d6dffce9b06a1cca2246155915cb81f4d08692fe
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_template_avx_256_single.pre
1 /* #if 0 */
2 /*
3  * This file is part of the GROMACS molecular simulation package.
4  *
5  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
6  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
7  * and including many others, as listed in the AUTHORS file in the
8  * top-level source directory and at http://www.gromacs.org.
9  *
10  * GROMACS is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public License
12  * as published by the Free Software Foundation; either version 2.1
13  * of the License, or (at your option) any later version.
14  *
15  * GROMACS is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with GROMACS; if not, see
22  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
23  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
24  *
25  * If you want to redistribute modifications to GROMACS, please
26  * consider that scientific software is very special. Version
27  * control is crucial - bugs must be traceable. We will be happy to
28  * consider code for inclusion in the official distribution, but
29  * derived work must not be called official GROMACS. Details are found
30  * in the README & COPYING files - if they are missing, get the
31  * official version at http://www.gromacs.org.
32  *
33  * To help us fund GROMACS development, we humbly ask that you cite
34  * the research papers on the package. Check out http://www.gromacs.org.
35  */
36 #error This file must be processed with the Gromacs pre-preprocessor
37 /* #endif */
38 /* #if INCLUDE_HEADER */
39 #include "config.h"
40
41 #include <math.h>
42
43 #include "../nb_kernel.h"
44 #include "types/simple.h"
45 #include "gromacs/math/vec.h"
46 #include "nrnb.h"
47
48 #include "gromacs/simd/math_x86_avx_256_single.h"
49 #include "kernelutil_x86_avx_256_single.h"
50 /* #endif */
51
52 /* ## List of variables set by the generating script:                                    */
53 /* ##                                                                                    */
54 /* ## Setttings that apply to the entire kernel:                                         */
55 /* ## KERNEL_ELEC:           String, choice for electrostatic interactions               */
56 /* ## KERNEL_VDW:            String, choice for van der Waals interactions               */
57 /* ## KERNEL_NAME:           String, name of this kernel                                 */
58 /* ## KERNEL_VF:             String telling if we calculate potential, force, or both    */
59 /* ## GEOMETRY_I/GEOMETRY_J: String, name of each geometry, e.g. 'Water3' or '1Particle' */
60 /* ##                                                                                    */
61 /* ## Setttings that apply to particles in the outer (I) or inner (J) loops:             */
62 /* ## PARTICLES_I[]/         Arrays with lists of i/j particles to use in kernel. It is  */
63 /* ## PARTICLES_J[]:         just [0] for particle geometry, but can be longer for water */
64 /* ## PARTICLES_ELEC_I[]/    Arrays with lists of i/j particle that have electrostatics  */
65 /* ## PARTICLES_ELEC_J[]:    interactions that should be calculated in this kernel.      */
66 /* ## PARTICLES_VDW_I[]/     Arrays with the list of i/j particle that have VdW          */
67 /* ## PARTICLES_VDW_J[]:     interactions that should be calculated in this kernel.      */
68 /* ##                                                                                    */
69 /* ## Setttings for pairs of interactions (e.g. 2nd i particle against 1st j particle)   */
70 /* ## PAIRS_IJ[]:            Array with (i,j) tuples of pairs for which interactions     */
71 /* ##                        should be calculated in this kernel. Zero-charge particles  */
72 /* ##                        do not have interactions with particles without vdw, and    */
73 /* ##                        Vdw-only interactions are not evaluated in a no-vdw-kernel. */
74 /* ## INTERACTION_FLAGS[][]: 2D matrix, dimension e.g. 3*3 for water-water interactions. */
75 /* ##                        For each i-j pair, the element [I][J] is a list of strings  */
76 /* ##                        defining properties/flags of this interaction. Examples     */
77 /* ##                        include 'electrostatics'/'vdw' if that type of interaction  */
78 /* ##                        should be evaluated, 'rsq'/'rinv'/'rinvsq' if those values  */
79 /* ##                        are needed, and 'exactcutoff' or 'shift','switch' to        */
80 /* ##                        decide if the force/potential should be modified. This way  */
81 /* ##                        we only calculate values absolutely needed for each case.   */
82
83 /* ## Calculate the size and offset for (merged/interleaved) table data */
84
85
86
87
88 /*
89  * Gromacs nonbonded kernel:   {KERNEL_NAME}
90  * Electrostatics interaction: {KERNEL_ELEC}
91  * VdW interaction:            {KERNEL_VDW}
92  * Geometry:                   {GEOMETRY_I}-{GEOMETRY_J}
93  * Calculate force/pot:        {KERNEL_VF}
94  */
95 void
96 {KERNEL_NAME}
97                     (t_nblist                    * gmx_restrict       nlist,
98                      rvec                        * gmx_restrict          xx,
99                      rvec                        * gmx_restrict          ff,
100                      t_forcerec                  * gmx_restrict          fr,
101                      t_mdatoms                   * gmx_restrict     mdatoms,
102                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
103                      t_nrnb                      * gmx_restrict        nrnb)
104 {
105     /* ## Not all variables are used for all kernels, but any optimizing compiler fixes that, */
106     /* ## so there is no point in going to extremes to exclude variables that are not needed. */
107     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
108      * just 0 for non-waters.
109      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
110      * jnr indices corresponding to data put in the four positions in the SIMD register.
111      */
112     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
113     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
114     int              jnrA,jnrB,jnrC,jnrD;
115     int              jnrE,jnrF,jnrG,jnrH;
116     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
117     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
118     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
119     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
120     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
121     real             rcutoff_scalar;
122     real             *shiftvec,*fshift,*x,*f;
123     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
124     real             scratch[4*DIM];
125     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
126     /* #for I in PARTICLES_I */
127     real *           vdwioffsetptr{I};
128     /* #if 'LJEwald' in KERNEL_VDW */
129     real *           vdwgridioffsetptr{I};
130     /* #endif                      */
131     __m256           ix{I},iy{I},iz{I},fix{I},fiy{I},fiz{I},iq{I},isai{I};
132     /* #endfor */
133     /* #for J in PARTICLES_J */
134     int              vdwjidx{J}A,vdwjidx{J}B,vdwjidx{J}C,vdwjidx{J}D,vdwjidx{J}E,vdwjidx{J}F,vdwjidx{J}G,vdwjidx{J}H;
135     __m256           jx{J},jy{J},jz{J},fjx{J},fjy{J},fjz{J},jq{J},isaj{J};
136     /* #endfor */
137     /* #for I,J in PAIRS_IJ */
138     __m256           dx{I}{J},dy{I}{J},dz{I}{J},rsq{I}{J},rinv{I}{J},rinvsq{I}{J},r{I}{J},qq{I}{J},c6_{I}{J},c12_{I}{J};
139     /* #endfor */
140     /* #if KERNEL_ELEC != 'None' */
141     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
142     real             *charge;
143     /* #endif */
144     /* #if 'GeneralizedBorn' in KERNEL_ELEC */
145     __m256i          gbitab;
146     __m128i          gbitab_lo,gbitab_hi;
147     __m256           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
148     __m256           minushalf = _mm256_set1_ps(-0.5);
149     real             *invsqrta,*dvda,*gbtab;
150     /* #endif */
151     /* #if KERNEL_VDW != 'None' */
152     int              nvdwtype;
153     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
154     int              *vdwtype;
155     real             *vdwparam;
156     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
157     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
158     /* #endif */
159     /* #if 'Table' in KERNEL_ELEC or 'GeneralizedBorn' in KERNEL_ELEC or 'Table' in KERNEL_VDW */
160     __m256i          vfitab;
161     __m128i          vfitab_lo,vfitab_hi;
162     __m128i          ifour       = _mm_set1_epi32(4);
163     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
164     real             *vftab;
165     /* #endif */
