Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRF_VdwCSTab_GeomW4P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_256_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     real *           vdwioffsetptr2;
90     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     real *           vdwioffsetptr3;
92     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
94     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
106     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
107     __m256i          vfitab;
108     __m128i          vfitab_lo,vfitab_hi;
109     __m128i          ifour       = _mm_set1_epi32(4);
110     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
111     real             *vftab;
112     __m256           dummy_mask,cutoff_mask;
113     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
114     __m256           one     = _mm256_set1_ps(1.0);
115     __m256           two     = _mm256_set1_ps(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm256_set1_ps(fr->ic->epsfac);
128     charge           = mdatoms->chargeA;
129     krf              = _mm256_set1_ps(fr->ic->k_rf);
130     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
131     crf              = _mm256_set1_ps(fr->ic->c_rf);
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135
136     vftab            = kernel_data->table_vdw->data;
137     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
138
139     /* Setup water-specific parameters */
140     inr              = nlist->iinr[0];
141     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
142     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
143     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
144     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150     j_coord_offsetC = 0;
151     j_coord_offsetD = 0;
152     j_coord_offsetE = 0;
153     j_coord_offsetF = 0;
154     j_coord_offsetG = 0;
155     j_coord_offsetH = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     for(iidx=0;iidx<4*DIM;iidx++)
161     {
162         scratch[iidx] = 0.0;
163     }
164
165     /* Start outer loop over neighborlists */
166     for(iidx=0; iidx<nri; iidx++)
167     {
168         /* Load shift vector for this list */
169         i_shift_offset   = DIM*shiftidx[iidx];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
181                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
182
183         fix0             = _mm256_setzero_ps();
184         fiy0             = _mm256_setzero_ps();
185         fiz0             = _mm256_setzero_ps();
186         fix1             = _mm256_setzero_ps();
187         fiy1             = _mm256_setzero_ps();
188         fiz1             = _mm256_setzero_ps();
189         fix2             = _mm256_setzero_ps();
190         fiy2             = _mm256_setzero_ps();
191         fiz2             = _mm256_setzero_ps();
192         fix3             = _mm256_setzero_ps();
193         fiy3             = _mm256_setzero_ps();
194         fiz3             = _mm256_setzero_ps();
195
196         /* Reset potential sums */
197         velecsum         = _mm256_setzero_ps();
198         vvdwsum          = _mm256_setzero_ps();
199
200         /* Start inner kernel loop */
201         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
202         {
203
204             /* Get j neighbor index, and coordinate index */
205             jnrA             = jjnr[jidx];
206             jnrB             = jjnr[jidx+1];
207             jnrC             = jjnr[jidx+2];
208             jnrD             = jjnr[jidx+3];
209             jnrE             = jjnr[jidx+4];
210             jnrF             = jjnr[jidx+5];
211             jnrG             = jjnr[jidx+6];
212             jnrH             = jjnr[jidx+7];
213             j_coord_offsetA  = DIM*jnrA;
214             j_coord_offsetB  = DIM*jnrB;
215             j_coord_offsetC  = DIM*jnrC;
216             j_coord_offsetD  = DIM*jnrD;
217             j_coord_offsetE  = DIM*jnrE;
218             j_coord_offsetF  = DIM*jnrF;
219             j_coord_offsetG  = DIM*jnrG;
220             j_coord_offsetH  = DIM*jnrH;
221
222             /* load j atom coordinates */
223             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
224                                                  x+j_coord_offsetC,x+j_coord_offsetD,
225                                                  x+j_coord_offsetE,x+j_coord_offsetF,
226                                                  x+j_coord_offsetG,x+j_coord_offsetH,
227                                                  &jx0,&jy0,&jz0);
228
229             /* Calculate displacement vector */
230             dx00             = _mm256_sub_ps(ix0,jx0);
231             dy00             = _mm256_sub_ps(iy0,jy0);
232             dz00             = _mm256_sub_ps(iz0,jz0);
233             dx10             = _mm256_sub_ps(ix1,jx0);
234             dy10             = _mm256_sub_ps(iy1,jy0);
235             dz10             = _mm256_sub_ps(iz1,jz0);
236             dx20             = _mm256_sub_ps(ix2,jx0);
237             dy20             = _mm256_sub_ps(iy2,jy0);
238             dz20             = _mm256_sub_ps(iz2,jz0);
239             dx30             = _mm256_sub_ps(ix3,jx0);
240             dy30             = _mm256_sub_ps(iy3,jy0);
241             dz30             = _mm256_sub_ps(iz3,jz0);
242
243             /* Calculate squared distance and things based on it */
244             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
245             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
246             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
247             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
248
249             rinv00           = avx256_invsqrt_f(rsq00);
250             rinv10           = avx256_invsqrt_f(rsq10);
251             rinv20           = avx256_invsqrt_f(rsq20);
252             rinv30           = avx256_invsqrt_f(rsq30);
253
254             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
255             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
256             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
257
258             /* Load parameters for j particles */
259             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
260                                                                  charge+jnrC+0,charge+jnrD+0,
261                                                                  charge+jnrE+0,charge+jnrF+0,
262                                                                  charge+jnrG+0,charge+jnrH+0);
263             vdwjidx0A        = 2*vdwtype[jnrA+0];
264             vdwjidx0B        = 2*vdwtype[jnrB+0];
265             vdwjidx0C        = 2*vdwtype[jnrC+0];
266             vdwjidx0D        = 2*vdwtype[jnrD+0];
267             vdwjidx0E        = 2*vdwtype[jnrE+0];
268             vdwjidx0F        = 2*vdwtype[jnrF+0];
269             vdwjidx0G        = 2*vdwtype[jnrG+0];
270             vdwjidx0H        = 2*vdwtype[jnrH+0];
271
272             fjx0             = _mm256_setzero_ps();
273             fjy0             = _mm256_setzero_ps();
274             fjz0             = _mm256_setzero_ps();
275
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             r00              = _mm256_mul_ps(rsq00,rinv00);
281
282             /* Compute parameters for interactions between i and j atoms */
283             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
284                                             vdwioffsetptr0+vdwjidx0B,
285                                             vdwioffsetptr0+vdwjidx0C,
286                                             vdwioffsetptr0+vdwjidx0D,
287                                             vdwioffsetptr0+vdwjidx0E,
288                                             vdwioffsetptr0+vdwjidx0F,
289                                             vdwioffsetptr0+vdwjidx0G,
290                                             vdwioffsetptr0+vdwjidx0H,
291                                             &c6_00,&c12_00);
292
293             /* Calculate table index by multiplying r with table scale and truncate to integer */
294             rt               = _mm256_mul_ps(r00,vftabscale);
295             vfitab           = _mm256_cvttps_epi32(rt);
296             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
297             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
