Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRF_VdwNone_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomW4P1_VF_avx_256_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            None
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwNone_GeomW4P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr1;
87     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     real *           vdwioffsetptr3;
91     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
93     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     __m256           dummy_mask,cutoff_mask;
100     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
101     __m256           one     = _mm256_set1_ps(1.0);
102     __m256           two     = _mm256_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm256_set1_ps(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     krf              = _mm256_set1_ps(fr->ic->k_rf);
117     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
118     crf              = _mm256_set1_ps(fr->ic->c_rf);
119
120     /* Setup water-specific parameters */
121     inr              = nlist->iinr[0];
122     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
123     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
124     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132     j_coord_offsetE = 0;
133     j_coord_offsetF = 0;
134     j_coord_offsetG = 0;
135     j_coord_offsetH = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     for(iidx=0;iidx<4*DIM;iidx++)
141     {
142         scratch[iidx] = 0.0;
143     }
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
161                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
162
163         fix1             = _mm256_setzero_ps();
164         fiy1             = _mm256_setzero_ps();
165         fiz1             = _mm256_setzero_ps();
166         fix2             = _mm256_setzero_ps();
167         fiy2             = _mm256_setzero_ps();
168         fiz2             = _mm256_setzero_ps();
169         fix3             = _mm256_setzero_ps();
170         fiy3             = _mm256_setzero_ps();
171         fiz3             = _mm256_setzero_ps();
172
173         /* Reset potential sums */
174         velecsum         = _mm256_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             jnrE             = jjnr[jidx+4];
186             jnrF             = jjnr[jidx+5];
187             jnrG             = jjnr[jidx+6];
188             jnrH             = jjnr[jidx+7];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193             j_coord_offsetE  = DIM*jnrE;
194             j_coord_offsetF  = DIM*jnrF;
195             j_coord_offsetG  = DIM*jnrG;
196             j_coord_offsetH  = DIM*jnrH;
197
198             /* load j atom coordinates */
199             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                                  x+j_coord_offsetC,x+j_coord_offsetD,
201                                                  x+j_coord_offsetE,x+j_coord_offsetF,
202                                                  x+j_coord_offsetG,x+j_coord_offsetH,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx10             = _mm256_sub_ps(ix1,jx0);
207             dy10             = _mm256_sub_ps(iy1,jy0);
208             dz10             = _mm256_sub_ps(iz1,jz0);
209             dx20             = _mm256_sub_ps(ix2,jx0);
210             dy20             = _mm256_sub_ps(iy2,jy0);
211             dz20             = _mm256_sub_ps(iz2,jz0);
212             dx30             = _mm256_sub_ps(ix3,jx0);
213             dy30             = _mm256_sub_ps(iy3,jy0);
214             dz30             = _mm256_sub_ps(iz3,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
218             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
219             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
220
221             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
222             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
223             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
224
225             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
226             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
227             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
228
229             /* Load parameters for j particles */
230             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
231                                                                  charge+jnrC+0,charge+jnrD+0,
232                                                                  charge+jnrE+0,charge+jnrF+0,
233                                                                  charge+jnrG+0,charge+jnrH+0);
234
235             fjx0             = _mm256_setzero_ps();
236             fjy0             = _mm256_setzero_ps();