166     /* #if 'LJEwald' in KERNEL_VDW */
167     /* #for I,J in PAIRS_IJ */
168     __m256           c6grid_{I}{J};
169     /* #endfor */
170     real             *vdwgridparam;
171     __m256           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
172     __m256           one_half  = _mm256_set1_ps(0.5);
173     __m256           minus_one = _mm256_set1_ps(-1.0);
174     /* #endif */
175     /* #if 'Ewald' in KERNEL_ELEC */
176     __m256i          ewitab;
177     __m128i          ewitab_lo,ewitab_hi;
178     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
179     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
180     real             *ewtab;
181     /* #endif */
182     /* #if 'PotentialSwitch' in [KERNEL_MOD_ELEC,KERNEL_MOD_VDW] */
183     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
184     real             rswitch_scalar,d_scalar;
185     /* #endif */
186     __m256           dummy_mask,cutoff_mask;
187     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
188     __m256           one     = _mm256_set1_ps(1.0);
189     __m256           two     = _mm256_set1_ps(2.0);
190     x                = xx[0];
191     f                = ff[0];
192
193     nri              = nlist->nri;
194     iinr             = nlist->iinr;
195     jindex           = nlist->jindex;
196     jjnr             = nlist->jjnr;
197     shiftidx         = nlist->shift;
198     gid              = nlist->gid;
199     shiftvec         = fr->shift_vec[0];
200     fshift           = fr->fshift[0];
201     /* #if KERNEL_ELEC != 'None' */
202     facel            = _mm256_set1_ps(fr->epsfac);
203     charge           = mdatoms->chargeA;
204     /*     #if 'ReactionField' in KERNEL_ELEC */
205     krf              = _mm256_set1_ps(fr->ic->k_rf);
206     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
207     crf              = _mm256_set1_ps(fr->ic->c_rf);
208     /*     #endif */
209     /* #endif */
210     /* #if KERNEL_VDW != 'None' */
211     nvdwtype         = fr->ntype;
212     vdwparam         = fr->nbfp;
213     vdwtype          = mdatoms->typeA;
214     /* #endif */
215     /* #if 'LJEwald' in KERNEL_VDW */
216     vdwgridparam     = fr->ljpme_c6grid;
217     sh_lj_ewald      = _mm256_set1_ps(fr->ic->sh_lj_ewald);
218     ewclj            = _mm256_set1_ps(fr->ewaldcoeff_lj);
219     ewclj2           = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
220     /* #endif */
221
222     /* #if 'Table' in KERNEL_ELEC and 'Table' in KERNEL_VDW */
223     vftab            = kernel_data->table_elec_vdw->data;
224     vftabscale       = _mm256_set1_ps(kernel_data->table_elec_vdw->scale);
225     /* #elif 'Table' in KERNEL_ELEC */
226     vftab            = kernel_data->table_elec->data;
227     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
228     /* #elif 'Table' in KERNEL_VDW */
229     vftab            = kernel_data->table_vdw->data;
230     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
231     /* #endif */
232
233     /* #if 'Ewald' in KERNEL_ELEC */
234     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
235     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff_q);
236     beta2            = _mm256_mul_ps(beta,beta);
237     beta3            = _mm256_mul_ps(beta,beta2);
238
239     /*     #if KERNEL_VF=='Force' and KERNEL_MOD_ELEC!='PotentialSwitch' */
240     ewtab            = fr->ic->tabq_coul_F;
241     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
242     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
243     /*     #else */
244     ewtab            = fr->ic->tabq_coul_FDV0;
245     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
246     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
247      /*     #endif */
248     /* #endif */
249
250     /* #if KERNEL_ELEC=='GeneralizedBorn' */
251     invsqrta         = fr->invsqrta;
252     dvda             = fr->dvda;
253     gbtabscale       = _mm256_set1_ps(fr->gbtab.scale);
254     gbtab            = fr->gbtab.data;
255     gbinvepsdiff     = _mm256_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
256     /* #endif */
257
258     /* #if 'Water' in GEOMETRY_I */
259     /* Setup water-specific parameters */
260     inr              = nlist->iinr[0];
261     /*     #for I in PARTICLES_ELEC_I */
262     iq{I}              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+{I}]));
263     /*     #endfor */
264     /*     #for I in PARTICLES_VDW_I */
265     vdwioffsetptr{I}   = vdwparam+2*nvdwtype*vdwtype[inr+{I}];
266     /*         #if 'LJEwald' in KERNEL_VDW */
267     vdwgridioffsetptr{I} = vdwgridparam+2*nvdwtype*vdwtype[inr+{I}];
268     /*         #endif */
269     /*     #endfor */
270     /* #endif */
271
272     /* #if 'Water' in GEOMETRY_J */
273     /*     #for J in PARTICLES_ELEC_J */
274     jq{J}              = _mm256_set1_ps(charge[inr+{J}]);
275     /*     #endfor */
276     /*     #for J in PARTICLES_VDW_J */
277     vdwjidx{J}A        = 2*vdwtype[inr+{J}];
278     /*     #endfor */
279     /*     #for I,J in PAIRS_IJ */
280     /*         #if 'electrostatics' in INTERACTION_FLAGS[I][J] */
281     qq{I}{J}             = _mm256_mul_ps(iq{I},jq{J});
282     /*         #endif */
283     /*         #if 'vdw' in INTERACTION_FLAGS[I][J] */
284         /*         #if 'LJEwald' in KERNEL_VDW */
285     c6_{I}{J}            = _mm256_set1_ps(vdwioffsetptr{I}[vdwjidx{J}A]);
286     c12_{I}{J}           = _mm256_set1_ps(vdwioffsetptr{I}[vdwjidx{J}A+1]);
287     c6grid_{I}{J}        = _mm256_set1_ps(vdwgridioffsetptr{I}[vdwjidx{J}A]);
288         /*         #else */
289     c6_{I}{J}            = _mm256_set1_ps(vdwioffsetptr{I}[vdwjidx{J}A]);
290     c12_{I}{J}           = _mm256_set1_ps(vdwioffsetptr{I}[vdwjidx{J}A+1]);
291         /*         #endif */
292     /*         #endif */
293     /*     #endfor */
294     /* #endif */
295
296     /* #if KERNEL_MOD_ELEC!='None' or KERNEL_MOD_VDW!='None' */
297     /*     #if KERNEL_ELEC!='None' */
298     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
299     rcutoff_scalar   = fr->rcoulomb;
300     /*     #else */
301     rcutoff_scalar   = fr->rvdw;
302     /*     #endif */
303     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
304     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
305     /* #endif */
306
307     /* #if KERNEL_MOD_VDW=='PotentialShift' */
308     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
309     rvdw             = _mm256_set1_ps(fr->rvdw);
310     /* #endif */
311
312     /* #if 'PotentialSwitch' in [KERNEL_MOD_ELEC,KERNEL_MOD_VDW] */
313     /*     #if KERNEL_MOD_ELEC=='PotentialSwitch'  */
314     rswitch_scalar   = fr->rcoulomb_switch;
315     rswitch          = _mm256_set1_ps(rswitch_scalar);
316     /*     #else */
317     rswitch_scalar   = fr->rvdw_switch;
318     rswitch          = _mm256_set1_ps(rswitch_scalar);
319     /*     #endif */
320     /* Setup switch parameters */
321     d_scalar         = rcutoff_scalar-rswitch_scalar;
322     d                = _mm256_set1_ps(d_scalar);
323     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
324     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
325     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
326     /*     #if 'Force' in KERNEL_VF */
327     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
328     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
329     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
330     /*     #endif */
331     /* #endif */
332
333     /* Avoid stupid compiler warnings */
334     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
335     j_coord_offsetA = 0;
336     j_coord_offsetB = 0;
337     j_coord_offsetC = 0;
338     j_coord_offsetD = 0;
339     j_coord_offsetE = 0;
340     j_coord_offsetF = 0;
341     j_coord_offsetG = 0;
342     j_coord_offsetH = 0;
343
344     /* ## Keep track of the floating point operations we issue for reporting! */
345     /* #define OUTERFLOPS 0 */
346     outeriter        = 0;
347     inneriter        = 0;
348
349     for(iidx=0;iidx<4*DIM;iidx++)
350     {
351         scratch[iidx] = 0.0;
352     }
353
354     /* Start outer loop over neighborlists */
355     for(iidx=0; iidx<nri; iidx++)
356     {
357         /* Load shift vector for this list */
358         i_shift_offset   = DIM*shiftidx[iidx];
359
360         /* Load limits for loop over neighbors */
361         j_index_start    = jindex[iidx];
362         j_index_end      = jindex[iidx+1];
363
364         /* Get outer coordinate index */
365         inr              = iinr[iidx];
366         i_coord_offset   = DIM*inr;
367
368         /* Load i particle coords and add shift vector */
369         /* #if GEOMETRY_I == 'Particle' */
370         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
371         /* #elif GEOMETRY_I == 'Water3' */
372         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