298             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
299             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
300             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
301             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
302
303             /* CUBIC SPLINE TABLE DISPERSION */
304             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
305                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
306             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
307                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
308             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
309                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
310             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
311                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
312             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
313             Heps             = _mm256_mul_ps(vfeps,H);
314             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
315             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
316             vvdw6            = _mm256_mul_ps(c6_00,VV);
317             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
318             fvdw6            = _mm256_mul_ps(c6_00,FF);
319
320             /* CUBIC SPLINE TABLE REPULSION */
321             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
322             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
323             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
324                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
325             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
326                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
327             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
328                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
329             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
330                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
331             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
332             Heps             = _mm256_mul_ps(vfeps,H);
333             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
334             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
335             vvdw12           = _mm256_mul_ps(c12_00,VV);
336             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
337             fvdw12           = _mm256_mul_ps(c12_00,FF);
338             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
339             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
343
344             fscal            = fvdw;
345
346             /* Calculate temporary vectorial force */
347             tx               = _mm256_mul_ps(fscal,dx00);
348             ty               = _mm256_mul_ps(fscal,dy00);
349             tz               = _mm256_mul_ps(fscal,dz00);
350
351             /* Update vectorial force */
352             fix0             = _mm256_add_ps(fix0,tx);
353             fiy0             = _mm256_add_ps(fiy0,ty);
354             fiz0             = _mm256_add_ps(fiz0,tz);
355
356             fjx0             = _mm256_add_ps(fjx0,tx);
357             fjy0             = _mm256_add_ps(fjy0,ty);
358             fjz0             = _mm256_add_ps(fjz0,tz);
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             /* Compute parameters for interactions between i and j atoms */
365             qq10             = _mm256_mul_ps(iq1,jq0);
366
367             /* REACTION-FIELD ELECTROSTATICS */
368             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
369             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velecsum         = _mm256_add_ps(velecsum,velec);
373
374             fscal            = felec;
375
376             /* Calculate temporary vectorial force */
377             tx               = _mm256_mul_ps(fscal,dx10);
378             ty               = _mm256_mul_ps(fscal,dy10);
379             tz               = _mm256_mul_ps(fscal,dz10);
380
381             /* Update vectorial force */
382             fix1             = _mm256_add_ps(fix1,tx);
383             fiy1             = _mm256_add_ps(fiy1,ty);
384             fiz1             = _mm256_add_ps(fiz1,tz);
385
386             fjx0             = _mm256_add_ps(fjx0,tx);
387             fjy0             = _mm256_add_ps(fjy0,ty);
388             fjz0             = _mm256_add_ps(fjz0,tz);
389
390             /**************************
391              * CALCULATE INTERACTIONS *
392              **************************/
393
394             /* Compute parameters for interactions between i and j atoms */
395             qq20             = _mm256_mul_ps(iq2,jq0);
396
397             /* REACTION-FIELD ELECTROSTATICS */
398             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
399             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
400
401             /* Update potential sum for this i atom from the interaction with this j atom. */
402             velecsum         = _mm256_add_ps(velecsum,velec);
403
404             fscal            = felec;
405
406             /* Calculate temporary vectorial force */
407             tx               = _mm256_mul_ps(fscal,dx20);
408             ty               = _mm256_mul_ps(fscal,dy20);
409             tz               = _mm256_mul_ps(fscal,dz20);
410
411             /* Update vectorial force */
412             fix2             = _mm256_add_ps(fix2,tx);
413             fiy2             = _mm256_add_ps(fiy2,ty);
414             fiz2             = _mm256_add_ps(fiz2,tz);
415
416             fjx0             = _mm256_add_ps(fjx0,tx);
417             fjy0             = _mm256_add_ps(fjy0,ty);
418             fjz0             = _mm256_add_ps(fjz0,tz);
419
420             /**************************
421              * CALCULATE INTERACTIONS *
422              **************************/
423
424             /* Compute parameters for interactions between i and j atoms */
425             qq30             = _mm256_mul_ps(iq3,jq0);
426
427             /* REACTION-FIELD ELECTROSTATICS */
428             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
429             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
430
431             /* Update potential sum for this i atom from the interaction with this j atom. */
432             velecsum         = _mm256_add_ps(velecsum,velec);
433
434             fscal            = felec;
435
436             /* Calculate temporary vectorial force */
437             tx               = _mm256_mul_ps(fscal,dx30);
438             ty               = _mm256_mul_ps(fscal,dy30);
439             tz               = _mm256_mul_ps(fscal,dz30);
440
441             /* Update vectorial force */
442             fix3             = _mm256_add_ps(fix3,tx);
443             fiy3             = _mm256_add_ps(fiy3,ty);
444             fiz3             = _mm256_add_ps(fiz3,tz);
445
446             fjx0             = _mm256_add_ps(fjx0,tx);
447             fjy0             = _mm256_add_ps(fjy0,ty);
448             fjz0             = _mm256_add_ps(fjz0,tz);
449
450             fjptrA             = f+j_coord_offsetA;
451             fjptrB             = f+j_coord_offsetB;
452             fjptrC             = f+j_coord_offsetC;
453             fjptrD             = f+j_coord_offsetD;
454             fjptrE             = f+j_coord_offsetE;
455             fjptrF             = f+j_coord_offsetF;
456             fjptrG             = f+j_coord_offsetG;
457             fjptrH             = f+j_coord_offsetH;
458
459             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
460
461             /* Inner loop uses 155 flops */
462         }
463
464         if(jidx<j_index_end)
465         {
466
467             /* Get j neighbor index, and coordinate index */
468             jnrlistA         = jjnr[jidx];
469             jnrlistB         = jjnr[jidx+1];
470             jnrlistC         = jjnr[jidx+2];
471             jnrlistD         = jjnr[jidx+3];
472             jnrlistE         = jjnr[jidx+4];
473             jnrlistF         = jjnr[jidx+5];
474             jnrlistG         = jjnr[jidx+6];
475             jnrlistH         = jjnr[jidx+7];
476             /* Sign of each element will be negative for non-real atoms.
