Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRF_VdwNone_GeomW4P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomW4P1_VF_avx_256_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            None
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwNone_GeomW4P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr1;
73     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     real *           vdwioffsetptr3;
77     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
79     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     __m256           dummy_mask,cutoff_mask;
86     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
87     __m256           one     = _mm256_set1_ps(1.0);
88     __m256           two     = _mm256_set1_ps(2.0);
89     x                = xx[0];
90     f                = ff[0];
91
92     nri              = nlist->nri;
93     iinr             = nlist->iinr;
94     jindex           = nlist->jindex;
95     jjnr             = nlist->jjnr;
96     shiftidx         = nlist->shift;
97     gid              = nlist->gid;
98     shiftvec         = fr->shift_vec[0];
99     fshift           = fr->fshift[0];
100     facel            = _mm256_set1_ps(fr->epsfac);
101     charge           = mdatoms->chargeA;
102     krf              = _mm256_set1_ps(fr->ic->k_rf);
103     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
104     crf              = _mm256_set1_ps(fr->ic->c_rf);
105
106     /* Setup water-specific parameters */
107     inr              = nlist->iinr[0];
108     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
109     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
110     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
111
112     /* Avoid stupid compiler warnings */
113     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
114     j_coord_offsetA = 0;
115     j_coord_offsetB = 0;
116     j_coord_offsetC = 0;
117     j_coord_offsetD = 0;
118     j_coord_offsetE = 0;
119     j_coord_offsetF = 0;
120     j_coord_offsetG = 0;
121     j_coord_offsetH = 0;
122
123     outeriter        = 0;
124     inneriter        = 0;
125
126     for(iidx=0;iidx<4*DIM;iidx++)
127     {
128         scratch[iidx] = 0.0;
129     }
130
131     /* Start outer loop over neighborlists */
132     for(iidx=0; iidx<nri; iidx++)
133     {
134         /* Load shift vector for this list */
135         i_shift_offset   = DIM*shiftidx[iidx];
136
137         /* Load limits for loop over neighbors */
138         j_index_start    = jindex[iidx];
139         j_index_end      = jindex[iidx+1];
140
141         /* Get outer coordinate index */
142         inr              = iinr[iidx];
143         i_coord_offset   = DIM*inr;
144
145         /* Load i particle coords and add shift vector */
146         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
147                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
148
149         fix1             = _mm256_setzero_ps();
150         fiy1             = _mm256_setzero_ps();
151         fiz1             = _mm256_setzero_ps();
152         fix2             = _mm256_setzero_ps();
153         fiy2             = _mm256_setzero_ps();
154         fiz2             = _mm256_setzero_ps();
155         fix3             = _mm256_setzero_ps();
156         fiy3             = _mm256_setzero_ps();
157         fiz3             = _mm256_setzero_ps();
158
159         /* Reset potential sums */
160         velecsum         = _mm256_setzero_ps();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             jnrC             = jjnr[jidx+2];
170             jnrD             = jjnr[jidx+3];
171             jnrE             = jjnr[jidx+4];
172             jnrF             = jjnr[jidx+5];
173             jnrG             = jjnr[jidx+6];
174             jnrH             = jjnr[jidx+7];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177             j_coord_offsetC  = DIM*jnrC;
178             j_coord_offsetD  = DIM*jnrD;
179             j_coord_offsetE  = DIM*jnrE;
180             j_coord_offsetF  = DIM*jnrF;
181             j_coord_offsetG  = DIM*jnrG;
182             j_coord_offsetH  = DIM*jnrH;
183
184             /* load j atom coordinates */
185             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
186                                                  x+j_coord_offsetC,x+j_coord_offsetD,
187                                                  x+j_coord_offsetE,x+j_coord_offsetF,
188                                                  x+j_coord_offsetG,x+j_coord_offsetH,
189                                                  &jx0,&jy0,&jz0);
190
191             /* Calculate displacement vector */
192             dx10             = _mm256_sub_ps(ix1,jx0);
193             dy10             = _mm256_sub_ps(iy1,jy0);
194             dz10             = _mm256_sub_ps(iz1,jz0);
195             dx20             = _mm256_sub_ps(ix2,jx0);
196             dy20             = _mm256_sub_ps(iy2,jy0);
197             dz20             = _mm256_sub_ps(iz2,jz0);
198             dx30             = _mm256_sub_ps(ix3,jx0);
199             dy30             = _mm256_sub_ps(iy3,jy0);
200             dz30             = _mm256_sub_ps(iz3,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
204             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
205             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
206
207             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
208             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