373                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
374         /* #elif GEOMETRY_I == 'Water4' */
375         /*     #if 0 in PARTICLES_I                 */
376         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
377                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
378         /*     #else                                */
379         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
380                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
381         /*     #endif                               */
382         /* #endif                                   */
383
384         /* #if 'Force' in KERNEL_VF */
385         /*     #for I in PARTICLES_I */
386         fix{I}             = _mm256_setzero_ps();
387         fiy{I}             = _mm256_setzero_ps();
388         fiz{I}             = _mm256_setzero_ps();
389         /*     #endfor */
390         /* #endif */
391
392         /* ## For water we already preloaded parameters at the start of the kernel */
393         /* #if not 'Water' in GEOMETRY_I */
394         /* Load parameters for i particles */
395         /*     #for I in PARTICLES_ELEC_I */
396         iq{I}              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+{I}]));
397         /*         #define OUTERFLOPS OUTERFLOPS+1 */
398         /*         #if KERNEL_ELEC=='GeneralizedBorn' */
399         isai{I}            = _mm256_set1_ps(invsqrta[inr+{I}]);
400         /*         #endif */
401         /*     #endfor */
402         /*     #for I in PARTICLES_VDW_I */
403         vdwioffsetptr{I}   = vdwparam+2*nvdwtype*vdwtype[inr+{I}];
404         /*         #if 'LJEwald' in KERNEL_VDW */
405         vdwgridioffsetptr{I} = vdwgridparam+2*nvdwtype*vdwtype[inr+{I}];
406         /*         #endif */
407         /*     #endfor */
408         /* #endif */
409
410         /* #if 'Potential' in KERNEL_VF */
411         /* Reset potential sums */
412         /*     #if KERNEL_ELEC != 'None' */
413         velecsum         = _mm256_setzero_ps();
414         /*     #endif */
415         /*     #if 'GeneralizedBorn' in KERNEL_ELEC */
416         vgbsum           = _mm256_setzero_ps();
417         /*     #endif */
418         /*     #if KERNEL_VDW != 'None' */
419         vvdwsum          = _mm256_setzero_ps();
420         /*     #endif */
421         /* #endif */
422         /*     #if 'GeneralizedBorn' in KERNEL_ELEC and 'Force' in KERNEL_VF */
423         dvdasum          = _mm256_setzero_ps();
424         /*     #endif */
425
426         /* #for ROUND in ['Loop','Epilogue'] */
427
428         /* #if ROUND =='Loop' */
429         /* Start inner kernel loop */
430         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
431         {
432         /* ## First round is normal loop (next statement resets indentation) */
433         /*     #if 0 */
434         }
435         /*     #endif */
436         /* #else */
437         if(jidx<j_index_end)
438         {
439         /* ## Second round is epilogue */
440         /* #endif */
441         /* #define INNERFLOPS 0 */
442
443             /* Get j neighbor index, and coordinate index */
444             /* #if ROUND =='Loop' */
445             jnrA             = jjnr[jidx];
446             jnrB             = jjnr[jidx+1];
447             jnrC             = jjnr[jidx+2];
448             jnrD             = jjnr[jidx+3];
449             jnrE             = jjnr[jidx+4];
450             jnrF             = jjnr[jidx+5];
451             jnrG             = jjnr[jidx+6];
452             jnrH             = jjnr[jidx+7];
453             /* #else */
454             jnrlistA         = jjnr[jidx];
455             jnrlistB         = jjnr[jidx+1];
456             jnrlistC         = jjnr[jidx+2];
457             jnrlistD         = jjnr[jidx+3];
458             jnrlistE         = jjnr[jidx+4];
459             jnrlistF         = jjnr[jidx+5];
460             jnrlistG         = jjnr[jidx+6];
461             jnrlistH         = jjnr[jidx+7];
462             /* Sign of each element will be negative for non-real atoms.
463              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
464              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
465              */
466             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
467                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
468                                             
469             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
470             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
471             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
472             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
473             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
474             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
475             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
476             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
477             /* #endif */
478             j_coord_offsetA  = DIM*jnrA;
479             j_coord_offsetB  = DIM*jnrB;
480             j_coord_offsetC  = DIM*jnrC;
481             j_coord_offsetD  = DIM*jnrD;
482             j_coord_offsetE  = DIM*jnrE;
483             j_coord_offsetF  = DIM*jnrF;
484             j_coord_offsetG  = DIM*jnrG;
485             j_coord_offsetH  = DIM*jnrH;
486
487             /* load j atom coordinates */
488             /* #if GEOMETRY_J == 'Particle'             */
489             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
490                                                  x+j_coord_offsetC,x+j_coord_offsetD,
491                                                  x+j_coord_offsetE,x+j_coord_offsetF,
492                                                  x+j_coord_offsetG,x+j_coord_offsetH,
493                                                  &jx0,&jy0,&jz0);
494             /* #elif GEOMETRY_J == 'Water3'             */
495             gmx_mm256_load_3rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
496                                                  x+j_coord_offsetC,x+j_coord_offsetD,
497                                                  x+j_coord_offsetE,x+j_coord_offsetF,
498                                                  x+j_coord_offsetG,x+j_coord_offsetH,
499                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
500             /* #elif GEOMETRY_J == 'Water4'             */
501             /*     #if 0 in PARTICLES_J                 */
502             gmx_mm256_load_4rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
503                                                  x+j_coord_offsetC,x+j_coord_offsetD,
504                                                  x+j_coord_offsetE,x+j_coord_offsetF,
505                                                  x+j_coord_offsetG,x+j_coord_offsetH,
506                                                  &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
507                                                  &jy2,&jz2,&jx3,&jy3,&jz3);
508             /*     #else                                */
509             gmx_mm256_load_3rvec_8ptr_swizzle_ps(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
510                                                  x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
511                                                  x+j_coord_offsetE+DIM,x+j_coord_offsetF+DIM,
512                                                  x+j_coord_offsetG+DIM,x+j_coord_offsetH+DIM,
513                                                  &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
514             /*     #endif                               */
515             /* #endif                                   */
516
517             /* Calculate displacement vector */
518             /* #for I,J in PAIRS_IJ */
519             dx{I}{J}             = _mm256_sub_ps(ix{I},jx{J});
520             dy{I}{J}             = _mm256_sub_ps(iy{I},jy{J});
521             dz{I}{J}             = _mm256_sub_ps(iz{I},jz{J});
522             /*     #define INNERFLOPS INNERFLOPS+3 */
523             /* #endfor */
524
525             /* Calculate squared distance and things based on it */
526             /* #for I,J in PAIRS_IJ */
527             rsq{I}{J}            = gmx_mm256_calc_rsq_ps(dx{I}{J},dy{I}{J},dz{I}{J});
528             /*     #define INNERFLOPS INNERFLOPS+5 */
529             /* #endfor */
530
531             /* #for I,J in PAIRS_IJ */
532             /*     #if 'rinv' in INTERACTION_FLAGS[I][J] */
533             rinv{I}{J}           = gmx_mm256_invsqrt_ps(rsq{I}{J});
534             /*         #define INNERFLOPS INNERFLOPS+5 */
535             /*     #endif */
536             /* #endfor */
537
538             /* #for I,J in PAIRS_IJ */
539             /*     #if 'rinvsq' in INTERACTION_FLAGS[I][J] */
540             /*         # if 'rinv' not in INTERACTION_FLAGS[I][J] */