477              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
478              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
479              */
480             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
481                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
482                                             
483             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
484             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
485             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
486             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
487             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
488             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
489             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
490             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
491             j_coord_offsetA  = DIM*jnrA;
492             j_coord_offsetB  = DIM*jnrB;
493             j_coord_offsetC  = DIM*jnrC;
494             j_coord_offsetD  = DIM*jnrD;
495             j_coord_offsetE  = DIM*jnrE;
496             j_coord_offsetF  = DIM*jnrF;
497             j_coord_offsetG  = DIM*jnrG;
498             j_coord_offsetH  = DIM*jnrH;
499
500             /* load j atom coordinates */
501             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
502                                                  x+j_coord_offsetC,x+j_coord_offsetD,
503                                                  x+j_coord_offsetE,x+j_coord_offsetF,
504                                                  x+j_coord_offsetG,x+j_coord_offsetH,
505                                                  &jx0,&jy0,&jz0);
506
507             /* Calculate displacement vector */
508             dx00             = _mm256_sub_ps(ix0,jx0);
509             dy00             = _mm256_sub_ps(iy0,jy0);
510             dz00             = _mm256_sub_ps(iz0,jz0);
511             dx10             = _mm256_sub_ps(ix1,jx0);
512             dy10             = _mm256_sub_ps(iy1,jy0);
513             dz10             = _mm256_sub_ps(iz1,jz0);
514             dx20             = _mm256_sub_ps(ix2,jx0);
515             dy20             = _mm256_sub_ps(iy2,jy0);
516             dz20             = _mm256_sub_ps(iz2,jz0);
517             dx30             = _mm256_sub_ps(ix3,jx0);
518             dy30             = _mm256_sub_ps(iy3,jy0);
519             dz30             = _mm256_sub_ps(iz3,jz0);
520
521             /* Calculate squared distance and things based on it */
522             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
523             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
524             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
525             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
526
527             rinv00           = avx256_invsqrt_f(rsq00);
528             rinv10           = avx256_invsqrt_f(rsq10);
529             rinv20           = avx256_invsqrt_f(rsq20);
530             rinv30           = avx256_invsqrt_f(rsq30);
531
532             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
533             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
534             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
535
536             /* Load parameters for j particles */
537             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
538                                                                  charge+jnrC+0,charge+jnrD+0,
539                                                                  charge+jnrE+0,charge+jnrF+0,
540                                                                  charge+jnrG+0,charge+jnrH+0);
541             vdwjidx0A        = 2*vdwtype[jnrA+0];
542             vdwjidx0B        = 2*vdwtype[jnrB+0];
543             vdwjidx0C        = 2*vdwtype[jnrC+0];
544             vdwjidx0D        = 2*vdwtype[jnrD+0];
545             vdwjidx0E        = 2*vdwtype[jnrE+0];
546             vdwjidx0F        = 2*vdwtype[jnrF+0];
547             vdwjidx0G        = 2*vdwtype[jnrG+0];
548             vdwjidx0H        = 2*vdwtype[jnrH+0];
549
550             fjx0             = _mm256_setzero_ps();
551             fjy0             = _mm256_setzero_ps();
552             fjz0             = _mm256_setzero_ps();
553
554             /**************************
555              * CALCULATE INTERACTIONS *
556              **************************/
557
558             r00              = _mm256_mul_ps(rsq00,rinv00);
559             r00              = _mm256_andnot_ps(dummy_mask,r00);
560
561             /* Compute parameters for interactions between i and j atoms */
562             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
563                                             vdwioffsetptr0+vdwjidx0B,
564                                             vdwioffsetptr0+vdwjidx0C,
565                                             vdwioffsetptr0+vdwjidx0D,
566                                             vdwioffsetptr0+vdwjidx0E,
567                                             vdwioffsetptr0+vdwjidx0F,
568                                             vdwioffsetptr0+vdwjidx0G,
569                                             vdwioffsetptr0+vdwjidx0H,
570                                             &c6_00,&c12_00);
571
572             /* Calculate table index by multiplying r with table scale and truncate to integer */
573             rt               = _mm256_mul_ps(r00,vftabscale);
574             vfitab           = _mm256_cvttps_epi32(rt);
575             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
576             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
577             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
578             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
579             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
580             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
581
582             /* CUBIC SPLINE TABLE DISPERSION */
583             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
584                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
585             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
586                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
587             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
588                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
589             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
590                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
591             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
592             Heps             = _mm256_mul_ps(vfeps,H);
593             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
594             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
595             vvdw6            = _mm256_mul_ps(c6_00,VV);
596             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
597             fvdw6            = _mm256_mul_ps(c6_00,FF);
598
599             /* CUBIC SPLINE TABLE REPULSION */
600             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
601             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
602             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
603                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
604             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
605                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
606             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
607                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
608             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
609                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
610             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
611             Heps             = _mm256_mul_ps(vfeps,H);
612             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
613             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
614             vvdw12           = _mm256_mul_ps(c12_00,VV);
615             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
616             fvdw12           = _mm256_mul_ps(c12_00,FF);