209             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
210
211             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
212             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
213             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
214
215             /* Load parameters for j particles */
216             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
217                                                                  charge+jnrC+0,charge+jnrD+0,
218                                                                  charge+jnrE+0,charge+jnrF+0,
219                                                                  charge+jnrG+0,charge+jnrH+0);
220
221             fjx0             = _mm256_setzero_ps();
222             fjy0             = _mm256_setzero_ps();
223             fjz0             = _mm256_setzero_ps();
224
225             /**************************
226              * CALCULATE INTERACTIONS *
227              **************************/
228
229             /* Compute parameters for interactions between i and j atoms */
230             qq10             = _mm256_mul_ps(iq1,jq0);
231
232             /* REACTION-FIELD ELECTROSTATICS */
233             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
234             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
235
236             /* Update potential sum for this i atom from the interaction with this j atom. */
237             velecsum         = _mm256_add_ps(velecsum,velec);
238
239             fscal            = felec;
240
241             /* Calculate temporary vectorial force */
242             tx               = _mm256_mul_ps(fscal,dx10);
243             ty               = _mm256_mul_ps(fscal,dy10);
244             tz               = _mm256_mul_ps(fscal,dz10);
245
246             /* Update vectorial force */
247             fix1             = _mm256_add_ps(fix1,tx);
248             fiy1             = _mm256_add_ps(fiy1,ty);
249             fiz1             = _mm256_add_ps(fiz1,tz);
250
251             fjx0             = _mm256_add_ps(fjx0,tx);
252             fjy0             = _mm256_add_ps(fjy0,ty);
253             fjz0             = _mm256_add_ps(fjz0,tz);
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             /* Compute parameters for interactions between i and j atoms */
260             qq20             = _mm256_mul_ps(iq2,jq0);
261
262             /* REACTION-FIELD ELECTROSTATICS */
263             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
264             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
265
266             /* Update potential sum for this i atom from the interaction with this j atom. */
267             velecsum         = _mm256_add_ps(velecsum,velec);
268
269             fscal            = felec;
270
271             /* Calculate temporary vectorial force */
272             tx               = _mm256_mul_ps(fscal,dx20);
273             ty               = _mm256_mul_ps(fscal,dy20);
274             tz               = _mm256_mul_ps(fscal,dz20);
275
276             /* Update vectorial force */
277             fix2             = _mm256_add_ps(fix2,tx);
278             fiy2             = _mm256_add_ps(fiy2,ty);
279             fiz2             = _mm256_add_ps(fiz2,tz);
280
281             fjx0             = _mm256_add_ps(fjx0,tx);
282             fjy0             = _mm256_add_ps(fjy0,ty);
283             fjz0             = _mm256_add_ps(fjz0,tz);
284
285             /**************************
286              * CALCULATE INTERACTIONS *
287              **************************/
288
289             /* Compute parameters for interactions between i and j atoms */
290             qq30             = _mm256_mul_ps(iq3,jq0);
291
292             /* REACTION-FIELD ELECTROSTATICS */
293             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
294             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
295
296             /* Update potential sum for this i atom from the interaction with this j atom. */
297             velecsum         = _mm256_add_ps(velecsum,velec);
298
299             fscal            = felec;
300
301             /* Calculate temporary vectorial force */
302             tx               = _mm256_mul_ps(fscal,dx30);
303             ty               = _mm256_mul_ps(fscal,dy30);
304             tz               = _mm256_mul_ps(fscal,dz30);
305
306             /* Update vectorial force */
307             fix3             = _mm256_add_ps(fix3,tx);
308             fiy3             = _mm256_add_ps(fiy3,ty);
309             fiz3             = _mm256_add_ps(fiz3,tz);
310
311             fjx0             = _mm256_add_ps(fjx0,tx);
312             fjy0             = _mm256_add_ps(fjy0,ty);
313             fjz0             = _mm256_add_ps(fjz0,tz);
314
315             fjptrA             = f+j_coord_offsetA;
316             fjptrB             = f+j_coord_offsetB;
317             fjptrC             = f+j_coord_offsetC;
318             fjptrD             = f+j_coord_offsetD;
319             fjptrE             = f+j_coord_offsetE;
320             fjptrF             = f+j_coord_offsetF;
321             fjptrG             = f+j_coord_offsetG;
322             fjptrH             = f+j_coord_offsetH;
323
324             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
325
326             /* Inner loop uses 99 flops */
327         }
328
329         if(jidx<j_index_end)
330         {
331
