Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRF_VdwLJ_GeomW3P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_avx_256_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     real *           vdwioffsetptr1;
75     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     real *           vdwioffsetptr2;
77     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
79     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
90     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
91     __m256           dummy_mask,cutoff_mask;
92     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
93     __m256           one     = _mm256_set1_ps(1.0);
94     __m256           two     = _mm256_set1_ps(2.0);
95     x                = xx[0];
96     f                = ff[0];
97
98     nri              = nlist->nri;
99     iinr             = nlist->iinr;
100     jindex           = nlist->jindex;
101     jjnr             = nlist->jjnr;
102     shiftidx         = nlist->shift;
103     gid              = nlist->gid;
104     shiftvec         = fr->shift_vec[0];
105     fshift           = fr->fshift[0];
106     facel            = _mm256_set1_ps(fr->epsfac);
107     charge           = mdatoms->chargeA;
108     krf              = _mm256_set1_ps(fr->ic->k_rf);
109     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
110     crf              = _mm256_set1_ps(fr->ic->c_rf);
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     /* Setup water-specific parameters */
116     inr              = nlist->iinr[0];
117     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
118     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
119     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
120     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128     j_coord_offsetE = 0;
129     j_coord_offsetF = 0;
130     j_coord_offsetG = 0;
131     j_coord_offsetH = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
157                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
158
159         fix0             = _mm256_setzero_ps();
160         fiy0             = _mm256_setzero_ps();
161         fiz0             = _mm256_setzero_ps();
162         fix1             = _mm256_setzero_ps();
163         fiy1             = _mm256_setzero_ps();
164         fiz1             = _mm256_setzero_ps();
165         fix2             = _mm256_setzero_ps();
166         fiy2             = _mm256_setzero_ps();
167         fiz2             = _mm256_setzero_ps();
168
169         /* Reset potential sums */
170         velecsum         = _mm256_setzero_ps();
171         vvdwsum          = _mm256_setzero_ps();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             jnrC             = jjnr[jidx+2];
181             jnrD             = jjnr[jidx+3];
182             jnrE             = jjnr[jidx+4];
183             jnrF             = jjnr[jidx+5];
184             jnrG             = jjnr[jidx+6];
185             jnrH             = jjnr[jidx+7];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190             j_coord_offsetE  = DIM*jnrE;
191             j_coord_offsetF  = DIM*jnrF;
192             j_coord_offsetG  = DIM*jnrG;
193             j_coord_offsetH  = DIM*jnrH;
194
195             /* load j atom coordinates */
196             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
197                                                  x+j_coord_offsetC,x+j_coord_offsetD,
198                                                  x+j_coord_offsetE,x+j_coord_offsetF,
199                                                  x+j_coord_offsetG,x+j_coord_offsetH,
200                                                  &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm256_sub_ps(ix0,jx0);
204             dy00             = _mm256_sub_ps(iy0,jy0);
205             dz00             = _mm256_sub_ps(iz0,jz0);
206             dx10             = _mm256_sub_ps(ix1,jx0);
207             dy10             = _mm256_sub_ps(iy1,jy0);
208             dz10             = _mm256_sub_ps(iz1,jz0);
209             dx20             = _mm256_sub_ps(ix2,jx0);
210             dy20             = _mm256_sub_ps(iy2,jy0);
211             dz20             = _mm256_sub_ps(iz2,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
215             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
216             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
217
218             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
219             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
220             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
221
222             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
223             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
224             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
228                                                                  charge+jnrC+0,charge+jnrD+0,
229                                                                  charge+jnrE+0,charge+jnrF+0,
230                                                                  charge+jnrG+0,charge+jnrH+0);
231             vdwjidx0A        = 2*vdwtype[jnrA+0];
232             vdwjidx0B        = 2*vdwtype[jnrB+0];
233             vdwjidx0C        = 2*vdwtype[jnrC+0];
234             vdwjidx0D        = 2*vdwtype[jnrD+0];
235             vdwjidx0E        = 2*vdwtype[jnrE+0];
236             vdwjidx0F        = 2*vdwtype[jnrF+0];
237             vdwjidx0G        = 2*vdwtype[jnrG+0];
238             vdwjidx0H        = 2*vdwtype[jnrH+0];
239
240             fjx0             = _mm256_setzero_ps();
241             fjy0             = _mm256_setzero_ps();
242             fjz0             = _mm256_setzero_ps();
243
244             /**************************
245              * CALCULATE INTERACTIONS *
246              **************************/