617             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
618             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
619
620             /* Update potential sum for this i atom from the interaction with this j atom. */
621             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
622             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
623
624             fscal            = fvdw;
625
626             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
627
628             /* Calculate temporary vectorial force */
629             tx               = _mm256_mul_ps(fscal,dx00);
630             ty               = _mm256_mul_ps(fscal,dy00);
631             tz               = _mm256_mul_ps(fscal,dz00);
632
633             /* Update vectorial force */
634             fix0             = _mm256_add_ps(fix0,tx);
635             fiy0             = _mm256_add_ps(fiy0,ty);
636             fiz0             = _mm256_add_ps(fiz0,tz);
637
638             fjx0             = _mm256_add_ps(fjx0,tx);
639             fjy0             = _mm256_add_ps(fjy0,ty);
640             fjz0             = _mm256_add_ps(fjz0,tz);
641
642             /**************************
643              * CALCULATE INTERACTIONS *
644              **************************/
645
646             /* Compute parameters for interactions between i and j atoms */
647             qq10             = _mm256_mul_ps(iq1,jq0);
648
649             /* REACTION-FIELD ELECTROSTATICS */
650             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
651             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
652
653             /* Update potential sum for this i atom from the interaction with this j atom. */
654             velec            = _mm256_andnot_ps(dummy_mask,velec);
655             velecsum         = _mm256_add_ps(velecsum,velec);
656
657             fscal            = felec;
658
659             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
660
661             /* Calculate temporary vectorial force */
662             tx               = _mm256_mul_ps(fscal,dx10);
663             ty               = _mm256_mul_ps(fscal,dy10);
664             tz               = _mm256_mul_ps(fscal,dz10);
665
666             /* Update vectorial force */
667             fix1             = _mm256_add_ps(fix1,tx);
668             fiy1             = _mm256_add_ps(fiy1,ty);
669             fiz1             = _mm256_add_ps(fiz1,tz);
670
671             fjx0             = _mm256_add_ps(fjx0,tx);
672             fjy0             = _mm256_add_ps(fjy0,ty);
673             fjz0             = _mm256_add_ps(fjz0,tz);
674
675             /**************************
676              * CALCULATE INTERACTIONS *
677              **************************/
678
679             /* Compute parameters for interactions between i and j atoms */
680             qq20             = _mm256_mul_ps(iq2,jq0);
681
682             /* REACTION-FIELD ELECTROSTATICS */
683             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
684             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
685
686             /* Update potential sum for this i atom from the interaction with this j atom. */
687             velec            = _mm256_andnot_ps(dummy_mask,velec);
688             velecsum         = _mm256_add_ps(velecsum,velec);
689
690             fscal            = felec;
691
692             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
693
694             /* Calculate temporary vectorial force */
695             tx               = _mm256_mul_ps(fscal,dx20);
696             ty               = _mm256_mul_ps(fscal,dy20);
697             tz               = _mm256_mul_ps(fscal,dz20);
698
699             /* Update vectorial force */
700             fix2             = _mm256_add_ps(fix2,tx);
701             fiy2             = _mm256_add_ps(fiy2,ty);
702             fiz2             = _mm256_add_ps(fiz2,tz);
703
704             fjx0             = _mm256_add_ps(fjx0,tx);
705             fjy0             = _mm256_add_ps(fjy0,ty);
706             fjz0             = _mm256_add_ps(fjz0,tz);
707
708             /**************************
709              * CALCULATE INTERACTIONS *
710              **************************/
711
712             /* Compute parameters for interactions between i and j atoms */
713             qq30             = _mm256_mul_ps(iq3,jq0);
714
715             /* REACTION-FIELD ELECTROSTATICS */
716             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
717             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
718
719             /* Update potential sum for this i atom from the interaction with this j atom. */
720             velec            = _mm256_andnot_ps(dummy_mask,velec);
721             velecsum         = _mm256_add_ps(velecsum,velec);
722
723             fscal            = felec;
724
725             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
726
727             /* Calculate temporary vectorial force */
728             tx               = _mm256_mul_ps(fscal,dx30);
729             ty               = _mm256_mul_ps(fscal,dy30);
730             tz               = _mm256_mul_ps(fscal,dz30);
731
732             /* Update vectorial force */
733             fix3             = _mm256_add_ps(fix3,tx);
734             fiy3             = _mm256_add_ps(fiy3,ty);
735             fiz3             = _mm256_add_ps(fiz3,tz);
736
737             fjx0             = _mm256_add_ps(fjx0,tx);
738             fjy0             = _mm256_add_ps(fjy0,ty);
739             fjz0             = _mm256_add_ps(fjz0,tz);
740
741             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
742             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
743             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
744             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
745             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
746             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
747             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
748             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
749
750             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
751
752             /* Inner loop uses 156 flops */
753         }
754
755         /* End of innermost loop */
756
757         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
758                                                  f+i_coord_offset,fshift+i_shift_offset);
759
760         ggid                        = gid[iidx];
761         /* Update potential energies */
762         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
763         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
764
765         /* Increment number of inner iterations */
766         inneriter                  += j_index_end - j_index_start;
767
768         /* Outer loop uses 26 flops */
769     }
770
771     /* Increment number of outer iterations */
772     outeriter        += nri;
773
774     /* Update outer/inner flops */
775
776     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*156);
777 }
778 /*
779  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_256_single
780  * Electrostatics interaction: ReactionField
781  * VdW interaction:            CubicSplineTable
782  * Geometry:                   Water4-Particle
783  * Calculate force/pot:        Force
784  */
785 void
786 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_256_single
787                     (t_nblist                    * gmx_restrict       nlist,
788                      rvec                        * gmx_restrict          xx,
789                      rvec                        * gmx_restrict          ff,
790                      struct t_forcerec           * gmx_restrict          fr,
791                      t_mdatoms                   * gmx_restrict     mdatoms,
792                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
793                      t_nrnb                      * gmx_restrict        nrnb)
794 {
795     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
796      * just 0 for non-waters.
797      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
798      * jnr indices corresponding to data put in the four positions in the SIMD register.