541             rinvsq{I}{J}         = gmx_mm256_inv_ps(rsq{I}{J});
542             /*             #define INNERFLOPS INNERFLOPS+4 */
543             /*         #else */
544             rinvsq{I}{J}         = _mm256_mul_ps(rinv{I}{J},rinv{I}{J});
545             /*             #define INNERFLOPS INNERFLOPS+1 */
546             /*         #endif */
547             /*     #endif */
548             /* #endfor */
549
550             /* #if not 'Water' in GEOMETRY_J */
551             /* Load parameters for j particles */
552             /*     #for J in PARTICLES_ELEC_J */
553             jq{J}              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+{J},charge+jnrB+{J},
554                                                                  charge+jnrC+{J},charge+jnrD+{J},
555                                                                  charge+jnrE+{J},charge+jnrF+{J},
556                                                                  charge+jnrG+{J},charge+jnrH+{J});
557             /*         #if KERNEL_ELEC=='GeneralizedBorn' */
558             isaj{J}            = gmx_mm256_load_8real_swizzle_ps(invsqrta+jnrA+{J},invsqrta+jnrB+{J},
559                                                                  invsqrta+jnrC+{J},invsqrta+jnrD+{J},
560                                                                  invsqrta+jnrE+{J},invsqrta+jnrF+{J},
561                                                                  invsqrta+jnrG+{J},invsqrta+jnrH+{J});
562             /*         #endif */
563             /*     #endfor */
564             /*     #for J in PARTICLES_VDW_J */
565             vdwjidx{J}A        = 2*vdwtype[jnrA+{J}];
566             vdwjidx{J}B        = 2*vdwtype[jnrB+{J}];
567             vdwjidx{J}C        = 2*vdwtype[jnrC+{J}];
568             vdwjidx{J}D        = 2*vdwtype[jnrD+{J}];
569             vdwjidx{J}E        = 2*vdwtype[jnrE+{J}];
570             vdwjidx{J}F        = 2*vdwtype[jnrF+{J}];
571             vdwjidx{J}G        = 2*vdwtype[jnrG+{J}];
572             vdwjidx{J}H        = 2*vdwtype[jnrH+{J}];
573             /*     #endfor */
574             /* #endif */
575
576             /* #if 'Force' in KERNEL_VF and not 'Particle' in GEOMETRY_I */
577             /*     #for J in PARTICLES_J */
578             fjx{J}             = _mm256_setzero_ps();
579             fjy{J}             = _mm256_setzero_ps();
580             fjz{J}             = _mm256_setzero_ps();
581             /*     #endfor */
582             /* #endif */
583
584             /* #for I,J in PAIRS_IJ */
585
586             /**************************
587              * CALCULATE INTERACTIONS *
588              **************************/
589
590             /*     ## Note special check for TIP4P-TIP4P. Since we are cutting of all hydrogen interactions we also cut the LJ-only O-O interaction */
591             /*     #if 'exactcutoff' in INTERACTION_FLAGS[I][J] or (GEOMETRY_I=='Water4' and GEOMETRY_J=='Water4' and 'exactcutoff' in INTERACTION_FLAGS[1][1]) */
592             /*         ## We always calculate rinv/rinvsq above to enable pipelineing in compilers (performance tested on x86) */
593             if (gmx_mm256_any_lt(rsq{I}{J},rcutoff2))
594             {
595                 /*     #if 0    ## this and the next two lines is a hack to maintain auto-indentation in template file */
596             }
597             /*         #endif */
598             /*         #define INNERFLOPS INNERFLOPS+1 */
599             /*     #endif */
600
601             /*     #if 'r' in INTERACTION_FLAGS[I][J] */
602             r{I}{J}              = _mm256_mul_ps(rsq{I}{J},rinv{I}{J});
603             /*         #if ROUND == 'Epilogue' */
604             r{I}{J}              = _mm256_andnot_ps(dummy_mask,r{I}{J});
605             /*             #define INNERFLOPS INNERFLOPS+1 */
606             /*         #endif */
607             /*         #define INNERFLOPS INNERFLOPS+1 */
608             /*     #endif */
609
610             /*     ## For water geometries we already loaded parameters at the start of the kernel */
611             /*     #if not 'Water' in GEOMETRY_J */
612             /* Compute parameters for interactions between i and j atoms */
613             /*         #if 'electrostatics' in INTERACTION_FLAGS[I][J] */
614             qq{I}{J}             = _mm256_mul_ps(iq{I},jq{J});
615             /*             #define INNERFLOPS INNERFLOPS+1 */
616             /*         #endif */
617             /*         #if 'vdw' in INTERACTION_FLAGS[I][J] */
618             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr{I}+vdwjidx{J}A,
619                                             vdwioffsetptr{I}+vdwjidx{J}B,
620                                             vdwioffsetptr{I}+vdwjidx{J}C,
621                                             vdwioffsetptr{I}+vdwjidx{J}D,
622                                             vdwioffsetptr{I}+vdwjidx{J}E,
623                                             vdwioffsetptr{I}+vdwjidx{J}F,
624                                             vdwioffsetptr{I}+vdwjidx{J}G,
625                                             vdwioffsetptr{I}+vdwjidx{J}H,
626                                             &c6_{I}{J},&c12_{I}{J});
627
628             /*         #if 'LJEwald' in KERNEL_VDW */
629             c6grid_{I}{J}       = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr{I}+vdwjidx{J}A,
630                                                                   vdwgridioffsetptr{I}+vdwjidx{J}B,
631                                                                   vdwgridioffsetptr{I}+vdwjidx{J}C,
632                                                                   vdwgridioffsetptr{I}+vdwjidx{J}D,
633                                                                   vdwgridioffsetptr{I}+vdwjidx{J}E,
634                                                                   vdwgridioffsetptr{I}+vdwjidx{J}F,
635                                                                   vdwgridioffsetptr{I}+vdwjidx{J}G,
636                                                                   vdwgridioffsetptr{I}+vdwjidx{J}H);
637             /*          #endif */
638             /*         #endif */
639             /*     #endif */
640
641             /*     #if 'table' in INTERACTION_FLAGS[I][J] */
642             /* Calculate table index by multiplying r with table scale and truncate to integer */
643             rt               = _mm256_mul_ps(r{I}{J},vftabscale);
644             vfitab           = _mm256_cvttps_epi32(rt);
645             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
646             /*         #define INNERFLOPS INNERFLOPS+4                          */
647             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
648             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
649             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
650             /*         #if 'Table' in KERNEL_ELEC and 'Table' in KERNEL_VDW */
651             /*             ## 3 tables, 4 bytes per point: multiply index by 12 */
652             vfitab_lo        = _mm_slli_epi32(_mm_add_epi32(vfitab_lo,_mm_slli_epi32(vfitab_lo,1)),2);
653             vfitab_hi        = _mm_slli_epi32(_mm_add_epi32(vfitab_hi,_mm_slli_epi32(vfitab_hi,1)),2);
654             /*         #elif 'Table' in KERNEL_ELEC                             */
655             /*             ## 1 table, 4 bytes per point: multiply index by 4   */
656             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
657             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
658             /*         #elif 'Table' in KERNEL_VDW */
659             /*             ## 2 tables, 4 bytes per point: multiply index by 8  */
660             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
661             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
662             /*         #endif                                                   */
663             /*     #endif */
664
665             /*     ## ELECTROSTATIC INTERACTIONS */
666             /*     #if 'electrostatics' in INTERACTION_FLAGS[I][J] */
667
668             /*         #if KERNEL_ELEC=='Coulomb' */
669
670             /* COULOMB ELECTROSTATICS */
671             velec            = _mm256_mul_ps(qq{I}{J},rinv{I}{J});
672             /*             #define INNERFLOPS INNERFLOPS+1 */
673             /*             #if 'Force' in KERNEL_VF */
674             felec            = _mm256_mul_ps(velec,rinvsq{I}{J});
675             /*                 #define INNERFLOPS INNERFLOPS+1 */
676             /*             #endif */
677
678             /*         #elif KERNEL_ELEC=='ReactionField' */
679
680             /* REACTION-FIELD ELECTROSTATICS */
681             /*             #if 'Potential' in KERNEL_VF */
682             velec            = _mm256_mul_ps(qq{I}{J},_mm256_sub_ps(_mm256_add_ps(rinv{I}{J},_mm256_mul_ps(krf,rsq{I}{J})),crf));
