz                         += fiz0;
355         f[i_coord_offset+DIM*1+XX] += fix1;
356         f[i_coord_offset+DIM*1+YY] += fiy1;
357         f[i_coord_offset+DIM*1+ZZ] += fiz1;
358         tx                         += fix1;
359         ty                         += fiy1;
360         tz                         += fiz1;
361         f[i_coord_offset+DIM*2+XX] += fix2;
362         f[i_coord_offset+DIM*2+YY] += fiy2;
363         f[i_coord_offset+DIM*2+ZZ] += fiz2;
364         tx                         += fix2;
365         ty                         += fiy2;
366         tz                         += fiz2;
367         fshift[i_shift_offset+XX]  += tx;
368         fshift[i_shift_offset+YY]  += ty;
369         fshift[i_shift_offset+ZZ]  += tz;
370
371         ggid                        = gid[iidx];
372         /* Update potential energies */
373         kernel_data->energygrp_elec[ggid] += velecsum;
374         kernel_data->energygrp_vdw[ggid] += vvdwsum;
375
376         /* Increment number of inner iterations */
377         inneriter                  += j_index_end - j_index_start;
378
379         /* Outer loop uses 32 flops */
380     }
381
382     /* Increment number of outer iterations */
383     outeriter        += nri;
384
385     /* Update outer/inner flops */
386
387     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*165);
388 }
389 /*
390  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwBham_GeomW3P1_F_c
391  * Electrostatics interaction: CubicSplineTable
392  * VdW interaction:            Buckingham
393  * Geometry:                   Water3-Particle
394  * Calculate force/pot:        Force
395  */
396 void
397 nb_kernel_ElecCSTab_VdwBham_GeomW3P1_F_c
398                     (t_nblist                    * gmx_restrict       nlist,
399                      rvec                        * gmx_restrict          xx,
400                      rvec                        * gmx_restrict          ff,
401                      t_forcerec                  * gmx_restrict          fr,
402                      t_mdatoms                   * gmx_restrict     mdatoms,
403                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
404                      t_nrnb                      * gmx_restrict        nrnb)
405 {
406     int              i_shift_offset,i_coord_offset,j_coord_offset;
407     int              j_index_start,j_index_end;
408     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
409     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
410     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
411     real             *shiftvec,*fshift,*x,*f;
412     int              vdwioffset0;
413     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
414     int              vdwioffset1;
415     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
416     int              vdwioffset2;
417     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
418     int              vdwjidx0;
419     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
420     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
421     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
422     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
423     real             velec,felec,velecsum,facel,crf,krf,krf2;
424     real             *charge;
425     int              nvdwtype;
426     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
427     int              *vdwtype;
428     real             *vdwparam;
429     int              vfitab;
430     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
431     real             *vftab;
432
433     x                = xx[0];
434     f                = ff[0];
435
436     nri              = nlist->nri;
437     iinr             = nlist->iinr;
438     jindex           = nlist->jindex;
439     jjnr             = nlist->jjnr;
440     shiftidx         = nlist->shift;
441     gid              = nlist->gid;
442     shiftvec         = fr->shift_vec[0];
443     fshift           = fr->fshift[0];
444     facel            = fr->epsfac;
445     charge           = mdatoms->chargeA;
446     nvdwtype         = fr->ntype;
447     vdwparam         = fr->nbfp;
448     vdwtype          = mdatoms->typeA;
449
450     vftab            = kernel_data->table_elec->data;
451     vftabscale       = kernel_data->table_elec->scale;
452
453     /* Setup water-specific parameters */
454     inr              = nlist->iinr[0];
455     iq0              = facel*charge[inr+0];
456     iq1              = facel*charge[inr+1];
457     iq2              = facel*charge[inr+2];
458     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
459
460     outeriter        = 0;
461     inneriter        = 0;
462
463     /* Start outer loop over neighborlists */
464     for(iidx=0; iidx<nri; iidx++)
465     {
466         /* Load shift vector for this list */