247
248             /* Compute parameters for interactions between i and j atoms */
249             qq00             = _mm256_mul_ps(iq0,jq0);
250             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
251                                             vdwioffsetptr0+vdwjidx0B,
252                                             vdwioffsetptr0+vdwjidx0C,
253                                             vdwioffsetptr0+vdwjidx0D,
254                                             vdwioffsetptr0+vdwjidx0E,
255                                             vdwioffsetptr0+vdwjidx0F,
256                                             vdwioffsetptr0+vdwjidx0G,
257                                             vdwioffsetptr0+vdwjidx0H,
258                                             &c6_00,&c12_00);
259
260             /* REACTION-FIELD ELECTROSTATICS */
261             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
262             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
263
264             /* LENNARD-JONES DISPERSION/REPULSION */
265
266             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
267             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
268             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
269             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
270             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
271
272             /* Update potential sum for this i atom from the interaction with this j atom. */
273             velecsum         = _mm256_add_ps(velecsum,velec);
274             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
275
276             fscal            = _mm256_add_ps(felec,fvdw);
277
278             /* Calculate temporary vectorial force */
279             tx               = _mm256_mul_ps(fscal,dx00);
280             ty               = _mm256_mul_ps(fscal,dy00);
281             tz               = _mm256_mul_ps(fscal,dz00);
282
283             /* Update vectorial force */
284             fix0             = _mm256_add_ps(fix0,tx);
285             fiy0             = _mm256_add_ps(fiy0,ty);
286             fiz0             = _mm256_add_ps(fiz0,tz);
287
288             fjx0             = _mm256_add_ps(fjx0,tx);
289             fjy0             = _mm256_add_ps(fjy0,ty);
290             fjz0             = _mm256_add_ps(fjz0,tz);
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             /* Compute parameters for interactions between i and j atoms */
297             qq10             = _mm256_mul_ps(iq1,jq0);
298
299             /* REACTION-FIELD ELECTROSTATICS */
300             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
301             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             velecsum         = _mm256_add_ps(velecsum,velec);
305
306             fscal            = felec;
307
308             /* Calculate temporary vectorial force */
309             tx               = _mm256_mul_ps(fscal,dx10);
310             ty               = _mm256_mul_ps(fscal,dy10);
311             tz               = _mm256_mul_ps(fscal,dz10);
312
313             /* Update vectorial force */
314             fix1             = _mm256_add_ps(fix1,tx);
315             fiy1             = _mm256_add_ps(fiy1,ty);
316             fiz1             = _mm256_add_ps(fiz1,tz);
317
318             fjx0             = _mm256_add_ps(fjx0,tx);
319             fjy0             = _mm256_add_ps(fjy0,ty);
320             fjz0             = _mm256_add_ps(fjz0,tz);
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq20             = _mm256_mul_ps(iq2,jq0);
328
329             /* REACTION-FIELD ELECTROSTATICS */
330             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
331             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
332
333             /* Update potential sum for this i atom from the interaction with this j atom. */
334             velecsum         = _mm256_add_ps(velecsum,velec);
335
336             fscal            = felec;
337
338             /* Calculate temporary vectorial force */
339             tx               = _mm256_mul_ps(fscal,dx20);
340             ty               = _mm256_mul_ps(fscal,dy20);
341             tz               = _mm256_mul_ps(fscal,dz20);
342
343             /* Update vectorial force */
344             fix2             = _mm256_add_ps(fix2,tx);
345             fiy2             = _mm256_add_ps(fiy2,ty);
346             fiz2             = _mm256_add_ps(fiz2,tz);
347
348             fjx0             = _mm256_add_ps(fjx0,tx);
349             fjy0             = _mm256_add_ps(fjy0,ty);
350             fjz0             = _mm256_add_ps(fjz0,tz);
351
352             fjptrA             = f+j_coord_offsetA;
353             fjptrB             = f+j_coord_offsetB;
354             fjptrC             = f+j_coord_offsetC;
355             fjptrD             = f+j_coord_offsetD;
356             fjptrE             = f+j_coord_offsetE;
357             fjptrF             = f+j_coord_offsetF;
358             fjptrG             = f+j_coord_offsetG;
359             fjptrH             = f+j_coord_offsetH;
360
361             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
362
363             /* Inner loop uses 111 flops */
364         }
365
366         if(jidx<j_index_end)
367         {
368
369             /* Get j neighbor index, and coordinate index */
370             jnrlistA         = jjnr[jidx];
371             jnrlistB         = jjnr[jidx+1];
372             jnrlistC         = jjnr[jidx+2];
373             jnrlistD         = jjnr[jidx+3];
374             jnrlistE         = jjnr[jidx+4];
375             jnrlistF         = jjnr[jidx+5];
376             jnrlistG         = jjnr[jidx+6];
377             jnrlistH         = jjnr[jidx+7];
378             /* Sign of each element will be negative for non-real atoms.