683             /*                 #define INNERFLOPS INNERFLOPS+4 */
684             /*             #endif */
685             /*             #if 'Force' in KERNEL_VF */
686             felec            = _mm256_mul_ps(qq{I}{J},_mm256_sub_ps(_mm256_mul_ps(rinv{I}{J},rinvsq{I}{J}),krf2));
687             /*                 #define INNERFLOPS INNERFLOPS+3 */
688             /*             #endif */
689
690             /*         #elif KERNEL_ELEC=='GeneralizedBorn' */
691
692             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
693             isaprod          = _mm256_mul_ps(isai{I},isaj{J});
694             gbqqfactor       = _mm256_xor_ps(signbit,_mm256_mul_ps(qq{I}{J},_mm256_mul_ps(isaprod,gbinvepsdiff)));
695             gbscale          = _mm256_mul_ps(isaprod,gbtabscale);
696             /*             #define INNERFLOPS INNERFLOPS+5 */
697
698             /* Calculate generalized born table index - this is a separate table from the normal one,
699              * but we use the same procedure by multiplying r with scale and truncating to integer.
700              */
701             rt               = _mm256_mul_ps(r{I}{J},gbscale);
702             gbitab           = _mm256_cvttps_epi32(rt);
703             gbeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
704             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
705             gbitab_lo        = _mm256_extractf128_si256(gbitab,0x0);
706             gbitab_hi        = _mm256_extractf128_si256(gbitab,0x1);
707             gbitab_lo        = _mm_slli_epi32(gbitab_lo,2);
708             gbitab_hi        = _mm_slli_epi32(gbitab_hi,2);
709             Y                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,0)),
710                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,0)));
711             F                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,1)),
712                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,1)));
713             G                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,2)),
714                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,2)));
715             H                = gmx_mm256_set_m128(_mm_load_ps(gbtab + _mm_extract_epi32(gbitab_hi,3)),
716                                                   _mm_load_ps(gbtab + _mm_extract_epi32(gbitab_lo,3)));
717             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
718             Heps             = _mm256_mul_ps(gbeps,H);
719             Fp               = _mm256_add_ps(F,_mm256_mul_ps(gbeps,_mm256_add_ps(G,Heps)));
720             VV               = _mm256_add_ps(Y,_mm256_mul_ps(gbeps,Fp));
721             vgb              = _mm256_mul_ps(gbqqfactor,VV);
722             /*             #define INNERFLOPS INNERFLOPS+10 */
723
724             /*             #if 'Force' in KERNEL_VF */
725             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(gbeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
726             fgb              = _mm256_mul_ps(gbqqfactor,_mm256_mul_ps(FF,gbscale));
727             dvdatmp          = _mm256_mul_ps(minushalf,_mm256_add_ps(vgb,_mm256_mul_ps(fgb,r{I}{J})));
728             /*                 #if ROUND == 'Epilogue' */
729             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
730             /*                 #endif */
731             dvdasum          = _mm256_add_ps(dvdasum,dvdatmp);
732             /*                 #if ROUND == 'Loop' */
733             fjptrA           = dvda+jnrA;
734             fjptrB           = dvda+jnrB;
735             fjptrC           = dvda+jnrC;
736             fjptrD           = dvda+jnrD;
737             fjptrE           = dvda+jnrE;
738             fjptrF           = dvda+jnrF;
739             fjptrG           = dvda+jnrG;
740             fjptrH           = dvda+jnrH;
741             /*                 #else */
742             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
743             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
744             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
745             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
746             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
747             fjptrE             = (jnrlistE>=0) ? dvda+jnrE : scratch;
748             fjptrF             = (jnrlistF>=0) ? dvda+jnrF : scratch;
749             fjptrG             = (jnrlistG>=0) ? dvda+jnrG : scratch;
750             fjptrH             = (jnrlistH>=0) ? dvda+jnrH : scratch;
751             /*                 #endif */
752             gmx_mm256_increment_8real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
753                                                  _mm256_mul_ps(dvdatmp,_mm256_mul_ps(isaj{J},isaj{J})));
754             /*                 #define INNERFLOPS INNERFLOPS+12 */
755             /*             #endif */
756             velec            = _mm256_mul_ps(qq{I}{J},rinv{I}{J});
757             /*                 #define INNERFLOPS INNERFLOPS+1 */
758             /*             #if 'Force' in KERNEL_VF */
759             felec            = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(velec,rinv{I}{J}),fgb),rinv{I}{J});
760             /*                 #define INNERFLOPS INNERFLOPS+3 */
761             /*             #endif */
762
763             /*         #elif KERNEL_ELEC=='Ewald' */
764             /* EWALD ELECTROSTATICS */
765             
766             /* Analytical PME correction */
767             zeta2            = _mm256_mul_ps(beta2,rsq{I}{J});
768             /*             #if 'Force' in KERNEL_VF */
769             rinv3            = _mm256_mul_ps(rinvsq{I}{J},rinv{I}{J});
770             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
771             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
772             felec            = _mm256_mul_ps(qq{I}{J},felec);
773             /*                 #define INNERFLOPS INNERFLOPS+31 */
774             /*             #endif */
775             /*             #if 'Potential' in KERNEL_VF or KERNEL_MOD_ELEC=='PotentialSwitch' */
776             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
777             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
778             /*                 #define INNERFLOPS INNERFLOPS+27 */
779             /*                 #if KERNEL_MOD_ELEC=='PotentialShift' */
780             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv{I}{J},sh_ewald),pmecorrV);
781             /*                     #define INNERFLOPS INNERFLOPS+21 */
782             /*                 #else */
783             velec            = _mm256_sub_ps(rinv{I}{J},pmecorrV);
784             /*                 #endif */
785             velec            = _mm256_mul_ps(qq{I}{J},velec);
786             /*             #endif */
787             
788             /*         #elif KERNEL_ELEC=='CubicSplineTable' */
789
790             /* CUBIC SPLINE TABLE ELECTROSTATICS */
791             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
792                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
793             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
794                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
795             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
796                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
797             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
798                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
799             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
800             Heps             = _mm256_mul_ps(vfeps,H);
801             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
802             /*             #define INNERFLOPS INNERFLOPS+4 */
803             /*             #if 'Potential' in KERNEL_VF */
804             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
805             velec            = _mm256_mul_ps(qq{I}{J},VV);
806             /*                 #define INNERFLOPS INNERFLOPS+3 */
807             /*             #endif */
808             /*             #if 'Force' in KERNEL_VF */
809             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
810             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq{I}{J},FF),_mm256_mul_ps(vftabscale,rinv{I}{J})));
811             /*                 #define INNERFLOPS INNERFLOPS+7 */
812             /*             #endif */
813             /*         #endif */
814             /*         ## End of check for electrostatics interaction forms */
815             /*     #endif */
816             /*     ## END OF ELECTROSTATIC INTERACTION CHECK FOR PAIR I-J */
817
818             /*     #if 'vdw' in INTERACTION_FLAGS[I][J] */
819
820             /*         #if KERNEL_VDW=='LennardJones' */
821