237             fjz0             = _mm256_setzero_ps();
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             /* Compute parameters for interactions between i and j atoms */
244             qq10             = _mm256_mul_ps(iq1,jq0);
245
246             /* REACTION-FIELD ELECTROSTATICS */
247             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
248             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
249
250             /* Update potential sum for this i atom from the interaction with this j atom. */
251             velecsum         = _mm256_add_ps(velecsum,velec);
252
253             fscal            = felec;
254
255             /* Calculate temporary vectorial force */
256             tx               = _mm256_mul_ps(fscal,dx10);
257             ty               = _mm256_mul_ps(fscal,dy10);
258             tz               = _mm256_mul_ps(fscal,dz10);
259
260             /* Update vectorial force */
261             fix1             = _mm256_add_ps(fix1,tx);
262             fiy1             = _mm256_add_ps(fiy1,ty);
263             fiz1             = _mm256_add_ps(fiz1,tz);
264
265             fjx0             = _mm256_add_ps(fjx0,tx);
266             fjy0             = _mm256_add_ps(fjy0,ty);
267             fjz0             = _mm256_add_ps(fjz0,tz);
268
269             /**************************
270              * CALCULATE INTERACTIONS *
271              **************************/
272
273             /* Compute parameters for interactions between i and j atoms */
274             qq20             = _mm256_mul_ps(iq2,jq0);
275
276             /* REACTION-FIELD ELECTROSTATICS */
277             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
278             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _mm256_add_ps(velecsum,velec);
282
283             fscal            = felec;
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm256_mul_ps(fscal,dx20);
287             ty               = _mm256_mul_ps(fscal,dy20);
288             tz               = _mm256_mul_ps(fscal,dz20);
289
290             /* Update vectorial force */
291             fix2             = _mm256_add_ps(fix2,tx);
292             fiy2             = _mm256_add_ps(fiy2,ty);
293             fiz2             = _mm256_add_ps(fiz2,tz);
294
295             fjx0             = _mm256_add_ps(fjx0,tx);
296             fjy0             = _mm256_add_ps(fjy0,ty);
297             fjz0             = _mm256_add_ps(fjz0,tz);
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq30             = _mm256_mul_ps(iq3,jq0);
305
306             /* REACTION-FIELD ELECTROSTATICS */
307             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
308             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
309
310             /* Update potential sum for this i atom from the interaction with this j atom. */
311             velecsum         = _mm256_add_ps(velecsum,velec);
312
313             fscal            = felec;
314
315             /* Calculate temporary vectorial force */
316             tx               = _mm256_mul_ps(fscal,dx30);
317             ty               = _mm256_mul_ps(fscal,dy30);
318             tz               = _mm256_mul_ps(fscal,dz30);
319
320             /* Update vectorial force */
321             fix3             = _mm256_add_ps(fix3,tx);
322             fiy3             = _mm256_add_ps(fiy3,ty);
323             fiz3             = _mm256_add_ps(fiz3,tz);
324
325             fjx0             = _mm256_add_ps(fjx0,tx);
326             fjy0             = _mm256_add_ps(fjy0,ty);
327             fjz0             = _mm256_add_ps(fjz0,tz);
328
329             fjptrA             = f+j_coord_offsetA;
330             fjptrB             = f+j_coord_offsetB;
331             fjptrC             = f+j_coord_offsetC;
332             fjptrD             = f+j_coord_offsetD;
333             fjptrE             = f+j_coord_offsetE;
334             fjptrF             = f+j_coord_offsetF;
335             fjptrG             = f+j_coord_offsetG;
336             fjptrH             = f+j_coord_offsetH;
337
338             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
339
340             /* Inner loop uses 99 flops */
341         }
342
343         if(jidx<j_index_end)
344         {
345
346             /* Get j neighbor index, and coordinate index */
347             jnrlistA         = jjnr[jidx];
348             jnrlistB         = jjnr[jidx+1];
349             jnrlistC         = jjnr[jidx+2];
350             jnrlistD         = jjnr[jidx+3];
351             jnrlistE         = jjnr[jidx+4];
352             jnrlistF         = jjnr[jidx+5];
353             jnrlistG         = jjnr[jidx+6];
354             jnrlistH         = jjnr[jidx+7];
355             /* Sign of each element will be negative for non-real atoms.