799      */
800     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
801     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
802     int              jnrA,jnrB,jnrC,jnrD;
803     int              jnrE,jnrF,jnrG,jnrH;
804     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
805     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
806     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
807     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
808     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
809     real             rcutoff_scalar;
810     real             *shiftvec,*fshift,*x,*f;
811     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
812     real             scratch[4*DIM];
813     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
814     real *           vdwioffsetptr0;
815     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
816     real *           vdwioffsetptr1;
817     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
818     real *           vdwioffsetptr2;
819     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
820     real *           vdwioffsetptr3;
821     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
822     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
823     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
824     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
825     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
826     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
827     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
828     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
829     real             *charge;
830     int              nvdwtype;
831     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
832     int              *vdwtype;
833     real             *vdwparam;
834     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
835     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
836     __m256i          vfitab;
837     __m128i          vfitab_lo,vfitab_hi;
838     __m128i          ifour       = _mm_set1_epi32(4);
839     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
840     real             *vftab;
841     __m256           dummy_mask,cutoff_mask;
842     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
843     __m256           one     = _mm256_set1_ps(1.0);
844     __m256           two     = _mm256_set1_ps(2.0);
845     x                = xx[0];
846     f                = ff[0];
847
848     nri              = nlist->nri;
849     iinr             = nlist->iinr;
850     jindex           = nlist->jindex;
851     jjnr             = nlist->jjnr;
852     shiftidx         = nlist->shift;
853     gid              = nlist->gid;
854     shiftvec         = fr->shift_vec[0];
855     fshift           = fr->fshift[0];
856     facel            = _mm256_set1_ps(fr->ic->epsfac);
857     charge           = mdatoms->chargeA;
858     krf              = _mm256_set1_ps(fr->ic->k_rf);
859     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
860     crf              = _mm256_set1_ps(fr->ic->c_rf);
861     nvdwtype         = fr->ntype;
862     vdwparam         = fr->nbfp;
863     vdwtype          = mdatoms->typeA;
864
865     vftab            = kernel_data->table_vdw->data;
866     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
867
868     /* Setup water-specific parameters */
869     inr              = nlist->iinr[0];
870     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
871     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
872     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
873     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
874
875     /* Avoid stupid compiler warnings */
876     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
877     j_coord_offsetA = 0;
878     j_coord_offsetB = 0;
879     j_coord_offsetC = 0;
880     j_coord_offsetD = 0;
881     j_coord_offsetE = 0;
882     j_coord_offsetF = 0;
883     j_coord_offsetG = 0;
884     j_coord_offsetH = 0;
885
886     outeriter        = 0;
887     inneriter        = 0;
888
889     for(iidx=0;iidx<4*DIM;iidx++)
890     {
891         scratch[iidx] = 0.0;
892     }
893
894     /* Start outer loop over neighborlists */
895     for(iidx=0; iidx<nri; iidx++)
896     {
897         /* Load shift vector for this list */
898         i_shift_offset   = DIM*shiftidx[iidx];
899
900         /* Load limits for loop over neighbors */
901         j_index_start    = jindex[iidx];
902         j_index_end      = jindex[iidx+1];
903
904         /* Get outer coordinate index */
905         inr              = iinr[iidx];
906         i_coord_offset   = DIM*inr;
907
908         /* Load i particle coords and add shift vector */
909         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
910                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
911
912         fix0             = _mm256_setzero_ps();
913         fiy0             = _mm256_setzero_ps();
914         fiz0             = _mm256_setzero_ps();
915         fix1             = _mm256_setzero_ps();
916         fiy1             = _mm256_setzero_ps();
917         fiz1             = _mm256_setzero_ps();
918         fix2             = _mm256_setzero_ps();
919         fiy2             = _mm256_setzero_ps();
920         fiz2             = _mm256_setzero_ps();
921         fix3             = _mm256_setzero_ps();
922         fiy3             = _mm256_setzero_ps();
923         fiz3             = _mm256_setzero_ps();
924
925         /* Start inner kernel loop */
926         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
927         {
928
929             /* Get j neighbor index, and coordinate index */
930             jnrA             = jjnr[jidx];
931             jnrB             = jjnr[jidx+1];
932             jnrC             = jjnr[jidx+2];
933             jnrD             = jjnr[jidx+3];
934             jnrE             = jjnr[jidx+4];
935             jnrF             = jjnr[jidx+5];
936             jnrG             = jjnr[jidx+6];
937             jnrH             = jjnr[jidx+7];
938             j_coord_offsetA  = DIM*jnrA;
939             j_coord_offsetB  = DIM*jnrB;
940             j_coord_offsetC  = DIM*jnrC;
941             j_coord_offsetD  = DIM*jnrD;
942             j_coord_offsetE  = DIM*jnrE;
943             j_coord_offsetF  = DIM*jnrF;
944             j_coord_offsetG  = DIM*jnrG;
945             j_coord_offsetH  = DIM*jnrH;
946
947             /* load j atom coordinates */
948             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
949                                                  x+j_coord_offsetC,x+j_coord_offsetD,
950                                                  x+j_coord_offsetE,x+j_coord_offsetF,
951                                                  x+j_coord_offsetG,x+j_coord_offsetH,
952                                                  &jx0,&jy0,&jz0);
953
954             /* Calculate displacement vector */
955             dx00             = _mm256_sub_ps(ix0,jx0);
956             dy00             = _mm256_sub_ps(iy0,jy0);
957             dz00             = _mm256_sub_ps(iz0,jz0);
958             dx10             = _mm256_sub_ps(ix1,jx0);
959             dy10             = _mm256_sub_ps(iy1,jy0);
960             dz10             = _mm256_sub_ps(iz1,jz0);
961             dx20             = _mm256_sub_ps(ix2,jx0);
962             dy20             = _mm256_sub_ps(iy2,jy0);
963             dz20             = _mm256_sub_ps(iz2,jz0);
964             dx30             = _mm256_sub_ps(ix3,jx0);
965             dy30             = _mm256_sub_ps(iy3,jy0);
966             dz30             = _mm256_sub_ps(iz3,jz0);
967
968             /* Calculate squared distance and things based on it */
969             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
970             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
971             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
972             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
973
974             rinv00           = avx256_invsqrt_f(rsq00);