822             /* LENNARD-JONES DISPERSION/REPULSION */
823
824             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq{I}{J},rinvsq{I}{J}),rinvsq{I}{J});
825             /*             #define INNERFLOPS INNERFLOPS+2 */
826             /*             #if 'Potential' in KERNEL_VF or KERNEL_MOD_VDW=='PotentialSwitch' */
827             vvdw6            = _mm256_mul_ps(c6_{I}{J},rinvsix);
828             vvdw12           = _mm256_mul_ps(c12_{I}{J},_mm256_mul_ps(rinvsix,rinvsix));
829             /*                 #define INNERFLOPS INNERFLOPS+3 */
830             /*                 #if KERNEL_MOD_VDW=='PotentialShift' */
831             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_{I}{J},_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
832                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_{I}{J},sh_vdw_invrcut6)),one_sixth));
833             /*                     #define INNERFLOPS INNERFLOPS+8 */
834             /*                 #else */
835             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
836             /*                     #define INNERFLOPS INNERFLOPS+3 */
837             /*                 #endif */
838             /*                 ## Check for force inside potential check, i.e. this means we already did the potential part */
839             /*                 #if 'Force' in KERNEL_VF */
840             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq{I}{J});
841             /*                     #define INNERFLOPS INNERFLOPS+2 */
842             /*                 #endif */
843             /*             #elif KERNEL_VF=='Force' */
844             /*                 ## Force-only LennardJones makes it possible to save 1 flop (they do add up...) */
845             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_{I}{J},rinvsix),c6_{I}{J}),_mm256_mul_ps(rinvsix,rinvsq{I}{J}));
846             /*                 #define INNERFLOPS INNERFLOPS+4 */
847             /*             #endif */
848
849             /*         #elif KERNEL_VDW=='CubicSplineTable' */
850
851             /* CUBIC SPLINE TABLE DISPERSION */
852             /*             #if 'Table' in KERNEL_ELEC */
853             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
854             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
855             /*             #endif                     */
856             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
857                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
858             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
859                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
860             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
861                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
862             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
863                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
864             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
865             Heps             = _mm256_mul_ps(vfeps,H);
866             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
867             /*             #define INNERFLOPS INNERFLOPS+4 */
868             /*             #if 'Potential' in KERNEL_VF */
869             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
870             vvdw6            = _mm256_mul_ps(c6_{I}{J},VV);
871             /*                 #define INNERFLOPS INNERFLOPS+3 */
872             /*             #endif */
873             /*             #if 'Force' in KERNEL_VF */
874             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
875             fvdw6            = _mm256_mul_ps(c6_{I}{J},FF);
876             /*                 #define INNERFLOPS INNERFLOPS+4 */
877             /*             #endif */
878
879             /* CUBIC SPLINE TABLE REPULSION */
880             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
881             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
882             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
883                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
884             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
885                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
886             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
887                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
888             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
889                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
890             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
891             Heps             = _mm256_mul_ps(vfeps,H);
892             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
893             /*             #define INNERFLOPS INNERFLOPS+4 */
894             /*             #if 'Potential' in KERNEL_VF */
895             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
896             vvdw12           = _mm256_mul_ps(c12_{I}{J},VV);
897             /*                 #define INNERFLOPS INNERFLOPS+3 */
898             /*             #endif */
899             /*             #if 'Force' in KERNEL_VF */
900             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
901             fvdw12           = _mm256_mul_ps(c12_{I}{J},FF);
902             /*                 #define INNERFLOPS INNERFLOPS+5 */
903             /*             #endif */
904             /*             #if 'Potential' in KERNEL_VF */
905             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
906             /*                 #define INNERFLOPS INNERFLOPS+1 */
907             /*             #endif */
908             /*             #if 'Force' in KERNEL_VF */
909             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv{I}{J})));
910             /*                 #define INNERFLOPS INNERFLOPS+4 */
911             /*             #endif */
912
913             /*         #elif KERNEL_VDW=='LJEwald' */
914
915             /* Analytical LJ-PME */
916             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq{I}{J},rinvsq{I}{J}),rinvsq{I}{J});
917             ewcljrsq         = _mm256_mul_ps(ewclj2,rsq{I}{J});
918             ewclj6           = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
919             exponent         = gmx_simd_exp_r(ewcljrsq);
920             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
921             poly             = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
922             /*                 #define INNERFLOPS INNERFLOPS+11 */
923             /*             #if 'Potential' in KERNEL_VF or KERNEL_MOD_VDW=='PotentialSwitch' */
924             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
925             vvdw6            = _mm256_mul_ps(_mm256_sub_ps(c6_{I}{J},_mm256_mul_ps(c6grid_{I}{J},_mm256_sub_ps(one,poly))),rinvsix);
926             vvdw12           = _mm256_mul_ps(c12_{I}{J},_mm256_mul_ps(rinvsix,rinvsix));
927             /*                 #define INNERFLOPS INNERFLOPS+6 */
928             /*                 #if KERNEL_MOD_VDW=='PotentialShift' */
929             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_{I}{J},_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
930                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_add_ps(_mm256_mul_ps(c6_{I}{J},sh_vdw_invrcut6),_mm256_mul_ps(c6grid_{I}{J},sh_lj_ewald))),one_sixth));
931             /*                     #define INNERFLOPS INNERFLOPS+10 */
932             /*                 #else */
933             vvdw             = _mm256_sub_ps(_mm256_mul_ps(vvdw12,one_twelfth),_mm256_mul_ps(vvdw6,one_sixth));
934             /*                 #define INNERFLOPS INNERFLOPS+3 */
935             /*                 #endif */
936             /*                  ## Check for force inside potential check, i.e. this means we already did the potential part */
937             /*                  #if 'Force' in KERNEL_VF */
938             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
939             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_{I}{J},one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq{I}{J});
940             /*                 #define INNERFLOPS INNERFLOPS+6 */
941             /*                  #endif */
942             /*              #elif KERNEL_VF=='Force' */
943             /* f6A = 6 * C6grid * (1 - poly) */
944             f6A              = _mm256_mul_ps(c6grid_{I}{J},_mm256_sub_ps(one,poly));
945             /* f6B = C6grid * exponent * beta^6 */
946             f6B              = _mm256_mul_ps(_mm256_mul_ps(c6grid_{I}{J},one_sixth),_mm256_mul_ps(exponent,ewclj6));
947             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
948             fvdw              = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_{I}{J},rinvsix),_mm256_sub_ps(c6_{I}{J},f6A)),rinvsix),f6B),rinvsq{I}{J});