332             /* Get j neighbor index, and coordinate index */
333             jnrlistA         = jjnr[jidx];
334             jnrlistB         = jjnr[jidx+1];
335             jnrlistC         = jjnr[jidx+2];
336             jnrlistD         = jjnr[jidx+3];
337             jnrlistE         = jjnr[jidx+4];
338             jnrlistF         = jjnr[jidx+5];
339             jnrlistG         = jjnr[jidx+6];
340             jnrlistH         = jjnr[jidx+7];
341             /* Sign of each element will be negative for non-real atoms.
342              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
343              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
344              */
345             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
346                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
347                                             
348             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
349             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
350             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
351             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
352             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
353             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
354             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
355             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
356             j_coord_offsetA  = DIM*jnrA;
357             j_coord_offsetB  = DIM*jnrB;
358             j_coord_offsetC  = DIM*jnrC;
359             j_coord_offsetD  = DIM*jnrD;
360             j_coord_offsetE  = DIM*jnrE;
361             j_coord_offsetF  = DIM*jnrF;
362             j_coord_offsetG  = DIM*jnrG;
363             j_coord_offsetH  = DIM*jnrH;
364
365             /* load j atom coordinates */
366             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
367                                                  x+j_coord_offsetC,x+j_coord_offsetD,
368                                                  x+j_coord_offsetE,x+j_coord_offsetF,
369                                                  x+j_coord_offsetG,x+j_coord_offsetH,
370                                                  &jx0,&jy0,&jz0);
371
372             /* Calculate displacement vector */
373             dx10             = _mm256_sub_ps(ix1,jx0);
374             dy10             = _mm256_sub_ps(iy1,jy0);
375             dz10             = _mm256_sub_ps(iz1,jz0);
376             dx20             = _mm256_sub_ps(ix2,jx0);
377             dy20             = _mm256_sub_ps(iy2,jy0);
378             dz20             = _mm256_sub_ps(iz2,jz0);
379             dx30             = _mm256_sub_ps(ix3,jx0);
380             dy30             = _mm256_sub_ps(iy3,jy0);
381             dz30             = _mm256_sub_ps(iz3,jz0);
382
383             /* Calculate squared distance and things based on it */
384             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
385             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
386             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
387
388             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
389             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
390             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
391
392             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
393             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
394             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
395
396             /* Load parameters for j particles */
397             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
398                                                                  charge+jnrC+0,charge+jnrD+0,
399                                                                  charge+jnrE+0,charge+jnrF+0,
400                                                                  charge+jnrG+0,charge+jnrH+0);
401
402             fjx0             = _mm256_setzero_ps();
403             fjy0             = _mm256_setzero_ps();
404             fjz0             = _mm256_setzero_ps();
405
406             /**************************
407              * CALCULATE INTERACTIONS *
408              **************************/
409
410             /* Compute parameters for interactions between i and j atoms */
411             qq10             = _mm256_mul_ps(iq1,jq0);
412
413             /* REACTION-FIELD ELECTROSTATICS */
414             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
415             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
416
417             /* Update potential sum for this i atom from the interaction with this j atom. */
418             velec            = _mm256_andnot_ps(dummy_mask,velec);
419             velecsum         = _mm256_add_ps(velecsum,velec);
420
421             fscal            = felec;
422
423             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
424
425             /* Calculate temporary vectorial force */
426             tx               = _mm256_mul_ps(fscal,dx10);
427             ty               = _mm256_mul_ps(fscal,dy10);
428             tz               = _mm256_mul_ps(fscal,dz10);
429
430             /* Update vectorial force */
431             fix1             = _mm256_add_ps(fix1,tx);
432             fiy1             = _mm256_add_ps(fiy1,ty);
433             fiz1             = _mm256_add_ps(fiz1,tz);
434
435             fjx0             = _mm256_add_ps(fjx0,tx);