975             rinv10           = avx256_invsqrt_f(rsq10);
976             rinv20           = avx256_invsqrt_f(rsq20);
977             rinv30           = avx256_invsqrt_f(rsq30);
978
979             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
980             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
981             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
982
983             /* Load parameters for j particles */
984             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
985                                                                  charge+jnrC+0,charge+jnrD+0,
986                                                                  charge+jnrE+0,charge+jnrF+0,
987                                                                  charge+jnrG+0,charge+jnrH+0);
988             vdwjidx0A        = 2*vdwtype[jnrA+0];
989             vdwjidx0B        = 2*vdwtype[jnrB+0];
990             vdwjidx0C        = 2*vdwtype[jnrC+0];
991             vdwjidx0D        = 2*vdwtype[jnrD+0];
992             vdwjidx0E        = 2*vdwtype[jnrE+0];
993             vdwjidx0F        = 2*vdwtype[jnrF+0];
994             vdwjidx0G        = 2*vdwtype[jnrG+0];
995             vdwjidx0H        = 2*vdwtype[jnrH+0];
996
997             fjx0             = _mm256_setzero_ps();
998             fjy0             = _mm256_setzero_ps();
999             fjz0             = _mm256_setzero_ps();
1000
1001             /**************************
1002              * CALCULATE INTERACTIONS *
1003              **************************/
1004
1005             r00              = _mm256_mul_ps(rsq00,rinv00);
1006
1007             /* Compute parameters for interactions between i and j atoms */
1008             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1009                                             vdwioffsetptr0+vdwjidx0B,
1010                                             vdwioffsetptr0+vdwjidx0C,
1011                                             vdwioffsetptr0+vdwjidx0D,
1012                                             vdwioffsetptr0+vdwjidx0E,
1013                                             vdwioffsetptr0+vdwjidx0F,
1014                                             vdwioffsetptr0+vdwjidx0G,
1015                                             vdwioffsetptr0+vdwjidx0H,
1016                                             &c6_00,&c12_00);
1017
1018             /* Calculate table index by multiplying r with table scale and truncate to integer */
1019             rt               = _mm256_mul_ps(r00,vftabscale);
1020             vfitab           = _mm256_cvttps_epi32(rt);
1021             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1022             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1023             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1024             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1025             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1026             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1027
1028             /* CUBIC SPLINE TABLE DISPERSION */
1029             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1030                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1031             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1032                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1033             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1034                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1035             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1036                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1037             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1038             Heps             = _mm256_mul_ps(vfeps,H);
1039             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1040             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1041             fvdw6            = _mm256_mul_ps(c6_00,FF);
1042
1043             /* CUBIC SPLINE TABLE REPULSION */
1044             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1045             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1046             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1047                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1048             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1049                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1050             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1051                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1052             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1053                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1054             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1055             Heps             = _mm256_mul_ps(vfeps,H);
1056             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1057             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1058             fvdw12           = _mm256_mul_ps(c12_00,FF);
1059             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1060
1061             fscal            = fvdw;
1062
1063             /* Calculate temporary vectorial force */
1064             tx               = _mm256_mul_ps(fscal,dx00);
1065             ty               = _mm256_mul_ps(fscal,dy00);
1066             tz               = _mm256_mul_ps(fscal,dz00);
1067
1068             /* Update vectorial force */
1069             fix0             = _mm256_add_ps(fix0,tx);
1070             fiy0             = _mm256_add_ps(fiy0,ty);
1071             fiz0             = _mm256_add_ps(fiz0,tz);
1072
1073             fjx0             = _mm256_add_ps(fjx0,tx);
1074             fjy0             = _mm256_add_ps(fjy0,ty);
1075             fjz0             = _mm256_add_ps(fjz0,tz);
1076
1077             /**************************
1078              * CALCULATE INTERACTIONS *
1079              **************************/
1080
1081             /* Compute parameters for interactions between i and j atoms */
1082             qq10             = _mm256_mul_ps(iq1,jq0);
1083
1084             /* REACTION-FIELD ELECTROSTATICS */
1085             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1086
1087             fscal            = felec;
1088
1089             /* Calculate temporary vectorial force */
1090             tx               = _mm256_mul_ps(fscal,dx10);
1091             ty               = _mm256_mul_ps(fscal,dy10);
1092             tz               = _mm256_mul_ps(fscal,dz10);
1093
1094             /* Update vectorial force */
1095             fix1             = _mm256_add_ps(fix1,tx);
1096             fiy1             = _mm256_add_ps(fiy1,ty);
1097             fiz1             = _mm256_add_ps(fiz1,tz);
1098
1099             fjx0             = _mm256_add_ps(fjx0,tx);
1100             fjy0             = _mm256_add_ps(fjy0,ty);
1101             fjz0             = _mm256_add_ps(fjz0,tz);
1102
1103             /**************************
1104              * CALCULATE INTERACTIONS *
1105              **************************/
1106
1107             /* Compute parameters for interactions between i and j atoms */
1108             qq20             = _mm256_mul_ps(iq2,jq0);
1109
1110             /* REACTION-FIELD ELECTROSTATICS */
1111             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1112
1113             fscal            = felec;
1114
1115             /* Calculate temporary vectorial force */
1116             tx               = _mm256_mul_ps(fscal,dx20);
1117             ty               = _mm256_mul_ps(fscal,dy20);
1118             tz               = _mm256_mul_ps(fscal,dz20);
1119
1120             /* Update vectorial force */
1121             fix2             = _mm256_add_ps(fix2,tx);
1122             fiy2             = _mm256_add_ps(fiy2,ty);
1123             fiz2             = _mm256_add_ps(fiz2,tz);
1124
1125             fjx0             = _mm256_add_ps(fjx0,tx);
1126             fjy0             = _mm256_add_ps(fjy0,ty);
1127             fjz0             = _mm256_add_ps(fjz0,tz);