356              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
357              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
358              */
359             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
360                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
361                                             
362             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
363             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
364             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
365             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
366             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
367             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
368             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
369             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
370             j_coord_offsetA  = DIM*jnrA;
371             j_coord_offsetB  = DIM*jnrB;
372             j_coord_offsetC  = DIM*jnrC;
373             j_coord_offsetD  = DIM*jnrD;
374             j_coord_offsetE  = DIM*jnrE;
375             j_coord_offsetF  = DIM*jnrF;
376             j_coord_offsetG  = DIM*jnrG;
377             j_coord_offsetH  = DIM*jnrH;
378
379             /* load j atom coordinates */
380             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
381                                                  x+j_coord_offsetC,x+j_coord_offsetD,
382                                                  x+j_coord_offsetE,x+j_coord_offsetF,
383                                                  x+j_coord_offsetG,x+j_coord_offsetH,
384                                                  &jx0,&jy0,&jz0);
385
386             /* Calculate displacement vector */
387             dx10             = _mm256_sub_ps(ix1,jx0);
388             dy10             = _mm256_sub_ps(iy1,jy0);
389             dz10             = _mm256_sub_ps(iz1,jz0);
390             dx20             = _mm256_sub_ps(ix2,jx0);
391             dy20             = _mm256_sub_ps(iy2,jy0);
392             dz20             = _mm256_sub_ps(iz2,jz0);
393             dx30             = _mm256_sub_ps(ix3,jx0);
394             dy30             = _mm256_sub_ps(iy3,jy0);
395             dz30             = _mm256_sub_ps(iz3,jz0);
396
397             /* Calculate squared distance and things based on it */
398             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
399             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
400             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
401
402             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
403             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
404             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
405
406             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
407             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
408             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
409
410             /* Load parameters for j particles */
411             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
412                                                                  charge+jnrC+0,charge+jnrD+0,
413                                                                  charge+jnrE+0,charge+jnrF+0,
414                                                                  charge+jnrG+0,charge+jnrH+0);
415
416             fjx0             = _mm256_setzero_ps();
417             fjy0             = _mm256_setzero_ps();
418             fjz0             = _mm256_setzero_ps();
419
420             /**************************
421              * CALCULATE INTERACTIONS *
422              **************************/
423
424             /* Compute parameters for interactions between i and j atoms */
425             qq10             = _mm256_mul_ps(iq1,jq0);
426
427             /* REACTION-FIELD ELECTROSTATICS */
428             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
429             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
430
431             /* Update potential sum for this i atom from the interaction with this j atom. */
432             velec            = _mm256_andnot_ps(dummy_mask,velec);
433             velecsum         = _mm256_add_ps(velecsum,velec);
434
435             fscal            = felec;
436
437             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
438
439             /* Calculate temporary vectorial force */
440             tx               = _mm256_mul_ps(fscal,dx10);
441             ty               = _mm256_mul_ps(fscal,dy10);
442             tz               = _mm256_mul_ps(fscal,dz10);
443
444             /* Update vectorial force */
445             fix1             = _mm256_add_ps(fix1,tx);
446             fiy1             = _mm256_add_ps(fiy1,ty);
447             fiz1             = _mm256_add_ps(fiz1,tz);
448
449             fjx0             = _mm256_add_ps(fjx0,tx);
450             fjy0             = _mm256_add_ps(fjy0,ty);
451             fjz0             = _mm256_add_ps(fjz0,tz);
452
453             /**************************
454              * CALCULATE INTERACTIONS *
455              **************************/
456
457             /* Compute parameters for interactions between i and j atoms */
458             qq20             = _mm256_mul_ps(iq2,jq0);
459
460             /* REACTION-FIELD ELECTROSTATICS */
461             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
462             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
463
464             /* Update potential sum for this i atom from the interaction with this j atom. */
465             velec            = _mm256_andnot_ps(dummy_mask,velec);
466             velecsum         = _mm256_add_ps(velecsum,velec);
467
468             fscal            = felec;
469
470             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
471
472             /* Calculate temporary vectorial force */
473             tx               = _mm256_mul_ps(fscal,dx20);
474             ty               = _mm256_mul_ps(fscal,dy20);
475             tz               = _mm256_mul_ps(fscal,dz20);
476
477             /* Update vectorial force */