379              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
380              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
381              */
382             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
383                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
384                                             
385             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
386             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
387             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
388             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
389             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
390             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
391             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
392             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
393             j_coord_offsetA  = DIM*jnrA;
394             j_coord_offsetB  = DIM*jnrB;
395             j_coord_offsetC  = DIM*jnrC;
396             j_coord_offsetD  = DIM*jnrD;
397             j_coord_offsetE  = DIM*jnrE;
398             j_coord_offsetF  = DIM*jnrF;
399             j_coord_offsetG  = DIM*jnrG;
400             j_coord_offsetH  = DIM*jnrH;
401
402             /* load j atom coordinates */
403             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
404                                                  x+j_coord_offsetC,x+j_coord_offsetD,
405                                                  x+j_coord_offsetE,x+j_coord_offsetF,
406                                                  x+j_coord_offsetG,x+j_coord_offsetH,
407                                                  &jx0,&jy0,&jz0);
408
409             /* Calculate displacement vector */
410             dx00             = _mm256_sub_ps(ix0,jx0);
411             dy00             = _mm256_sub_ps(iy0,jy0);
412             dz00             = _mm256_sub_ps(iz0,jz0);
413             dx10             = _mm256_sub_ps(ix1,jx0);
414             dy10             = _mm256_sub_ps(iy1,jy0);
415             dz10             = _mm256_sub_ps(iz1,jz0);
416             dx20             = _mm256_sub_ps(ix2,jx0);
417             dy20             = _mm256_sub_ps(iy2,jy0);
418             dz20             = _mm256_sub_ps(iz2,jz0);
419
420             /* Calculate squared distance and things based on it */
421             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
422             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
423             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
424
425             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
426             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
427             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
428
429             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
430             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
431             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
432
433             /* Load parameters for j particles */
434             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
435                                                                  charge+jnrC+0,charge+jnrD+0,
436                                                                  charge+jnrE+0,charge+jnrF+0,
437                                                                  charge+jnrG+0,charge+jnrH+0);
438             vdwjidx0A        = 2*vdwtype[jnrA+0];
439             vdwjidx0B        = 2*vdwtype[jnrB+0];
440             vdwjidx0C        = 2*vdwtype[jnrC+0];
441             vdwjidx0D        = 2*vdwtype[jnrD+0];
442             vdwjidx0E        = 2*vdwtype[jnrE+0];
443             vdwjidx0F        = 2*vdwtype[jnrF+0];
444             vdwjidx0G        = 2*vdwtype[jnrG+0];
445             vdwjidx0H        = 2*vdwtype[jnrH+0];
446
447             fjx0             = _mm256_setzero_ps();
448             fjy0             = _mm256_setzero_ps();
449             fjz0             = _mm256_setzero_ps();
450
451             /**************************
452              * CALCULATE INTERACTIONS *
453              **************************/
454
455             /* Compute parameters for interactions between i and j atoms */
456             qq00             = _mm256_mul_ps(iq0,jq0);
457             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
458                                             vdwioffsetptr0+vdwjidx0B,
459                                             vdwioffsetptr0+vdwjidx0C,
460                                             vdwioffsetptr0+vdwjidx0D,
461                                             vdwioffsetptr0+vdwjidx0E,
462                                             vdwioffsetptr0+vdwjidx0F,
463                                             vdwioffsetptr0+vdwjidx0G,
464                                             vdwioffsetptr0+vdwjidx0H,
465                                             &c6_00,&c12_00);
466
467             /* REACTION-FIELD ELECTROSTATICS */
468             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
469             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
470
471             /* LENNARD-JONES DISPERSION/REPULSION */
472
473             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
474             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
475             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
476             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
477             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
478
479             /* Update potential sum for this i atom from the interaction with this j atom. */
480             velec            = _mm256_andnot_ps(dummy_mask,velec);
481             velecsum         = _mm256_add_ps(velecsum,velec);
482             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
483             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
484
485             fscal            = _mm256_add_ps(felec,fvdw);
486
487             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
488
489             /* Calculate temporary vectorial force */