1128
1129             /**************************
1130              * CALCULATE INTERACTIONS *
1131              **************************/
1132
1133             /* Compute parameters for interactions between i and j atoms */
1134             qq30             = _mm256_mul_ps(iq3,jq0);
1135
1136             /* REACTION-FIELD ELECTROSTATICS */
1137             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1138
1139             fscal            = felec;
1140
1141             /* Calculate temporary vectorial force */
1142             tx               = _mm256_mul_ps(fscal,dx30);
1143             ty               = _mm256_mul_ps(fscal,dy30);
1144             tz               = _mm256_mul_ps(fscal,dz30);
1145
1146             /* Update vectorial force */
1147             fix3             = _mm256_add_ps(fix3,tx);
1148             fiy3             = _mm256_add_ps(fiy3,ty);
1149             fiz3             = _mm256_add_ps(fiz3,tz);
1150
1151             fjx0             = _mm256_add_ps(fjx0,tx);
1152             fjy0             = _mm256_add_ps(fjy0,ty);
1153             fjz0             = _mm256_add_ps(fjz0,tz);
1154
1155             fjptrA             = f+j_coord_offsetA;
1156             fjptrB             = f+j_coord_offsetB;
1157             fjptrC             = f+j_coord_offsetC;
1158             fjptrD             = f+j_coord_offsetD;
1159             fjptrE             = f+j_coord_offsetE;
1160             fjptrF             = f+j_coord_offsetF;
1161             fjptrG             = f+j_coord_offsetG;
1162             fjptrH             = f+j_coord_offsetH;
1163
1164             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1165
1166             /* Inner loop uses 132 flops */
1167         }
1168
1169         if(jidx<j_index_end)
1170         {
1171
1172             /* Get j neighbor index, and coordinate index */
1173             jnrlistA         = jjnr[jidx];
1174             jnrlistB         = jjnr[jidx+1];
1175             jnrlistC         = jjnr[jidx+2];
1176             jnrlistD         = jjnr[jidx+3];
1177             jnrlistE         = jjnr[jidx+4];
1178             jnrlistF         = jjnr[jidx+5];
1179             jnrlistG         = jjnr[jidx+6];
1180             jnrlistH         = jjnr[jidx+7];
1181             /* Sign of each element will be negative for non-real atoms.
1182              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1183              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1184              */
1185             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1186                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1187                                             
1188             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1189             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1190             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1191             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1192             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1193             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1194             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1195             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1196             j_coord_offsetA  = DIM*jnrA;
1197             j_coord_offsetB  = DIM*jnrB;
1198             j_coord_offsetC  = DIM*jnrC;
1199             j_coord_offsetD  = DIM*jnrD;
1200             j_coord_offsetE  = DIM*jnrE;
1201             j_coord_offsetF  = DIM*jnrF;
1202             j_coord_offsetG  = DIM*jnrG;
1203             j_coord_offsetH  = DIM*jnrH;
1204
1205             /* load j atom coordinates */
1206             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1207                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1208                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1209                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1210                                                  &jx0,&jy0,&jz0);
1211
1212             /* Calculate displacement vector */
1213             dx00             = _mm256_sub_ps(ix0,jx0);
1214             dy00             = _mm256_sub_ps(iy0,jy0);
1215             dz00             = _mm256_sub_ps(iz0,jz0);
1216             dx10             = _mm256_sub_ps(ix1,jx0);
1217             dy10             = _mm256_sub_ps(iy1,jy0);
1218             dz10             = _mm256_sub_ps(iz1,jz0);
1219             dx20             = _mm256_sub_ps(ix2,jx0);
1220             dy20             = _mm256_sub_ps(iy2,jy0);
1221             dz20             = _mm256_sub_ps(iz2,jz0);
1222             dx30             = _mm256_sub_ps(ix3,jx0);
1223             dy30             = _mm256_sub_ps(iy3,jy0);
1224             dz30             = _mm256_sub_ps(iz3,jz0);
1225
1226             /* Calculate squared distance and things based on it */
1227             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1228             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1229             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1230             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1231
1232             rinv00           = avx256_invsqrt_f(rsq00);
1233             rinv10           = avx256_invsqrt_f(rsq10);
1234             rinv20           = avx256_invsqrt_f(rsq20);
1235             rinv30           = avx256_invsqrt_f(rsq30);
1236
1237             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1238             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1239             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1240
1241             /* Load parameters for j particles */
1242             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1243                                                                  charge+jnrC+0,charge+jnrD+0,
1244                                                                  charge+jnrE+0,charge+jnrF+0,
1245                                                                  charge+jnrG+0,charge+jnrH+0);
1246             vdwjidx0A        = 2*vdwtype[jnrA+0];
1247             vdwjidx0B        = 2*vdwtype[jnrB+0];
1248             vdwjidx0C        = 2*vdwtype[jnrC+0];
1249             vdwjidx0D        = 2*vdwtype[jnrD+0];
1250             vdwjidx0E        = 2*vdwtype[jnrE+0];
1251             vdwjidx0F        = 2*vdwtype[jnrF+0];
1252             vdwjidx0G        = 2*vdwtype[jnrG+0];
1253             vdwjidx0H        = 2*vdwtype[jnrH+0];
1254
1255             fjx0             = _mm256_setzero_ps();
1256             fjy0             = _mm256_setzero_ps();
1257             fjz0             = _mm256_setzero_ps();
1258
1259             /**************************
1260              * CALCULATE INTERACTIONS *
1261              **************************/
1262
1263             r00              = _mm256_mul_ps(rsq00,rinv00);
1264             r00              = _mm256_andnot_ps(dummy_mask,r00);
1265
1266             /* Compute parameters for interactions between i and j atoms */
1267             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1268                                             vdwioffsetptr0+vdwjidx0B,
1269                                             vdwioffsetptr0+vdwjidx0C,
1270                                             vdwioffsetptr0+vdwjidx0D,
1271                                             vdwioffsetptr0+vdwjidx0E,
1272                                             vdwioffsetptr0+vdwjidx0F,
1273                                             vdwioffsetptr0+vdwjidx0G,
1274                                             vdwioffsetptr0+vdwjidx0H,
1275                                             &c6_00,&c12_00);
1276
1277             /* Calculate table index by multiplying r with table scale and truncate to integer */
1278             rt               = _mm256_mul_ps(r00,vftabscale);
1279             vfitab           = _mm256_cvttps_epi32(rt);