478             fix2             = _mm256_add_ps(fix2,tx);
479             fiy2             = _mm256_add_ps(fiy2,ty);
480             fiz2             = _mm256_add_ps(fiz2,tz);
481
482             fjx0             = _mm256_add_ps(fjx0,tx);
483             fjy0             = _mm256_add_ps(fjy0,ty);
484             fjz0             = _mm256_add_ps(fjz0,tz);
485
486             /**************************
487              * CALCULATE INTERACTIONS *
488              **************************/
489
490             /* Compute parameters for interactions between i and j atoms */
491             qq30             = _mm256_mul_ps(iq3,jq0);
492
493             /* REACTION-FIELD ELECTROSTATICS */
494             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
495             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
496
497             /* Update potential sum for this i atom from the interaction with this j atom. */
498             velec            = _mm256_andnot_ps(dummy_mask,velec);
499             velecsum         = _mm256_add_ps(velecsum,velec);
500
501             fscal            = felec;
502
503             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
504
505             /* Calculate temporary vectorial force */
506             tx               = _mm256_mul_ps(fscal,dx30);
507             ty               = _mm256_mul_ps(fscal,dy30);
508             tz               = _mm256_mul_ps(fscal,dz30);
509
510             /* Update vectorial force */
511             fix3             = _mm256_add_ps(fix3,tx);
512             fiy3             = _mm256_add_ps(fiy3,ty);
513             fiz3             = _mm256_add_ps(fiz3,tz);
514
515             fjx0             = _mm256_add_ps(fjx0,tx);
516             fjy0             = _mm256_add_ps(fjy0,ty);
517             fjz0             = _mm256_add_ps(fjz0,tz);
518
519             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
520             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
521             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
522             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
523             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
524             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
525             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
526             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
527
528             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
529
530             /* Inner loop uses 99 flops */
531         }
532
533         /* End of innermost loop */
534
535         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
536                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
537
538         ggid                        = gid[iidx];
539         /* Update potential energies */
540         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
541
542         /* Increment number of inner iterations */
543         inneriter                  += j_index_end - j_index_start;
544
545         /* Outer loop uses 19 flops */
546     }
547
548     /* Increment number of outer iterations */
549     outeriter        += nri;
550
551     /* Update outer/inner flops */
552
553     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*99);
554 }
555 /*
556  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomW4P1_F_avx_256_single
557  * Electrostatics interaction: ReactionField
558  * VdW interaction:            None
559  * Geometry:                   Water4-Particle
560  * Calculate force/pot:        Force
561  */
562 void
563 nb_kernel_ElecRF_VdwNone_GeomW4P1_F_avx_256_single
564                     (t_nblist                    * gmx_restrict       nlist,
565                      rvec                        * gmx_restrict          xx,
566                      rvec                        * gmx_restrict          ff,
567                      t_forcerec                  * gmx_restrict          fr,
568                      t_mdatoms                   * gmx_restrict     mdatoms,
569                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
570                      t_nrnb                      * gmx_restrict        nrnb)
571 {
572     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
573      * just 0 for non-waters.
574      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
575      * jnr indices corresponding to data put in the four positions in the SIMD register.
576      */
577     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
578     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
579     int              jnrA,jnrB,jnrC,jnrD;
580     int              jnrE,jnrF,jnrG,jnrH;
581     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
582     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
583     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
584     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
585     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
586     real             rcutoff_scalar;
587     real             *shiftvec,*fshift,*x,*f;
588     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
589     real             scratch[4*DIM];
590     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
591     real *           vdwioffsetptr1;
592     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
593     real *           vdwioffsetptr2;
594     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
595     real *           vdwioffsetptr3;
596     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
597     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
598     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
599     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
600     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
601     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
602     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
603     real             *charge;
604     __m256           dummy_mask,cutoff_mask;
605     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
606     __m256           one     = _mm256_set1_ps(1.0);
607     __m256           two     = _mm256_set1_ps(2.0);
608     x                = xx[0];
609     f                = ff[0];
610
611     nri              = nlist->nri;