436             fjy0             = _mm256_add_ps(fjy0,ty);
437             fjz0             = _mm256_add_ps(fjz0,tz);
438
439             /**************************
440              * CALCULATE INTERACTIONS *
441              **************************/
442
443             /* Compute parameters for interactions between i and j atoms */
444             qq20             = _mm256_mul_ps(iq2,jq0);
445
446             /* REACTION-FIELD ELECTROSTATICS */
447             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
448             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
449
450             /* Update potential sum for this i atom from the interaction with this j atom. */
451             velec            = _mm256_andnot_ps(dummy_mask,velec);
452             velecsum         = _mm256_add_ps(velecsum,velec);
453
454             fscal            = felec;
455
456             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
457
458             /* Calculate temporary vectorial force */
459             tx               = _mm256_mul_ps(fscal,dx20);
460             ty               = _mm256_mul_ps(fscal,dy20);
461             tz               = _mm256_mul_ps(fscal,dz20);
462
463             /* Update vectorial force */
464             fix2             = _mm256_add_ps(fix2,tx);
465             fiy2             = _mm256_add_ps(fiy2,ty);
466             fiz2             = _mm256_add_ps(fiz2,tz);
467
468             fjx0             = _mm256_add_ps(fjx0,tx);
469             fjy0             = _mm256_add_ps(fjy0,ty);
470             fjz0             = _mm256_add_ps(fjz0,tz);
471
472             /**************************
473              * CALCULATE INTERACTIONS *
474              **************************/
475
476             /* Compute parameters for interactions between i and j atoms */
477             qq30             = _mm256_mul_ps(iq3,jq0);
478
479             /* REACTION-FIELD ELECTROSTATICS */
480             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
481             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
482
483             /* Update potential sum for this i atom from the interaction with this j atom. */
484             velec            = _mm256_andnot_ps(dummy_mask,velec);
485             velecsum         = _mm256_add_ps(velecsum,velec);
486
487             fscal            = felec;
488
489             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
490
491             /* Calculate temporary vectorial force */
492             tx               = _mm256_mul_ps(fscal,dx30);
493             ty               = _mm256_mul_ps(fscal,dy30);
494             tz               = _mm256_mul_ps(fscal,dz30);
495
496             /* Update vectorial force */
497             fix3             = _mm256_add_ps(fix3,tx);
498             fiy3             = _mm256_add_ps(fiy3,ty);
499             fiz3             = _mm256_add_ps(fiz3,tz);
500
501             fjx0             = _mm256_add_ps(fjx0,tx);
502             fjy0             = _mm256_add_ps(fjy0,ty);
503             fjz0             = _mm256_add_ps(fjz0,tz);
504
505             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
506             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
507             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
508             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
509             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
510             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
511             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
512             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
513
514             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
515
516             /* Inner loop uses 99 flops */
517         }
518
519         /* End of innermost loop */
520
521         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
522                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
523
524         ggid                        = gid[iidx];
525         /* Update potential energies */
526         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
527
528         /* Increment number of inner iterations */
529         inneriter                  += j_index_end - j_index_start;
530
531         /* Outer loop uses 19 flops */
532     }
533
534     /* Increment number of outer iterations */
535     outeriter        += nri;
536
537     /* Update outer/inner flops */
538
539     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*99);
540 }
541 /*
542  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomW4P1_F_avx_256_single
543  * Electrostatics interaction: ReactionField
544  * VdW interaction:            None
545  * Geometry:                   Water4-Particle
546  * Calculate force/pot:        Force
547  */
548 void
549 nb_kernel_ElecRF_VdwNone_GeomW4P1_F_avx_256_single
550                     (t_nblist * gmx_restrict                nlist,
551                      rvec * gmx_restrict                    xx,
552                      rvec * gmx_restrict                    ff,
553                      t_forcerec * gmx_restrict              fr,
554                      t_mdatoms * gmx_restrict               mdatoms,
555                      nb_kernel_data_t * gmx_restrict        kernel_data,
556                      t_nrnb * gmx_restrict                  nrnb)
557 {
558     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
559      * just 0 for non-waters.