1280             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1281             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1282             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1283             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1284             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1285             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1286
1287             /* CUBIC SPLINE TABLE DISPERSION */
1288             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1289                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1290             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1291                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1292             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1293                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1294             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1295                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1296             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1297             Heps             = _mm256_mul_ps(vfeps,H);
1298             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1299             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1300             fvdw6            = _mm256_mul_ps(c6_00,FF);
1301
1302             /* CUBIC SPLINE TABLE REPULSION */
1303             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1304             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1305             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1306                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1307             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1308                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1309             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1310                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1311             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1312                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1313             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1314             Heps             = _mm256_mul_ps(vfeps,H);
1315             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1316             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1317             fvdw12           = _mm256_mul_ps(c12_00,FF);
1318             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1319
1320             fscal            = fvdw;
1321
1322             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1323
1324             /* Calculate temporary vectorial force */
1325             tx               = _mm256_mul_ps(fscal,dx00);
1326             ty               = _mm256_mul_ps(fscal,dy00);
1327             tz               = _mm256_mul_ps(fscal,dz00);
1328
1329             /* Update vectorial force */
1330             fix0             = _mm256_add_ps(fix0,tx);
1331             fiy0             = _mm256_add_ps(fiy0,ty);
1332             fiz0             = _mm256_add_ps(fiz0,tz);
1333
1334             fjx0             = _mm256_add_ps(fjx0,tx);
1335             fjy0             = _mm256_add_ps(fjy0,ty);
1336             fjz0             = _mm256_add_ps(fjz0,tz);
1337
1338             /**************************
1339              * CALCULATE INTERACTIONS *
1340              **************************/
1341
1342             /* Compute parameters for interactions between i and j atoms */
1343             qq10             = _mm256_mul_ps(iq1,jq0);
1344
1345             /* REACTION-FIELD ELECTROSTATICS */
1346             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1347
1348             fscal            = felec;
1349
1350             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1351
1352             /* Calculate temporary vectorial force */
1353             tx               = _mm256_mul_ps(fscal,dx10);
1354             ty               = _mm256_mul_ps(fscal,dy10);
1355             tz               = _mm256_mul_ps(fscal,dz10);
1356
1357             /* Update vectorial force */
1358             fix1             = _mm256_add_ps(fix1,tx);
1359             fiy1             = _mm256_add_ps(fiy1,ty);
1360             fiz1             = _mm256_add_ps(fiz1,tz);
1361
1362             fjx0             = _mm256_add_ps(fjx0,tx);
1363             fjy0             = _mm256_add_ps(fjy0,ty);
1364             fjz0             = _mm256_add_ps(fjz0,tz);
1365
1366             /**************************
1367              * CALCULATE INTERACTIONS *
1368              **************************/
1369
1370             /* Compute parameters for interactions between i and j atoms */
1371             qq20             = _mm256_mul_ps(iq2,jq0);
1372
1373             /* REACTION-FIELD ELECTROSTATICS */
1374             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1375
1376             fscal            = felec;
1377
1378             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1379
1380             /* Calculate temporary vectorial force */
1381             tx               = _mm256_mul_ps(fscal,dx20);
1382             ty               = _mm256_mul_ps(fscal,dy20);
1383             tz               = _mm256_mul_ps(fscal,dz20);
1384
1385             /* Update vectorial force */
1386             fix2             = _mm256_add_ps(fix2,tx);
1387             fiy2             = _mm256_add_ps(fiy2,ty);
1388             fiz2             = _mm256_add_ps(fiz2,tz);
1389
1390             fjx0             = _mm256_add_ps(fjx0,tx);
1391             fjy0             = _mm256_add_ps(fjy0,ty);
1392             fjz0             = _mm256_add_ps(fjz0,tz);
1393
1394             /**************************
1395              * CALCULATE INTERACTIONS *
1396              **************************/
1397
1398             /* Compute parameters for interactions between i and j atoms */
1399             qq30             = _mm256_mul_ps(iq3,jq0);
1400
1401             /* REACTION-FIELD ELECTROSTATICS */
1402             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1403
1404             fscal            = felec;
1405
1406             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1407
1408             /* Calculate temporary vectorial force */
1409             tx               = _mm256_mul_ps(fscal,dx30);
1410             ty               = _mm256_mul_ps(fscal,dy30);
1411             tz               = _mm256_mul_ps(fscal,dz30);
1412
1413             /* Update vectorial force */
1414             fix3             = _mm256_add_ps(fix3,tx);
1415             fiy3             = _mm256_add_ps(fiy3,ty);
1416             fiz3             = _mm256_add_ps(fiz3,tz);
1417
1418             fjx0             = _mm256_add_ps(fjx0,tx);
1419             fjy0             = _mm256_add_ps(fjy0,ty);
1420             fjz0             = _mm256_add_ps(fjz0,tz);
1421
1422             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1423             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1424             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1425             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1426             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1427             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1428             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1429             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1430
1431             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1432
1433             /* Inner loop uses 133 flops */
1434         }
1435
1436         /* End of innermost loop */
1437
1438         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1439                                                  f+i_coord_offset,fshift+i_shift_offset);
1440
1441         /* Increment number of inner iterations */
1442         inneriter                  += j_index_end - j_index_start;
1443
1444         /* Outer loop uses 24 flops */
1445     }
1446
1447     /* Increment number of outer iterations */
1448     outeriter        += nri;
1449
1450     /* Update outer/inner flops */
1451
1452     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*133);
1453 }