612     iinr             = nlist->iinr;
613     jindex           = nlist->jindex;
614     jjnr             = nlist->jjnr;
615     shiftidx         = nlist->shift;
616     gid              = nlist->gid;
617     shiftvec         = fr->shift_vec[0];
618     fshift           = fr->fshift[0];
619     facel            = _mm256_set1_ps(fr->epsfac);
620     charge           = mdatoms->chargeA;
621     krf              = _mm256_set1_ps(fr->ic->k_rf);
622     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
623     crf              = _mm256_set1_ps(fr->ic->c_rf);
624
625     /* Setup water-specific parameters */
626     inr              = nlist->iinr[0];
627     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
628     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
629     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
630
631     /* Avoid stupid compiler warnings */
632     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
633     j_coord_offsetA = 0;
634     j_coord_offsetB = 0;
635     j_coord_offsetC = 0;
636     j_coord_offsetD = 0;
637     j_coord_offsetE = 0;
638     j_coord_offsetF = 0;
639     j_coord_offsetG = 0;
640     j_coord_offsetH = 0;
641
642     outeriter        = 0;
643     inneriter        = 0;
644
645     for(iidx=0;iidx<4*DIM;iidx++)
646     {
647         scratch[iidx] = 0.0;
648     }
649
650     /* Start outer loop over neighborlists */
651     for(iidx=0; iidx<nri; iidx++)
652     {
653         /* Load shift vector for this list */
654         i_shift_offset   = DIM*shiftidx[iidx];
655
656         /* Load limits for loop over neighbors */
657         j_index_start    = jindex[iidx];
658         j_index_end      = jindex[iidx+1];
659
660         /* Get outer coordinate index */
661         inr              = iinr[iidx];
662         i_coord_offset   = DIM*inr;
663
664         /* Load i particle coords and add shift vector */
665         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
666                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
667
668         fix1             = _mm256_setzero_ps();
669         fiy1             = _mm256_setzero_ps();
670         fiz1             = _mm256_setzero_ps();
671         fix2             = _mm256_setzero_ps();
672         fiy2             = _mm256_setzero_ps();
673         fiz2             = _mm256_setzero_ps();
674         fix3             = _mm256_setzero_ps();
675         fiy3             = _mm256_setzero_ps();
676         fiz3             = _mm256_setzero_ps();
677
678         /* Start inner kernel loop */
679         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
680         {
681
682             /* Get j neighbor index, and coordinate index */
683             jnrA             = jjnr[jidx];
684             jnrB             = jjnr[jidx+1];
685             jnrC             = jjnr[jidx+2];
686             jnrD             = jjnr[jidx+3];
687             jnrE             = jjnr[jidx+4];
688             jnrF             = jjnr[jidx+5];
689             jnrG             = jjnr[jidx+6];
690             jnrH             = jjnr[jidx+7];
691             j_coord_offsetA  = DIM*jnrA;
692             j_coord_offsetB  = DIM*jnrB;
693             j_coord_offsetC  = DIM*jnrC;
694             j_coord_offsetD  = DIM*jnrD;
695             j_coord_offsetE  = DIM*jnrE;
696             j_coord_offsetF  = DIM*jnrF;
697             j_coord_offsetG  = DIM*jnrG;
698             j_coord_offsetH  = DIM*jnrH;
699
700             /* load j atom coordinates */
701             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
702                                                  x+j_coord_offsetC,x+j_coord_offsetD,
703                                                  x+j_coord_offsetE,x+j_coord_offsetF,
704                                                  x+j_coord_offsetG,x+j_coord_offsetH,
705                                                  &jx0,&jy0,&jz0);
706
707             /* Calculate displacement vector */
708             dx10             = _mm256_sub_ps(ix1,jx0);
709             dy10             = _mm256_sub_ps(iy1,jy0);
710             dz10             = _mm256_sub_ps(iz1,jz0);
711             dx20             = _mm256_sub_ps(ix2,jx0);
712             dy20             = _mm256_sub_ps(iy2,jy0);
713             dz20             = _mm256_sub_ps(iz2,jz0);
714             dx30             = _mm256_sub_ps(ix3,jx0);
715             dy30             = _mm256_sub_ps(iy3,jy0);
716             dz30             = _mm256_sub_ps(iz3,jz0);
717
718             /* Calculate squared distance and things based on it */
719             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
720             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
721             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
722
723             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
724             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
725             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
726
727             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
728             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
729             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
730
731             /* Load parameters for j particles */
732             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
733                                                                  charge+jnrC+0,charge+jnrD+0,
734                                                                  charge+jnrE+0,charge+jnrF+0,
735                                                                  charge+jnrG+0,charge+jnrH+0);
736
737             fjx0             = _mm256_setzero_ps();
738             fjy0             = _mm256_setzero_ps();
739             fjz0             = _mm256_setzero_ps();
740
741             /**************************
742              * CALCULATE INTERACTIONS *
743              **************************/
744
745             /* Compute parameters for interactions between i and j atoms */
746             qq10             = _mm256_mul_ps(iq1,jq0);
747
748             /* REACTION-FIELD ELECTROSTATICS */
749             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
750
751             fscal            = felec;