560      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
561      * jnr indices corresponding to data put in the four positions in the SIMD register.
562      */
563     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
564     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
565     int              jnrA,jnrB,jnrC,jnrD;
566     int              jnrE,jnrF,jnrG,jnrH;
567     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
568     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
569     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
570     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
571     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
572     real             rcutoff_scalar;
573     real             *shiftvec,*fshift,*x,*f;
574     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
575     real             scratch[4*DIM];
576     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
577     real *           vdwioffsetptr1;
578     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
579     real *           vdwioffsetptr2;
580     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
581     real *           vdwioffsetptr3;
582     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
583     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
584     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
585     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
586     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
587     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
588     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
589     real             *charge;
590     __m256           dummy_mask,cutoff_mask;
591     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
592     __m256           one     = _mm256_set1_ps(1.0);
593     __m256           two     = _mm256_set1_ps(2.0);
594     x                = xx[0];
595     f                = ff[0];
596
597     nri              = nlist->nri;
598     iinr             = nlist->iinr;
599     jindex           = nlist->jindex;
600     jjnr             = nlist->jjnr;
601     shiftidx         = nlist->shift;
602     gid              = nlist->gid;
603     shiftvec         = fr->shift_vec[0];
604     fshift           = fr->fshift[0];
605     facel            = _mm256_set1_ps(fr->epsfac);
606     charge           = mdatoms->chargeA;
607     krf              = _mm256_set1_ps(fr->ic->k_rf);
608     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
609     crf              = _mm256_set1_ps(fr->ic->c_rf);
610
611     /* Setup water-specific parameters */
612     inr              = nlist->iinr[0];
613     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
614     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
615     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
616
617     /* Avoid stupid compiler warnings */
618     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
619     j_coord_offsetA = 0;
620     j_coord_offsetB = 0;
621     j_coord_offsetC = 0;
622     j_coord_offsetD = 0;
623     j_coord_offsetE = 0;
624     j_coord_offsetF = 0;
625     j_coord_offsetG = 0;
626     j_coord_offsetH = 0;
627
628     outeriter        = 0;
629     inneriter        = 0;
630
631     for(iidx=0;iidx<4*DIM;iidx++)
632     {
633         scratch[iidx] = 0.0;
634     }
635
636     /* Start outer loop over neighborlists */
637     for(iidx=0; iidx<nri; iidx++)
638     {
639         /* Load shift vector for this list */
640         i_shift_offset   = DIM*shiftidx[iidx];
641
642         /* Load limits for loop over neighbors */
643         j_index_start    = jindex[iidx];
644         j_index_end      = jindex[iidx+1];
645
646         /* Get outer coordinate index */
647         inr              = iinr[iidx];
648         i_coord_offset   = DIM*inr;
649
650         /* Load i particle coords and add shift vector */
651         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
652                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
653
654         fix1             = _mm256_setzero_ps();
655         fiy1             = _mm256_setzero_ps();
656         fiz1             = _mm256_setzero_ps();
657         fix2             = _mm256_setzero_ps();
658         fiy2             = _mm256_setzero_ps();
659         fiz2             = _mm256_setzero_ps();
660         fix3             = _mm256_setzero_ps();
661         fiy3             = _mm256_setzero_ps();
662         fiz3             = _mm256_setzero_ps();
663
664         /* Start inner kernel loop */
665         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
666         {
667
668             /* Get j neighbor index, and coordinate index */
669             jnrA             = jjnr[jidx];
670             jnrB             = jjnr[jidx+1];
671             jnrC             = jjnr[jidx+2];
672             jnrD             = jjnr[jidx+3];
673             jnrE             = jjnr[jidx+4];
674             jnrF             = jjnr[jidx+5];
675             jnrG             = jjnr[jidx+6];
676             jnrH             = jjnr[jidx+7];
677             j_coord_offsetA  = DIM*jnrA;
678             j_coord_offsetB  = DIM*jnrB;