490             tx               = _mm256_mul_ps(fscal,dx00);
491             ty               = _mm256_mul_ps(fscal,dy00);
492             tz               = _mm256_mul_ps(fscal,dz00);
493
494             /* Update vectorial force */
495             fix0             = _mm256_add_ps(fix0,tx);
496             fiy0             = _mm256_add_ps(fiy0,ty);
497             fiz0             = _mm256_add_ps(fiz0,tz);
498
499             fjx0             = _mm256_add_ps(fjx0,tx);
500             fjy0             = _mm256_add_ps(fjy0,ty);
501             fjz0             = _mm256_add_ps(fjz0,tz);
502
503             /**************************
504              * CALCULATE INTERACTIONS *
505              **************************/
506
507             /* Compute parameters for interactions between i and j atoms */
508             qq10             = _mm256_mul_ps(iq1,jq0);
509
510             /* REACTION-FIELD ELECTROSTATICS */
511             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
512             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
513
514             /* Update potential sum for this i atom from the interaction with this j atom. */
515             velec            = _mm256_andnot_ps(dummy_mask,velec);
516             velecsum         = _mm256_add_ps(velecsum,velec);
517
518             fscal            = felec;
519
520             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
521
522             /* Calculate temporary vectorial force */
523             tx               = _mm256_mul_ps(fscal,dx10);
524             ty               = _mm256_mul_ps(fscal,dy10);
525             tz               = _mm256_mul_ps(fscal,dz10);
526
527             /* Update vectorial force */
528             fix1             = _mm256_add_ps(fix1,tx);
529             fiy1             = _mm256_add_ps(fiy1,ty);
530             fiz1             = _mm256_add_ps(fiz1,tz);
531
532             fjx0             = _mm256_add_ps(fjx0,tx);
533             fjy0             = _mm256_add_ps(fjy0,ty);
534             fjz0             = _mm256_add_ps(fjz0,tz);
535
536             /**************************
537              * CALCULATE INTERACTIONS *
538              **************************/
539
540             /* Compute parameters for interactions between i and j atoms */
541             qq20             = _mm256_mul_ps(iq2,jq0);
542
543             /* REACTION-FIELD ELECTROSTATICS */
544             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
545             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
546
547             /* Update potential sum for this i atom from the interaction with this j atom. */
548             velec            = _mm256_andnot_ps(dummy_mask,velec);
549             velecsum         = _mm256_add_ps(velecsum,velec);
550
551             fscal            = felec;
552
553             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
554
555             /* Calculate temporary vectorial force */
556             tx               = _mm256_mul_ps(fscal,dx20);
557             ty               = _mm256_mul_ps(fscal,dy20);
558             tz               = _mm256_mul_ps(fscal,dz20);
559
560             /* Update vectorial force */
561             fix2             = _mm256_add_ps(fix2,tx);
562             fiy2             = _mm256_add_ps(fiy2,ty);
563             fiz2             = _mm256_add_ps(fiz2,tz);
564
565             fjx0             = _mm256_add_ps(fjx0,tx);
566             fjy0             = _mm256_add_ps(fjy0,ty);
567             fjz0             = _mm256_add_ps(fjz0,tz);
568
569             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
570             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
571             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
572             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
573             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
574             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
575             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
576             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
577
578             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
579
580             /* Inner loop uses 111 flops */
581         }
582
583         /* End of innermost loop */
584
585         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
586                                                  f+i_coord_offset,fshift+i_shift_offset);
587
588         ggid                        = gid[iidx];
589         /* Update potential energies */
590         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
591         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
592
593         /* Increment number of inner iterations */
594         inneriter                  += j_index_end - j_index_start;
595
596         /* Outer loop uses 20 flops */
597     }
598
599     /* Increment number of outer iterations */
600     outeriter        += nri;
601
602     /* Update outer/inner flops */
603
604     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*111);
605 }
606 /*
607  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_avx_256_single
608  * Electrostatics interaction: ReactionField
609  * VdW interaction:            LennardJones
610  * Geometry:                   Water3-Particle
611  * Calculate force/pot:        Force
612  */
613 void
614 nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_avx_256_single
615                     (t_nblist * gmx_restrict                nlist,
616                      rvec * gmx_restrict                    xx,
617                      rvec * gmx_restrict                    ff,
618                      t_forcerec * gmx_restrict              fr,
619                      t_mdatoms * gmx_restrict               mdatoms,
620                      nb_kernel_data_t * gmx_restrict        kernel_data,
621                      t_nrnb * gmx_restrict                  nrnb)
622 {
623     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
624      * just 0 for non-waters.
625      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
626      * jnr indices corresponding to data put in the four positions in the SIMD register.