752
753             /* Calculate temporary vectorial force */
754             tx               = _mm256_mul_ps(fscal,dx10);
755             ty               = _mm256_mul_ps(fscal,dy10);
756             tz               = _mm256_mul_ps(fscal,dz10);
757
758             /* Update vectorial force */
759             fix1             = _mm256_add_ps(fix1,tx);
760             fiy1             = _mm256_add_ps(fiy1,ty);
761             fiz1             = _mm256_add_ps(fiz1,tz);
762
763             fjx0             = _mm256_add_ps(fjx0,tx);
764             fjy0             = _mm256_add_ps(fjy0,ty);
765             fjz0             = _mm256_add_ps(fjz0,tz);
766
767             /**************************
768              * CALCULATE INTERACTIONS *
769              **************************/
770
771             /* Compute parameters for interactions between i and j atoms */
772             qq20             = _mm256_mul_ps(iq2,jq0);
773
774             /* REACTION-FIELD ELECTROSTATICS */
775             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
776
777             fscal            = felec;
778
779             /* Calculate temporary vectorial force */
780             tx               = _mm256_mul_ps(fscal,dx20);
781             ty               = _mm256_mul_ps(fscal,dy20);
782             tz               = _mm256_mul_ps(fscal,dz20);
783
784             /* Update vectorial force */
785             fix2             = _mm256_add_ps(fix2,tx);
786             fiy2             = _mm256_add_ps(fiy2,ty);
787             fiz2             = _mm256_add_ps(fiz2,tz);
788
789             fjx0             = _mm256_add_ps(fjx0,tx);
790             fjy0             = _mm256_add_ps(fjy0,ty);
791             fjz0             = _mm256_add_ps(fjz0,tz);
792
793             /**************************
794              * CALCULATE INTERACTIONS *
795              **************************/
796
797             /* Compute parameters for interactions between i and j atoms */
798             qq30             = _mm256_mul_ps(iq3,jq0);
799
800             /* REACTION-FIELD ELECTROSTATICS */
801             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
802
803             fscal            = felec;
804
805             /* Calculate temporary vectorial force */
806             tx               = _mm256_mul_ps(fscal,dx30);
807             ty               = _mm256_mul_ps(fscal,dy30);
808             tz               = _mm256_mul_ps(fscal,dz30);
809
810             /* Update vectorial force */
811             fix3             = _mm256_add_ps(fix3,tx);
812             fiy3             = _mm256_add_ps(fiy3,ty);
813             fiz3             = _mm256_add_ps(fiz3,tz);
814
815             fjx0             = _mm256_add_ps(fjx0,tx);
816             fjy0             = _mm256_add_ps(fjy0,ty);
817             fjz0             = _mm256_add_ps(fjz0,tz);
818
819             fjptrA             = f+j_coord_offsetA;
820             fjptrB             = f+j_coord_offsetB;
821             fjptrC             = f+j_coord_offsetC;
822             fjptrD             = f+j_coord_offsetD;
823             fjptrE             = f+j_coord_offsetE;
824             fjptrF             = f+j_coord_offsetF;
825             fjptrG             = f+j_coord_offsetG;
826             fjptrH             = f+j_coord_offsetH;
827
828             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
829
830             /* Inner loop uses 84 flops */
831         }
832
833         if(jidx<j_index_end)
834         {
835
836             /* Get j neighbor index, and coordinate index */
837             jnrlistA         = jjnr[jidx];
838             jnrlistB         = jjnr[jidx+1];
839             jnrlistC         = jjnr[jidx+2];
840             jnrlistD         = jjnr[jidx+3];
841             jnrlistE         = jjnr[jidx+4];
842             jnrlistF         = jjnr[jidx+5];
843             jnrlistG         = jjnr[jidx+6];
844             jnrlistH         = jjnr[jidx+7];
845             /* Sign of each element will be negative for non-real atoms.
846              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
847              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
848              */
849             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
850                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
851                                             
852             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
853             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
854             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
855             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
856             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
857             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
858             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
859             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
860             j_coord_offsetA  = DIM*jnrA;
861             j_coord_offsetB  = DIM*jnrB;
862             j_coord_offsetC  = DIM*jnrC;
863             j_coord_offsetD  = DIM*jnrD;
864             j_coord_offsetE  = DIM*jnrE;
865             j_coord_offsetF  = DIM*jnrF;
866             j_coord_offsetG  = DIM*jnrG;
867             j_coord_offsetH  = DIM*jnrH;
868
869             /* load j atom coordinates */
870             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
871                                                  x+j_coord_offsetC,x+j_coord_offsetD,
872                                                  x+j_coord_offsetE,x+j_coord_offsetF,
873                                                  x+j_coord_offsetG,x+j_coord_offsetH,
874                                                  &jx0,&jy0,&jz0);
875
876             /* Calculate displacement vector */
877             dx10             = _mm256_sub_ps(ix1,jx0);
878             dy10             = _mm256_sub_ps(iy1,jy0);
879             dz10             = _mm256_sub_ps(iz1,jz0);
880             dx20             = _mm256_sub_ps(ix2,jx0);
881             dy20             = _mm256_sub_ps(iy2,jy0);
882             dz20             = _mm256_sub_ps(iz2,jz0);
883             dx30             = _mm256_sub_ps(ix3,jx0);