679             j_coord_offsetC  = DIM*jnrC;
680             j_coord_offsetD  = DIM*jnrD;
681             j_coord_offsetE  = DIM*jnrE;
682             j_coord_offsetF  = DIM*jnrF;
683             j_coord_offsetG  = DIM*jnrG;
684             j_coord_offsetH  = DIM*jnrH;
685
686             /* load j atom coordinates */
687             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
688                                                  x+j_coord_offsetC,x+j_coord_offsetD,
689                                                  x+j_coord_offsetE,x+j_coord_offsetF,
690                                                  x+j_coord_offsetG,x+j_coord_offsetH,
691                                                  &jx0,&jy0,&jz0);
692
693             /* Calculate displacement vector */
694             dx10             = _mm256_sub_ps(ix1,jx0);
695             dy10             = _mm256_sub_ps(iy1,jy0);
696             dz10             = _mm256_sub_ps(iz1,jz0);
697             dx20             = _mm256_sub_ps(ix2,jx0);
698             dy20             = _mm256_sub_ps(iy2,jy0);
699             dz20             = _mm256_sub_ps(iz2,jz0);
700             dx30             = _mm256_sub_ps(ix3,jx0);
701             dy30             = _mm256_sub_ps(iy3,jy0);
702             dz30             = _mm256_sub_ps(iz3,jz0);
703
704             /* Calculate squared distance and things based on it */
705             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
706             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
707             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
708
709             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
710             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
711             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
712
713             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
714             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
715             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
716
717             /* Load parameters for j particles */
718             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
719                                                                  charge+jnrC+0,charge+jnrD+0,
720                                                                  charge+jnrE+0,charge+jnrF+0,
721                                                                  charge+jnrG+0,charge+jnrH+0);
722
723             fjx0             = _mm256_setzero_ps();
724             fjy0             = _mm256_setzero_ps();
725             fjz0             = _mm256_setzero_ps();
726
727             /**************************
728              * CALCULATE INTERACTIONS *
729              **************************/
730
731             /* Compute parameters for interactions between i and j atoms */
732             qq10             = _mm256_mul_ps(iq1,jq0);
733
734             /* REACTION-FIELD ELECTROSTATICS */
735             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
736
737             fscal            = felec;
738
739             /* Calculate temporary vectorial force */
740             tx               = _mm256_mul_ps(fscal,dx10);
741             ty               = _mm256_mul_ps(fscal,dy10);
742             tz               = _mm256_mul_ps(fscal,dz10);
743
744             /* Update vectorial force */
745             fix1             = _mm256_add_ps(fix1,tx);
746             fiy1             = _mm256_add_ps(fiy1,ty);
747             fiz1             = _mm256_add_ps(fiz1,tz);
748
749             fjx0             = _mm256_add_ps(fjx0,tx);
750             fjy0             = _mm256_add_ps(fjy0,ty);
751             fjz0             = _mm256_add_ps(fjz0,tz);
752
753             /**************************
754              * CALCULATE INTERACTIONS *
755              **************************/
756
757             /* Compute parameters for interactions between i and j atoms */
758             qq20             = _mm256_mul_ps(iq2,jq0);
759
760             /* REACTION-FIELD ELECTROSTATICS */
761             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
762
763             fscal            = felec;
764
765             /* Calculate temporary vectorial force */
766             tx               = _mm256_mul_ps(fscal,dx20);
767             ty               = _mm256_mul_ps(fscal,dy20);
768             tz               = _mm256_mul_ps(fscal,dz20);
769
770             /* Update vectorial force */
771             fix2             = _mm256_add_ps(fix2,tx);
772             fiy2             = _mm256_add_ps(fiy2,ty);
773             fiz2             = _mm256_add_ps(fiz2,tz);
774
775             fjx0             = _mm256_add_ps(fjx0,tx);
776             fjy0             = _mm256_add_ps(fjy0,ty);
777             fjz0             = _mm256_add_ps(fjz0,tz);
778
779             /**************************
780              * CALCULATE INTERACTIONS *
781              **************************/
782
783             /* Compute parameters for interactions between i and j atoms */
784             qq30             = _mm256_mul_ps(iq3,jq0);
785
786             /* REACTION-FIELD ELECTROSTATICS */