467         i_shift_offset   = DIM*shiftidx[iidx];
468         shX              = shiftvec[i_shift_offset+XX];
469         shY              = shiftvec[i_shift_offset+YY];
470         shZ              = shiftvec[i_shift_offset+ZZ];
471
472         /* Load limits for loop over neighbors */
473         j_index_start    = jindex[iidx];
474         j_index_end      = jindex[iidx+1];
475
476         /* Get outer coordinate index */
477         inr              = iinr[iidx];
478         i_coord_offset   = DIM*inr;
479
480         /* Load i particle coords and add shift vector */
481         ix0              = shX + x[i_coord_offset+DIM*0+XX];
482         iy0              = shY + x[i_coord_offset+DIM*0+YY];
483         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
484         ix1              = shX + x[i_coord_offset+DIM*1+XX];
485         iy1              = shY + x[i_coord_offset+DIM*1+YY];
486         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
487         ix2              = shX + x[i_coord_offset+DIM*2+XX];
488         iy2              = shY + x[i_coord_offset+DIM*2+YY];
489         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
490
491         fix0             = 0.0;
492         fiy0             = 0.0;
493         fiz0             = 0.0;
494         fix1             = 0.0;
495         fiy1             = 0.0;
496         fiz1             = 0.0;
497         fix2             = 0.0;
498         fiy2             = 0.0;
499         fiz2             = 0.0;
500
501         /* Start inner kernel loop */
502         for(jidx=j_index_start; jidx<j_index_end; jidx++)
503         {
504             /* Get j neighbor index, and coordinate index */
505             jnr              = jjnr[jidx];
506             j_coord_offset   = DIM*jnr;
507
508             /* load j atom coordinates */
509             jx0              = x[j_coord_offset+DIM*0+XX];
510             jy0              = x[j_coord_offset+DIM*0+YY];
511             jz0              = x[j_coord_offset+DIM*0+ZZ];
512
513             /* Calculate displacement vector */
514             dx00             = ix0 - jx0;
515             dy00             = iy0 - jy0;
516             dz00             = iz0 - jz0;
517             dx10             = ix1 - jx0;
518             dy10             = iy1 - jy0;
519             dz10             = iz1 - jz0;
520             dx20             = ix2 - jx0;
521             dy20             = iy2 - jy0;
522             dz20             = iz2 - jz0;
523
524             /* Calculate squared distance and things based on it */
525             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
526             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
527             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
528
529             rinv00           = gmx_invsqrt(rsq00);
530             rinv10           = gmx_invsqrt(rsq10);
531             rinv20           = gmx_invsqrt(rsq20);
532
533             rinvsq00         = rinv00*rinv00;
534
535             /* Load parameters for j particles */
536             jq0              = charge[jnr+0];
537             vdwjidx0         = 3*vdwtype[jnr+0];
538
539             /**************************
540              * CALCULATE INTERACTIONS *
541              **************************/
542
543             r00              = rsq00*rinv00;
544
545             qq00             = iq0*jq0;
546             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
547             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
548             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
549
550             /* Calculate table index by multiplying r with table scale and truncate to integer */
551             rt               = r00*vftabscale;
552             vfitab           = rt;
553             vfeps            = rt-vfitab;
554             vfitab           = 1*4*vfitab;
555
556             /* CUBIC SPLINE TABLE ELECTROSTATICS */
557             F                = vftab[vfitab+1];
558             Geps             = vfeps*vftab[vfitab+2];
559             Heps2            = vfeps*vfeps*vftab[vfitab+3];
560             Fp               = F+Geps+Heps2;
561             FF               = Fp+Geps+2.0*Heps2;
562             felec            = -qq00*FF*vftabscale*rinv00;
563
564             /* BUCKINGHAM DISPERSION/REPULSION */
565             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
566             vvdw6            = c6_00*rinvsix;
567             br               = cexp2_00*r00;
568             vvdwexp          = cexp1_00*exp(-br);
569             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
570
571             fscal            = felec+fvdw;
572
573             /* Calculate temporary vectorial force */
574             tx               = fscal*dx00;
575             ty               = fscal*dy00;
576             tz               = fscal*dz00;