949             /*                 #define INNERFLOPS INNERFLOPS+11 */
950             /*              #endif */
951             /*         #endif */
952             /*         ## End of check for vdw interaction forms */
953             /*     #endif */
954             /*     ## END OF VDW INTERACTION CHECK FOR PAIR I-J */
955
956             /*     #if 'switch' in INTERACTION_FLAGS[I][J] */
957             d                = _mm256_sub_ps(r{I}{J},rswitch);
958             d                = _mm256_max_ps(d,_mm256_setzero_ps());
959             d2               = _mm256_mul_ps(d,d);
960             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
961             /*         #define INNERFLOPS INNERFLOPS+10 */
962
963             /*         #if 'Force' in KERNEL_VF */
964             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
965             /*             #define INNERFLOPS INNERFLOPS+5 */
966             /*         #endif */
967
968             /* Evaluate switch function */
969             /*         #if 'Force' in KERNEL_VF */
970             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
971             /*             #if 'electrostatics' in INTERACTION_FLAGS[I][J] and KERNEL_MOD_ELEC=='PotentialSwitch' */
972             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv{I}{J},_mm256_mul_ps(velec,dsw)) );
973             /*                 #define INNERFLOPS INNERFLOPS+4 */
974             /*             #endif */
975             /*             #if 'vdw' in INTERACTION_FLAGS[I][J] and KERNEL_MOD_VDW=='PotentialSwitch' */
976             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv{I}{J},_mm256_mul_ps(vvdw,dsw)) );
977             /*                 #define INNERFLOPS INNERFLOPS+4 */
978             /*             #endif */
979             /*         #endif */
980             /*         #if 'Potential' in KERNEL_VF */
981             /*             #if 'electrostatics' in INTERACTION_FLAGS[I][J] and KERNEL_MOD_ELEC=='PotentialSwitch' */
982             velec            = _mm256_mul_ps(velec,sw);
983             /*                 #define INNERFLOPS INNERFLOPS+1 */
984             /*             #endif */
985             /*             #if 'vdw' in INTERACTION_FLAGS[I][J] and KERNEL_MOD_VDW=='PotentialSwitch' */
986             vvdw             = _mm256_mul_ps(vvdw,sw);
987             /*                 #define INNERFLOPS INNERFLOPS+1 */
988             /*             #endif */
989             /*         #endif */
990             /*     #endif */
991             /*     ## Note special check for TIP4P-TIP4P. Since we are cutting of all hydrogen interactions we also cut the LJ-only O-O interaction */
992             /*     #if 'exactcutoff' in INTERACTION_FLAGS[I][J] or (GEOMETRY_I=='Water4' and GEOMETRY_J=='Water4' and 'exactcutoff' in INTERACTION_FLAGS[1][1]) */
993             cutoff_mask      = _mm256_cmp_ps(rsq{I}{J},rcutoff2,_CMP_LT_OQ);
994             /*         #define INNERFLOPS INNERFLOPS+1 */
995             /*     #endif */
996
997             /*     #if 'Potential' in KERNEL_VF */
998             /* Update potential sum for this i atom from the interaction with this j atom. */
999             /*         #if 'electrostatics' in INTERACTION_FLAGS[I][J] */
1000             /*             #if 'exactcutoff' in INTERACTION_FLAGS[I][J] */
1001             velec            = _mm256_and_ps(velec,cutoff_mask);
1002             /*                 #define INNERFLOPS INNERFLOPS+1 */
1003             /*             #endif                                       */
1004             /*             #if ROUND == 'Epilogue' */
1005             velec            = _mm256_andnot_ps(dummy_mask,velec);
1006             /*             #endif */
1007             velecsum         = _mm256_add_ps(velecsum,velec);
1008             /*             #define INNERFLOPS INNERFLOPS+1 */
1009             /*             #if KERNEL_ELEC=='GeneralizedBorn' */
1010             /*             #if 'exactcutoff' in INTERACTION_FLAGS[I][J] */
1011             vgb              = _mm256_and_ps(vgb,cutoff_mask);
1012             /*                 #define INNERFLOPS INNERFLOPS+1 */
1013             /*             #endif                                       */
1014             /*             #if ROUND == 'Epilogue' */
1015             vgb              = _mm256_andnot_ps(dummy_mask,vgb);
1016             /*             #endif */
1017             vgbsum           = _mm256_add_ps(vgbsum,vgb);
1018             /*                 #define INNERFLOPS INNERFLOPS+1 */
1019             /*             #endif */
1020             /*         #endif */
1021             /*         #if 'vdw' in INTERACTION_FLAGS[I][J] */
1022             /*     ## Note special check for TIP4P-TIP4P. Since we are cutting of all hydrogen interactions we also cut the LJ-only O-O interaction */
1023             /*     #if 'exactcutoff' in INTERACTION_FLAGS[I][J] or (GEOMETRY_I=='Water4' and GEOMETRY_J=='Water4' and 'exactcutoff' in INTERACTION_FLAGS[1][1]) */
1024             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
1025             /*                 #define INNERFLOPS INNERFLOPS+1 */
1026             /*             #endif                                       */
1027             /*             #if ROUND == 'Epilogue' */
1028             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
1029             /*             #endif */
1030             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
1031             /*             #define INNERFLOPS INNERFLOPS+1 */
1032             /*         #endif */
1033             /*     #endif */
1034
1035             /*     #if 'Force' in KERNEL_VF */
1036
1037             /*         #if 'electrostatics' in INTERACTION_FLAGS[I][J] and 'vdw' in INTERACTION_FLAGS[I][J] */
1038             fscal            = _mm256_add_ps(felec,fvdw);
1039             /*             #define INNERFLOPS INNERFLOPS+1 */
1040             /*         #elif 'electrostatics' in INTERACTION_FLAGS[I][J] */
1041             fscal            = felec;
1042             /*         #elif 'vdw' in INTERACTION_FLAGS[I][J] */
1043             fscal            = fvdw;
1044             /*        #endif */
1045
1046             /*     ## Note special check for TIP4P-TIP4P. Since we are cutting of all hydrogen interactions we also cut the LJ-only O-O interaction */
1047             /*     #if 'exactcutoff' in INTERACTION_FLAGS[I][J] or (GEOMETRY_I=='Water4' and GEOMETRY_J=='Water4' and 'exactcutoff' in INTERACTION_FLAGS[1][1]) */
1048             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1049             /*                 #define INNERFLOPS INNERFLOPS+1 */
1050             /*             #endif                                       */
1051
1052             /*             #if ROUND == 'Epilogue' */
1053             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1054             /*             #endif */
1055
1056             /* Calculate temporary vectorial force */
1057             tx               = _mm256_mul_ps(fscal,dx{I}{J});
1058             ty               = _mm256_mul_ps(fscal,dy{I}{J});
1059             tz               = _mm256_mul_ps(fscal,dz{I}{J});
1060
1061             /* Update vectorial force */
1062             fix{I}             = _mm256_add_ps(fix{I},tx);
1063             fiy{I}             = _mm256_add_ps(fiy{I},ty);
1064             fiz{I}             = _mm256_add_ps(fiz{I},tz);
1065             /*             #define INNERFLOPS INNERFLOPS+6 */
1066
1067             /* #if GEOMETRY_I == 'Particle'             */
1068             /*     #if ROUND == 'Loop' */
1069             fjptrA             = f+j_coord_offsetA;
1070             fjptrB             = f+j_coord_offsetB;
1071             fjptrC             = f+j_coord_offsetC;
1072             fjptrD             = f+j_coord_offsetD;
1073             fjptrE             = f+j_coord_offsetE;
1074             fjptrF             = f+j_coord_offsetF;
1075             fjptrG             = f+j_coord_offsetG;
1076             fjptrH             = f+j_coord_offsetH;
1077             /*     #else */
1078             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1079             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1080             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1081             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1082             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1083             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1084             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1085             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1086             /*     #endif */
1087             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
1088             /*     #define INNERFLOPS INNERFLOPS+3      */
1089             /* #else                                    */