787             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
788
789             fscal            = felec;
790
791             /* Calculate temporary vectorial force */
792             tx               = _mm256_mul_ps(fscal,dx30);
793             ty               = _mm256_mul_ps(fscal,dy30);
794             tz               = _mm256_mul_ps(fscal,dz30);
795
796             /* Update vectorial force */
797             fix3             = _mm256_add_ps(fix3,tx);
798             fiy3             = _mm256_add_ps(fiy3,ty);
799             fiz3             = _mm256_add_ps(fiz3,tz);
800
801             fjx0             = _mm256_add_ps(fjx0,tx);
802             fjy0             = _mm256_add_ps(fjy0,ty);
803             fjz0             = _mm256_add_ps(fjz0,tz);
804
805             fjptrA             = f+j_coord_offsetA;
806             fjptrB             = f+j_coord_offsetB;
807             fjptrC             = f+j_coord_offsetC;
808             fjptrD             = f+j_coord_offsetD;
809             fjptrE             = f+j_coord_offsetE;
810             fjptrF             = f+j_coord_offsetF;
811             fjptrG             = f+j_coord_offsetG;
812             fjptrH             = f+j_coord_offsetH;
813
814             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
815
816             /* Inner loop uses 84 flops */
817         }
818
819         if(jidx<j_index_end)
820         {
821
822             /* Get j neighbor index, and coordinate index */
823             jnrlistA         = jjnr[jidx];
824             jnrlistB         = jjnr[jidx+1];
825             jnrlistC         = jjnr[jidx+2];
826             jnrlistD         = jjnr[jidx+3];
827             jnrlistE         = jjnr[jidx+4];
828             jnrlistF         = jjnr[jidx+5];
829             jnrlistG         = jjnr[jidx+6];
830             jnrlistH         = jjnr[jidx+7];
831             /* Sign of each element will be negative for non-real atoms.
832              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
833              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
834              */
835             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
836                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
837                                             
838             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
839             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
840             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
841             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
842             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
843             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
844             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
845             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
846             j_coord_offsetA  = DIM*jnrA;
847             j_coord_offsetB  = DIM*jnrB;
848             j_coord_offsetC  = DIM*jnrC;
849             j_coord_offsetD  = DIM*jnrD;
850             j_coord_offsetE  = DIM*jnrE;
851             j_coord_offsetF  = DIM*jnrF;
852             j_coord_offsetG  = DIM*jnrG;
853             j_coord_offsetH  = DIM*jnrH;
854
855             /* load j atom coordinates */
856             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
857                                                  x+j_coord_offsetC,x+j_coord_offsetD,
858                                                  x+j_coord_offsetE,x+j_coord_offsetF,
859                                                  x+j_coord_offsetG,x+j_coord_offsetH,
860                                                  &jx0,&jy0,&jz0);
861
862             /* Calculate displacement vector */
863             dx10             = _mm256_sub_ps(ix1,jx0);
864             dy10             = _mm256_sub_ps(iy1,jy0);
865             dz10             = _mm256_sub_ps(iz1,jz0);
866             dx20             = _mm256_sub_ps(ix2,jx0);
867             dy20             = _mm256_sub_ps(iy2,jy0);
868             dz20             = _mm256_sub_ps(iz2,jz0);
869             dx30             = _mm256_sub_ps(ix3,jx0);
870             dy30             = _mm256_sub_ps(iy3,jy0);
871             dz30             = _mm256_sub_ps(iz3,jz0);
872
873             /* Calculate squared distance and things based on it */
874             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
875             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
876             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
877
878             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
879             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
880             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
881
882             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
883             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
884             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
885
886             /* Load parameters for j particles */
887             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
888                                                                  charge+jnrC+0,charge+jnrD+0,