627      */
628     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
629     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
630     int              jnrA,jnrB,jnrC,jnrD;
631     int              jnrE,jnrF,jnrG,jnrH;
632     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
633     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
634     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
635     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
636     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
637     real             rcutoff_scalar;
638     real             *shiftvec,*fshift,*x,*f;
639     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
640     real             scratch[4*DIM];
641     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
642     real *           vdwioffsetptr0;
643     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
644     real *           vdwioffsetptr1;
645     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
646     real *           vdwioffsetptr2;
647     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
648     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
649     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
650     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
651     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
652     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
653     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
654     real             *charge;
655     int              nvdwtype;
656     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
657     int              *vdwtype;
658     real             *vdwparam;
659     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
660     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
661     __m256           dummy_mask,cutoff_mask;
662     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
663     __m256           one     = _mm256_set1_ps(1.0);
664     __m256           two     = _mm256_set1_ps(2.0);
665     x                = xx[0];
666     f                = ff[0];
667
668     nri              = nlist->nri;
669     iinr             = nlist->iinr;
670     jindex           = nlist->jindex;
671     jjnr             = nlist->jjnr;
672     shiftidx         = nlist->shift;
673     gid              = nlist->gid;
674     shiftvec         = fr->shift_vec[0];
675     fshift           = fr->fshift[0];
676     facel            = _mm256_set1_ps(fr->epsfac);
677     charge           = mdatoms->chargeA;
678     krf              = _mm256_set1_ps(fr->ic->k_rf);
679     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
680     crf              = _mm256_set1_ps(fr->ic->c_rf);
681     nvdwtype         = fr->ntype;
682     vdwparam         = fr->nbfp;
683     vdwtype          = mdatoms->typeA;
684
685     /* Setup water-specific parameters */
686     inr              = nlist->iinr[0];
687     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
688     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
689     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
690     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
691
692     /* Avoid stupid compiler warnings */
693     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
694     j_coord_offsetA = 0;
695     j_coord_offsetB = 0;
696     j_coord_offsetC = 0;
697     j_coord_offsetD = 0;
698     j_coord_offsetE = 0;
699     j_coord_offsetF = 0;
700     j_coord_offsetG = 0;
701     j_coord_offsetH = 0;
702
703     outeriter        = 0;
704     inneriter        = 0;
705
706     for(iidx=0;iidx<4*DIM;iidx++)
707     {
708         scratch[iidx] = 0.0;
709     }
710
711     /* Start outer loop over neighborlists */
712     for(iidx=0; iidx<nri; iidx++)
713     {
714         /* Load shift vector for this list */
715         i_shift_offset   = DIM*shiftidx[iidx];
716
717         /* Load limits for loop over neighbors */
718         j_index_start    = jindex[iidx];
719         j_index_end      = jindex[iidx+1];
720
721         /* Get outer coordinate index */
722         inr              = iinr[iidx];
723         i_coord_offset   = DIM*inr;
724
725         /* Load i particle coords and add shift vector */
726         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
727                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
728
729         fix0             = _mm256_setzero_ps();
730         fiy0             = _mm256_setzero_ps();
731         fiz0             = _mm256_setzero_ps();
732         fix1             = _mm256_setzero_ps();
733         fiy1             = _mm256_setzero_ps();
734         fiz1             = _mm256_setzero_ps();
735         fix2             = _mm256_setzero_ps();
736         fiy2             = _mm256_setzero_ps();
737         fiz2             = _mm256_setzero_ps();
738
739         /* Start inner kernel loop */
740         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
741         {
742
743             /* Get j neighbor index, and coordinate index */
744             jnrA             = jjnr[jidx];
745             jnrB             = jjnr[jidx+1];
746             jnrC             = jjnr[jidx+2];
747             jnrD             = jjnr[jidx+3];
748             jnrE             = jjnr[jidx+4];
749             jnrF             = jjnr[jidx+5];
750             jnrG             = jjnr[jidx+6];
751             jnrH             = jjnr[jidx+7];
752             j_coord_offsetA  = DIM*jnrA;
753             j_coord_offsetB  = DIM*jnrB;
754             j_coord_offsetC  = DIM*jnrC;
755             j_coord_offsetD  = DIM*jnrD;
756             j_coord_offsetE  = DIM*jnrE;
757             j_coord_offsetF  = DIM*jnrF;
758             j_coord_offsetG  = DIM*jnrG;
759             j_coord_offsetH  = DIM*jnrH;
760
761             /* load j atom coordinates */
762             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
763                                                  x+j_coord_offsetC,x+j_coord_offsetD,