577
578             /* Update vectorial force */
579             fix0            += tx;
580             fiy0            += ty;
581             fiz0            += tz;
582             f[j_coord_offset+DIM*0+XX] -= tx;
583             f[j_coord_offset+DIM*0+YY] -= ty;
584             f[j_coord_offset+DIM*0+ZZ] -= tz;
585
586             /**************************
587              * CALCULATE INTERACTIONS *
588              **************************/
589
590             r10              = rsq10*rinv10;
591
592             qq10             = iq1*jq0;
593
594             /* Calculate table index by multiplying r with table scale and truncate to integer */
595             rt               = r10*vftabscale;
596             vfitab           = rt;
597             vfeps            = rt-vfitab;
598             vfitab           = 1*4*vfitab;
599
600             /* CUBIC SPLINE TABLE ELECTROSTATICS */
601             F                = vftab[vfitab+1];
602             Geps             = vfeps*vftab[vfitab+2];
603             Heps2            = vfeps*vfeps*vftab[vfitab+3];
604             Fp               = F+Geps+Heps2;
605             FF               = Fp+Geps+2.0*Heps2;
606             felec            = -qq10*FF*vftabscale*rinv10;
607
608             fscal            = felec;
609
610             /* Calculate temporary vectorial force */
611             tx               = fscal*dx10;
612             ty               = fscal*dy10;
613             tz               = fscal*dz10;
614
615             /* Update vectorial force */
616             fix1            += tx;
617             fiy1            += ty;
618             fiz1            += tz;
619             f[j_coord_offset+DIM*0+XX] -= tx;
620             f[j_coord_offset+DIM*0+YY] -= ty;
621             f[j_coord_offset+DIM*0+ZZ] -= tz;
622
623             /**************************
624              * CALCULATE INTERACTIONS *
625              **************************/
626
627             r20              = rsq20*rinv20;
628
629             qq20             = iq2*jq0;
630
631             /* Calculate table index by multiplying r with table scale and truncate to integer */
632             rt               = r20*vftabscale;
633             vfitab           = rt;
634             vfeps            = rt-vfitab;
635             vfitab           = 1*4*vfitab;
636
637             /* CUBIC SPLINE TABLE ELECTROSTATICS */
638             F                = vftab[vfitab+1];
639             Geps             = vfeps*vftab[vfitab+2];
640             Heps2            = vfeps*vfeps*vftab[vfitab+3];
641             Fp               = F+Geps+Heps2;
642             FF               = Fp+Geps+2.0*Heps2;
643             felec            = -qq20*FF*vftabscale*rinv20;
644
645             fscal            = felec;
646
647             /* Calculate temporary vectorial force */
648             tx               = fscal*dx20;
649             ty               = fscal*dy20;
650             tz               = fscal*dz20;
651
652             /* Update vectorial force */
653             fix2            += tx;
654             fiy2            += ty;
655             fiz2            += tz;
656             f[j_coord_offset+DIM*0+XX] -= tx;
657             f[j_coord_offset+DIM*0+YY] -= ty;
658             f[j_coord_offset+DIM*0+ZZ] -= tz;
659
660             /* Inner loop uses 150 flops */
661         }
662         /* End of innermost loop */
663
664         tx = ty = tz = 0;
665         f[i_coord_offset+DIM*0+XX] += fix0;
666         f[i_coord_offset+DIM*0+YY] += fiy0;
667         f[i_coord_offset+DIM*0+ZZ] += fiz0;
668         tx                         += fix0;
669         ty                         += fiy0;
670         tz                         += fiz0;
671         f[i_coord_offset+DIM*1+XX] += fix1;
672         f[i_coord_offset+DIM*1+YY] += fiy1;
673         f[i_coord_offset+DIM*1+ZZ] += fiz1;
674         tx                         += fix1;
675         ty                         += fiy1;
676         tz                         += fiz1;
677         f[i_coord_offset+DIM*2+XX] += fix2;
678         f[i_coord_offset+DIM*2+YY] += fiy2;
679         f[i_coord_offset+DIM*2+ZZ] += fiz2;
680         tx                         += fix2;
681         ty                         += fiy2;
682         tz                         += fiz2;
683         fshift[i_shift_offset+XX]  += tx;
684         fshift[i_shift_offset+YY]  += ty;
685         fshift[i_shift_offset+ZZ]  += tz;
686
687         /* Increment number of inner iterations */
688         inneriter                  += j_index_end - j_index_start;
689
690         /* Outer loop uses 30 flops */
691     }
692
693     /* Increment number of outer iterations */
694     outeriter        += nri;
695
696     /* Update outer/inner flops */
697
698     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*150);
699 }