889                                                                  charge+jnrE+0,charge+jnrF+0,
890                                                                  charge+jnrG+0,charge+jnrH+0);
891
892             fjx0             = _mm256_setzero_ps();
893             fjy0             = _mm256_setzero_ps();
894             fjz0             = _mm256_setzero_ps();
895
896             /**************************
897              * CALCULATE INTERACTIONS *
898              **************************/
899
900             /* Compute parameters for interactions between i and j atoms */
901             qq10             = _mm256_mul_ps(iq1,jq0);
902
903             /* REACTION-FIELD ELECTROSTATICS */
904             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
905
906             fscal            = felec;
907
908             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
909
910             /* Calculate temporary vectorial force */
911             tx               = _mm256_mul_ps(fscal,dx10);
912             ty               = _mm256_mul_ps(fscal,dy10);
913             tz               = _mm256_mul_ps(fscal,dz10);
914
915             /* Update vectorial force */
916             fix1             = _mm256_add_ps(fix1,tx);
917             fiy1             = _mm256_add_ps(fiy1,ty);
918             fiz1             = _mm256_add_ps(fiz1,tz);
919
920             fjx0             = _mm256_add_ps(fjx0,tx);
921             fjy0             = _mm256_add_ps(fjy0,ty);
922             fjz0             = _mm256_add_ps(fjz0,tz);
923
924             /**************************
925              * CALCULATE INTERACTIONS *
926              **************************/
927
928             /* Compute parameters for interactions between i and j atoms */
929             qq20             = _mm256_mul_ps(iq2,jq0);
930
931             /* REACTION-FIELD ELECTROSTATICS */
932             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
933
934             fscal            = felec;
935
936             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
937
938             /* Calculate temporary vectorial force */
939             tx               = _mm256_mul_ps(fscal,dx20);
940             ty               = _mm256_mul_ps(fscal,dy20);
941             tz               = _mm256_mul_ps(fscal,dz20);
942
943             /* Update vectorial force */
944             fix2             = _mm256_add_ps(fix2,tx);
945             fiy2             = _mm256_add_ps(fiy2,ty);
946             fiz2             = _mm256_add_ps(fiz2,tz);
947
948             fjx0             = _mm256_add_ps(fjx0,tx);
949             fjy0             = _mm256_add_ps(fjy0,ty);
950             fjz0             = _mm256_add_ps(fjz0,tz);
951
952             /**************************
953              * CALCULATE INTERACTIONS *
954              **************************/
955
956             /* Compute parameters for interactions between i and j atoms */
957             qq30             = _mm256_mul_ps(iq3,jq0);
958
959             /* REACTION-FIELD ELECTROSTATICS */
960             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
961
962             fscal            = felec;
963
964             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
965
966             /* Calculate temporary vectorial force */
967             tx               = _mm256_mul_ps(fscal,dx30);
968             ty               = _mm256_mul_ps(fscal,dy30);
969             tz               = _mm256_mul_ps(fscal,dz30);
970
971             /* Update vectorial force */
972             fix3             = _mm256_add_ps(fix3,tx);
973             fiy3             = _mm256_add_ps(fiy3,ty);
974             fiz3             = _mm256_add_ps(fiz3,tz);
975
976             fjx0             = _mm256_add_ps(fjx0,tx);
977             fjy0             = _mm256_add_ps(fjy0,ty);
978             fjz0             = _mm256_add_ps(fjz0,tz);
979
980             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
981             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
982             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
983             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
984             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
985             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
986             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
987             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
988
989             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
990
991             /* Inner loop uses 84 flops */
992         }
993
994         /* End of innermost loop */
995
996         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
997                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
998
999         /* Increment number of inner iterations */
1000         inneriter                  += j_index_end - j_index_start;
1001
1002         /* Outer loop uses 18 flops */
1003     }
1004
1005     /* Increment number of outer iterations */
1006     outeriter        += nri;
1007
1008     /* Update outer/inner flops */
1009
1010     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*84);
1011 }