764                                                  x+j_coord_offsetE,x+j_coord_offsetF,
765                                                  x+j_coord_offsetG,x+j_coord_offsetH,
766                                                  &jx0,&jy0,&jz0);
767
768             /* Calculate displacement vector */
769             dx00             = _mm256_sub_ps(ix0,jx0);
770             dy00             = _mm256_sub_ps(iy0,jy0);
771             dz00             = _mm256_sub_ps(iz0,jz0);
772             dx10             = _mm256_sub_ps(ix1,jx0);
773             dy10             = _mm256_sub_ps(iy1,jy0);
774             dz10             = _mm256_sub_ps(iz1,jz0);
775             dx20             = _mm256_sub_ps(ix2,jx0);
776             dy20             = _mm256_sub_ps(iy2,jy0);
777             dz20             = _mm256_sub_ps(iz2,jz0);
778
779             /* Calculate squared distance and things based on it */
780             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
781             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
782             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
783
784             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
785             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
786             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
787
788             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
789             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
790             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
791
792             /* Load parameters for j particles */
793             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
794                                                                  charge+jnrC+0,charge+jnrD+0,
795                                                                  charge+jnrE+0,charge+jnrF+0,
796                                                                  charge+jnrG+0,charge+jnrH+0);
797             vdwjidx0A        = 2*vdwtype[jnrA+0];
798             vdwjidx0B        = 2*vdwtype[jnrB+0];
799             vdwjidx0C        = 2*vdwtype[jnrC+0];
800             vdwjidx0D        = 2*vdwtype[jnrD+0];
801             vdwjidx0E        = 2*vdwtype[jnrE+0];
802             vdwjidx0F        = 2*vdwtype[jnrF+0];
803             vdwjidx0G        = 2*vdwtype[jnrG+0];
804             vdwjidx0H        = 2*vdwtype[jnrH+0];
805
806             fjx0             = _mm256_setzero_ps();
807             fjy0             = _mm256_setzero_ps();
808             fjz0             = _mm256_setzero_ps();
809
810             /**************************
811              * CALCULATE INTERACTIONS *
812              **************************/
813
814             /* Compute parameters for interactions between i and j atoms */
815             qq00             = _mm256_mul_ps(iq0,jq0);
816             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
817                                             vdwioffsetptr0+vdwjidx0B,
818                                             vdwioffsetptr0+vdwjidx0C,
819                                             vdwioffsetptr0+vdwjidx0D,
820                                             vdwioffsetptr0+vdwjidx0E,
821                                             vdwioffsetptr0+vdwjidx0F,
822                                             vdwioffsetptr0+vdwjidx0G,
823                                             vdwioffsetptr0+vdwjidx0H,
824                                             &c6_00,&c12_00);
825
826             /* REACTION-FIELD ELECTROSTATICS */
827             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
828
829             /* LENNARD-JONES DISPERSION/REPULSION */
830
831             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
832             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
833
834             fscal            = _mm256_add_ps(felec,fvdw);
835
836             /* Calculate temporary vectorial force */
837             tx               = _mm256_mul_ps(fscal,dx00);
838             ty               = _mm256_mul_ps(fscal,dy00);
839             tz               = _mm256_mul_ps(fscal,dz00);
840
841             /* Update vectorial force */
842             fix0             = _mm256_add_ps(fix0,tx);
843             fiy0             = _mm256_add_ps(fiy0,ty);
844             fiz0             = _mm256_add_ps(fiz0,tz);
845
846             fjx0             = _mm256_add_ps(fjx0,tx);
847             fjy0             = _mm256_add_ps(fjy0,ty);
848             fjz0             = _mm256_add_ps(fjz0,tz);
849
850             /**************************
851              * CALCULATE INTERACTIONS *
852              **************************/
853
854             /* Compute parameters for interactions between i and j atoms */
855             qq10             = _mm256_mul_ps(iq1,jq0);
856
857             /* REACTION-FIELD ELECTROSTATICS */
858             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
859
860             fscal            = felec;
861
862             /* Calculate temporary vectorial force */
863             tx               = _mm256_mul_ps(fscal,dx10);
864             ty               = _mm256_mul_ps(fscal,dy10);
865             tz               = _mm256_mul_ps(fscal,dz10);
866
867             /* Update vectorial force */
868             fix1             = _mm256_add_ps(fix1,tx);
869             fiy1             = _mm256_add_ps(fiy1,ty);
870             fiz1             = _mm256_add_ps(fiz1,tz);
871
872             fjx0             = _mm256_add_ps(fjx0,tx);
873             fjy0             = _mm256_add_ps(fjy0,ty);
874             fjz0             = _mm256_add_ps(fjz0,tz);
875
876             /**************************
877              * CALCULATE INTERACTIONS *
878              **************************/
879
880             /* Compute parameters for interactions between i and j atoms */
881             qq20             = _mm256_mul_ps(iq2,jq0);