884             dy30             = _mm256_sub_ps(iy3,jy0);
885             dz30             = _mm256_sub_ps(iz3,jz0);
886
887             /* Calculate squared distance and things based on it */
888             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
889             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
890             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
891
892             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
893             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
894             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
895
896             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
897             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
898             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
899
900             /* Load parameters for j particles */
901             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
902                                                                  charge+jnrC+0,charge+jnrD+0,
903                                                                  charge+jnrE+0,charge+jnrF+0,
904                                                                  charge+jnrG+0,charge+jnrH+0);
905
906             fjx0             = _mm256_setzero_ps();
907             fjy0             = _mm256_setzero_ps();
908             fjz0             = _mm256_setzero_ps();
909
910             /**************************
911              * CALCULATE INTERACTIONS *
912              **************************/
913
914             /* Compute parameters for interactions between i and j atoms */
915             qq10             = _mm256_mul_ps(iq1,jq0);
916
917             /* REACTION-FIELD ELECTROSTATICS */
918             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
919
920             fscal            = felec;
921
922             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
923
924             /* Calculate temporary vectorial force */
925             tx               = _mm256_mul_ps(fscal,dx10);
926             ty               = _mm256_mul_ps(fscal,dy10);
927             tz               = _mm256_mul_ps(fscal,dz10);
928
929             /* Update vectorial force */
930             fix1             = _mm256_add_ps(fix1,tx);
931             fiy1             = _mm256_add_ps(fiy1,ty);
932             fiz1             = _mm256_add_ps(fiz1,tz);
933
934             fjx0             = _mm256_add_ps(fjx0,tx);
935             fjy0             = _mm256_add_ps(fjy0,ty);
936             fjz0             = _mm256_add_ps(fjz0,tz);
937
938             /**************************
939              * CALCULATE INTERACTIONS *
940              **************************/
941
942             /* Compute parameters for interactions between i and j atoms */
943             qq20             = _mm256_mul_ps(iq2,jq0);
944
945             /* REACTION-FIELD ELECTROSTATICS */
946             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
947
948             fscal            = felec;
949
950             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
951
952             /* Calculate temporary vectorial force */
953             tx               = _mm256_mul_ps(fscal,dx20);
954             ty               = _mm256_mul_ps(fscal,dy20);
955             tz               = _mm256_mul_ps(fscal,dz20);
956
957             /* Update vectorial force */
958             fix2             = _mm256_add_ps(fix2,tx);
959             fiy2             = _mm256_add_ps(fiy2,ty);
960             fiz2             = _mm256_add_ps(fiz2,tz);
961
962             fjx0             = _mm256_add_ps(fjx0,tx);
963             fjy0             = _mm256_add_ps(fjy0,ty);
964             fjz0             = _mm256_add_ps(fjz0,tz);
965
966             /**************************
967              * CALCULATE INTERACTIONS *
968              **************************/
969
970             /* Compute parameters for interactions between i and j atoms */
971             qq30             = _mm256_mul_ps(iq3,jq0);
972
973             /* REACTION-FIELD ELECTROSTATICS */
974             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
975
976             fscal            = felec;
977
978             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
979
980             /* Calculate temporary vectorial force */
981             tx               = _mm256_mul_ps(fscal,dx30);
982             ty               = _mm256_mul_ps(fscal,dy30);
983             tz               = _mm256_mul_ps(fscal,dz30);
984
985             /* Update vectorial force */
986             fix3             = _mm256_add_ps(fix3,tx);
987             fiy3             = _mm256_add_ps(fiy3,ty);
988             fiz3             = _mm256_add_ps(fiz3,tz);
989
990             fjx0             = _mm256_add_ps(fjx0,tx);
991             fjy0             = _mm256_add_ps(fjy0,ty);
992             fjz0             = _mm256_add_ps(fjz0,tz);
993
994             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
995             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
996             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
997             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
998             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
999             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1000             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1001             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1002
1003             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1004
1005             /* Inner loop uses 84 flops */
1006         }
1007
1008         /* End of innermost loop */
1009
1010         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1011                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
1012
1013         /* Increment number of inner iterations */
1014         inneriter                  += j_index_end - j_index_start;
1015
1016         /* Outer loop uses 18 flops */
1017     }
1018
1019     /* Increment number of outer iterations */
1020     outeriter        += nri;
1021
1022     /* Update outer/inner flops */
1023
1024     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*84);
1025 }