1090             fjx{J}             = _mm256_add_ps(fjx{J},tx);
1091             fjy{J}             = _mm256_add_ps(fjy{J},ty);
1092             fjz{J}             = _mm256_add_ps(fjz{J},tz);
1093             /*     #define INNERFLOPS INNERFLOPS+3      */
1094             /* #endif                                   */
1095
1096             /*     #endif */
1097
1098             /*     ## Note special check for TIP4P-TIP4P. Since we are cutting of all hydrogen interactions we also cut the LJ-only O-O interaction */
1099             /*     #if 'exactcutoff' in INTERACTION_FLAGS[I][J] or (GEOMETRY_I=='Water4' and GEOMETRY_J=='Water4' and 'exactcutoff' in INTERACTION_FLAGS[1][1]) */
1100             /*         #if 0    ## This and next two lines is a hack to maintain indentation in template file */
1101             {
1102                 /*     #endif */
1103             }
1104             /*     #endif */
1105             /*    ## End of check for the interaction being outside the cutoff */
1106
1107             /* #endfor */
1108             /* ## End of loop over i-j interaction pairs */
1109
1110             /* #if GEOMETRY_I != 'Particle' */
1111             /*     #if ROUND == 'Loop' */
1112             fjptrA             = f+j_coord_offsetA;
1113             fjptrB             = f+j_coord_offsetB;
1114             fjptrC             = f+j_coord_offsetC;
1115             fjptrD             = f+j_coord_offsetD;
1116             fjptrE             = f+j_coord_offsetE;
1117             fjptrF             = f+j_coord_offsetF;
1118             fjptrG             = f+j_coord_offsetG;
1119             fjptrH             = f+j_coord_offsetH;
1120             /*     #else */
1121             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1122             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1123             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1124             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1125             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1126             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1127             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1128             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1129             /*     #endif */
1130             /* #endif */
1131
1132             /* #if 'Water' in GEOMETRY_I and GEOMETRY_J == 'Particle' */
1133             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1134             /*     #define INNERFLOPS INNERFLOPS+3      */
1135             /* #elif GEOMETRY_J == 'Water3'             */
1136             gmx_mm256_decrement_3rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
1137                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1138             /*     #define INNERFLOPS INNERFLOPS+9      */
1139             /* #elif GEOMETRY_J == 'Water4'             */
1140             /*     #if 0 in PARTICLES_J                 */
1141             gmx_mm256_decrement_4rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,
1142                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
1143                                                       fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1144             /*     #define INNERFLOPS INNERFLOPS+12     */
1145             /*     #else                                */
1146             gmx_mm256_decrement_3rvec_8ptr_swizzle_ps(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
1147                                                       fjptrE+DIM,fjptrF+DIM,fjptrG+DIM,fjptrH+DIM,
1148                                                       fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1149             /*     #define INNERFLOPS INNERFLOPS+9      */
1150             /*     #endif                               */
1151             /* #endif                                   */
1152
1153             /* Inner loop uses {INNERFLOPS} flops */
1154         }
1155
1156         /* #endfor */
1157
1158         /* End of innermost loop */
1159
1160         /* #if 'Force' in KERNEL_VF */
1161         /*     #if GEOMETRY_I == 'Particle'            */
1162         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
1163                                                  f+i_coord_offset,fshift+i_shift_offset);
1164         /*         #define OUTERFLOPS OUTERFLOPS+6     */
1165         /*     #elif GEOMETRY_I == 'Water3'            */
1166         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1167                                                  f+i_coord_offset,fshift+i_shift_offset);
1168         /*         #define OUTERFLOPS OUTERFLOPS+18    */
1169         /*     #elif GEOMETRY_I == 'Water4'            */
1170         /*         #if 0 in PARTICLES_I                */
1171         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1172                                                  f+i_coord_offset,fshift+i_shift_offset);
1173         /*             #define OUTERFLOPS OUTERFLOPS+24    */
1174         /*         #else                               */
1175         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1176                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
1177         /*             #define OUTERFLOPS OUTERFLOPS+18    */
1178         /*         #endif                              */
1179         /*     #endif                                  */
1180         /* #endif                                      */
1181
1182         /* #if 'Potential' in KERNEL_VF */
1183         ggid                        = gid[iidx];
1184         /* Update potential energies */
1185         /*     #if KERNEL_ELEC != 'None' */
1186         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
1187         /*         #define OUTERFLOPS OUTERFLOPS+1 */
1188         /*     #endif */
1189         /*     #if 'GeneralizedBorn' in KERNEL_ELEC */
1190         gmx_mm256_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
1191         /*         #define OUTERFLOPS OUTERFLOPS+1 */
1192         /*     #endif */
1193         /*     #if KERNEL_VDW != 'None' */
1194         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
1195         /*         #define OUTERFLOPS OUTERFLOPS+1 */
1196         /*     #endif */
1197         /* #endif */
1198         /*     #if 'GeneralizedBorn' in KERNEL_ELEC and 'Force' in KERNEL_VF */
1199         dvdasum = _mm256_mul_ps(dvdasum, _mm256_mul_ps(isai{I},isai{I}));
1200         gmx_mm256_update_1pot_ps(dvdasum,dvda+inr);
1201         /*     #endif */
1202
1203         /* Increment number of inner iterations */
1204         inneriter                  += j_index_end - j_index_start;
1205
1206         /* Outer loop uses {OUTERFLOPS} flops */
1207     }
1208
1209     /* Increment number of outer iterations */
1210     outeriter        += nri;
1211
1212     /* Update outer/inner flops */
1213     /* ## NB: This is not important, it just affects the flopcount. However, since our preprocessor is */
1214     /* ## primitive and replaces aggressively even in strings inside these directives, we need to      */
1215     /* ## assemble the main part of the name (containing KERNEL/ELEC/VDW) directly in the source.      */
1216     /* #if GEOMETRY_I == 'Water3'            */
1217     /*     #define ISUFFIX '_W3'             */
1218     /* #elif GEOMETRY_I == 'Water4'          */
1219     /*     #define ISUFFIX '_W4'             */
1220     /* #else                                 */
1221     /*     #define ISUFFIX ''                */
1222     /* #endif                                */
1223     /* #if GEOMETRY_J == 'Water3'            */
1224     /*     #define JSUFFIX 'W3'              */
1225     /* #elif GEOMETRY_J == 'Water4'          */
1226     /*     #define JSUFFIX 'W4'              */
1227     /* #else                                 */
1228     /*     #define JSUFFIX ''                */
1229     /* #endif                                */
1230     /* #if 'PotentialAndForce' in KERNEL_VF  */
1231     /*     #define VFSUFFIX  '_VF'           */
1232     /* #elif 'Potential' in KERNEL_VF        */
1233     /*     #define VFSUFFIX '_V'             */
1234     /* #else                                 */
1235     /*     #define VFSUFFIX '_F'             */
1236     /* #endif                                */
1237
1238     /* #if KERNEL_ELEC != 'None' and KERNEL_VDW != 'None' */
1239     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW{ISUFFIX}{JSUFFIX}{VFSUFFIX},outeriter*{OUTERFLOPS} + inneriter*{INNERFLOPS});
1240     /* #elif KERNEL_ELEC != 'None' */
1241     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC{ISUFFIX}{JSUFFIX}{VFSUFFIX},outeriter*{OUTERFLOPS} + inneriter*{INNERFLOPS});
1242     /* #else */
1243     inc_nrnb(nrnb,eNR_NBKERNEL_VDW{ISUFFIX}{JSUFFIX}{VFSUFFIX},outeriter*{OUTERFLOPS} + inneriter*{INNERFLOPS});
1244     /* #endif  */
1245 }