882
883             /* REACTION-FIELD ELECTROSTATICS */
884             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
885
886             fscal            = felec;
887
888             /* Calculate temporary vectorial force */
889             tx               = _mm256_mul_ps(fscal,dx20);
890             ty               = _mm256_mul_ps(fscal,dy20);
891             tz               = _mm256_mul_ps(fscal,dz20);
892
893             /* Update vectorial force */
894             fix2             = _mm256_add_ps(fix2,tx);
895             fiy2             = _mm256_add_ps(fiy2,ty);
896             fiz2             = _mm256_add_ps(fiz2,tz);
897
898             fjx0             = _mm256_add_ps(fjx0,tx);
899             fjy0             = _mm256_add_ps(fjy0,ty);
900             fjz0             = _mm256_add_ps(fjz0,tz);
901
902             fjptrA             = f+j_coord_offsetA;
903             fjptrB             = f+j_coord_offsetB;
904             fjptrC             = f+j_coord_offsetC;
905             fjptrD             = f+j_coord_offsetD;
906             fjptrE             = f+j_coord_offsetE;
907             fjptrF             = f+j_coord_offsetF;
908             fjptrG             = f+j_coord_offsetG;
909             fjptrH             = f+j_coord_offsetH;
910
911             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
912
913             /* Inner loop uses 91 flops */
914         }
915
916         if(jidx<j_index_end)
917         {
918
919             /* Get j neighbor index, and coordinate index */
920             jnrlistA         = jjnr[jidx];
921             jnrlistB         = jjnr[jidx+1];
922             jnrlistC         = jjnr[jidx+2];
923             jnrlistD         = jjnr[jidx+3];
924             jnrlistE         = jjnr[jidx+4];
925             jnrlistF         = jjnr[jidx+5];
926             jnrlistG         = jjnr[jidx+6];
927             jnrlistH         = jjnr[jidx+7];
928             /* Sign of each element will be negative for non-real atoms.
929              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
930              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
931              */
932             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
933                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
934                                             
935             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
936             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
937             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
938             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
939             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
940             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
941             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
942             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
943             j_coord_offsetA  = DIM*jnrA;
944             j_coord_offsetB  = DIM*jnrB;
945             j_coord_offsetC  = DIM*jnrC;
946             j_coord_offsetD  = DIM*jnrD;
947             j_coord_offsetE  = DIM*jnrE;
948             j_coord_offsetF  = DIM*jnrF;
949             j_coord_offsetG  = DIM*jnrG;
950             j_coord_offsetH  = DIM*jnrH;
951
952             /* load j atom coordinates */
953             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
954                                                  x+j_coord_offsetC,x+j_coord_offsetD,
955                                                  x+j_coord_offsetE,x+j_coord_offsetF,
956                                                  x+j_coord_offsetG,x+j_coord_offsetH,
957                                                  &jx0,&jy0,&jz0);
958
959             /* Calculate displacement vector */
960             dx00             = _mm256_sub_ps(ix0,jx0);
961             dy00             = _mm256_sub_ps(iy0,jy0);
962             dz00             = _mm256_sub_ps(iz0,jz0);
963             dx10             = _mm256_sub_ps(ix1,jx0);
964             dy10             = _mm256_sub_ps(iy1,jy0);
965             dz10             = _mm256_sub_ps(iz1,jz0);
966             dx20             = _mm256_sub_ps(ix2,jx0);
967             dy20             = _mm256_sub_ps(iy2,jy0);
968             dz20             = _mm256_sub_ps(iz2,jz0);
969
970             /* Calculate squared distance and things based on it */
971             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
972             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
973             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
974
975             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
976             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
977             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
978
979             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
980             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
981             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
982
983             /* Load parameters for j particles */
984             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
985                                                                  charge+jnrC+0,charge+jnrD+0,
986                                                                  charge+jnrE+0,charge+jnrF+0,
987                                                                  charge+jnrG+0,charge+jnrH+0);
988             vdwjidx0A        = 2*vdwtype[jnrA+0];
989             vdwjidx0B        = 2*vdwtype[jnrB+0];
990             vdwjidx0C        = 2*vdwtype[jnrC+0];
991             vdwjidx0D        = 2*vdwtype[jnrD+0];
992             vdwjidx0E        = 2*vdwtype[jnrE+0];
993             vdwjidx0F        = 2*vdwtype[jnrF+0];
994             vdwjidx0G        = 2*vdwtype[jnrG+0];
995             vdwjidx0H        = 2*vdwtype[jnrH+0];
996
997             fjx0             = _mm256_setzero_ps();
998             fjy0             = _mm256_setzero_ps();
999             fjz0             = _mm256_setzero_ps();
1000
1001             /**************************
1002              * CALCULATE INTERACTIONS *
1003              **************************/
1004
1005             /* Compute parameters for interactions between i and j atoms */
1006             qq00             = _mm256_mul_ps(iq0,jq0);
1007             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1008                                             vdwioffsetptr0+vdwjidx0B,
1009                                             vdwioffsetptr0+vdwjidx0C,
1010                                             vdwioffsetptr0+vdwjidx0D,
1011                                             vdwioffsetptr0+vdwjidx0E,
1012                                             vdwioffsetptr0+vdwjidx0F,
1013                                             vdwioffsetptr0+vdwjidx0G,
1014                                             vdwioffsetptr0+vdwjidx0H,
1015                                             &c6_00,&c12_00);
1016
1017             /* REACTION-FIELD ELECTROSTATICS */
1018             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
1019
1020             /* LENNARD-JONES DISPERSION/REPULSION */
1021
1022             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1023             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1024
1025             fscal            = _mm256_add_ps(felec,fvdw);
1026
1027             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1028
1029             /* Calculate temporary vectorial force */
1030             tx               = _mm256_mul_ps(fscal,dx00);
1031             ty               = _mm256_mul_ps(fscal,dy00);
1032             tz               = _mm256_mul_ps(fscal,dz00);
1033
1034             /* Update vectorial force */
1035             fix0             = _mm256_add_ps(fix0,tx);
1036             fiy0             = _mm256_add_ps(fiy0,ty);
1037             fiz0             = _mm256_add_ps(fiz0,tz);
1038
1039             fjx0             = _mm256_add_ps(fjx0,tx);
1040             fjy0             = _mm256_add_ps(fjy0,ty);
1041             fjz0             = _mm256_add_ps(fjz0,tz);
1042
1043             /**************************
1044              * CALCULATE INTERACTIONS *
1045              **************************/
1046
1047             /* Compute parameters for interactions between i and j atoms */
1048             qq10             = _mm256_mul_ps(iq1,jq0);
1049
1050             /* REACTION-FIELD ELECTROSTATICS */
1051             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1052
1053             fscal            = felec;
1054
1055             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1056
1057             /* Calculate temporary vectorial force */
1058             tx               = _mm256_mul_ps(fscal,dx10);
1059             ty               = _mm256_mul_ps(fscal,dy10);
1060             tz               = _mm256_mul_ps(fscal,dz10);
1061
1062             /* Update vectorial force */
1063             fix1             = _mm256_add_ps(fix1,tx);
1064             fiy1             = _mm256_add_ps(fiy1,ty);
1065             fiz1             = _mm256_add_ps(fiz1,tz);
1066
1067             fjx0             = _mm256_add_ps(fjx0,tx);
1068             fjy0             = _mm256_add_ps(fjy0,ty);
1069             fjz0             = _mm256_add_ps(fjz0,tz);
1070
1071             /**************************
1072              * CALCULATE INTERACTIONS *
1073              **************************/
1074
1075             /* Compute parameters for interactions between i and j atoms */
1076             qq20             = _mm256_mul_ps(iq2,jq0);
1077
1078             /* REACTION-FIELD ELECTROSTATICS */
1079             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1080
1081             fscal            = felec;
1082
1083             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1084
1085             /* Calculate temporary vectorial force */
1086             tx               = _mm256_mul_ps(fscal,dx20);
1087             ty               = _mm256_mul_ps(fscal,dy20);
1088             tz               = _mm256_mul_ps(fscal,dz20);
1089
1090             /* Update vectorial force */
1091             fix2             = _mm256_add_ps(fix2,tx);
1092             fiy2             = _mm256_add_ps(fiy2,ty);
1093             fiz2             = _mm256_add_ps(fiz2,tz);
1094
1095             fjx0             = _mm256_add_ps(fjx0,tx);
1096             fjy0             = _mm256_add_ps(fjy0,ty);
1097             fjz0             = _mm256_add_ps(fjz0,tz);
1098
1099             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1100             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1101             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1102             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1103             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1104             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1105             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1106             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1107
1108             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1109
1110             /* Inner loop uses 91 flops */
1111         }
1112
1113         /* End of innermost loop */
1114
1115         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1116                                                  f+i_coord_offset,fshift+i_shift_offset);
1117
1118         /* Increment number of inner iterations */
1119         inneriter                  += j_index_end - j_index_start;
1120
1121         /* Outer loop uses 18 flops */
1122     }
1123
1124     /* Increment number of outer iterations */
1125     outeriter        += nri;
1126
1127     /* Update outer/inner flops */
1128
1129     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*91);
1130 }