c34a13fb4c07b69700f39d2fb927804fefd76813
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRF_VdwCSTab_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_256_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
107     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
108     __m256i          vfitab;
109     __m128i          vfitab_lo,vfitab_hi;
110     __m128i          ifour       = _mm_set1_epi32(4);
111     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
112     real             *vftab;
113     __m256           dummy_mask,cutoff_mask;
114     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
115     __m256           one     = _mm256_set1_ps(1.0);
116     __m256           two     = _mm256_set1_ps(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm256_set1_ps(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     krf              = _mm256_set1_ps(fr->ic->k_rf);
131     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
132     crf              = _mm256_set1_ps(fr->ic->c_rf);
133     nvdwtype         = fr->ntype;
134     vdwparam         = fr->nbfp;
135     vdwtype          = mdatoms->typeA;
136
137     vftab            = kernel_data->table_vdw->data;
138     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
139
140     /* Setup water-specific parameters */
141     inr              = nlist->iinr[0];
142     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
143     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
144     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
145     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
146
147     /* Avoid stupid compiler warnings */
148     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
149     j_coord_offsetA = 0;
150     j_coord_offsetB = 0;
151     j_coord_offsetC = 0;
152     j_coord_offsetD = 0;
153     j_coord_offsetE = 0;
154     j_coord_offsetF = 0;
155     j_coord_offsetG = 0;
156     j_coord_offsetH = 0;
157
158     outeriter        = 0;
159     inneriter        = 0;
160
161     for(iidx=0;iidx<4*DIM;iidx++)
162     {
163         scratch[iidx] = 0.0;
164     }
165
166     /* Start outer loop over neighborlists */
167     for(iidx=0; iidx<nri; iidx++)
168     {
169         /* Load shift vector for this list */
170         i_shift_offset   = DIM*shiftidx[iidx];
171
172         /* Load limits for loop over neighbors */
173         j_index_start    = jindex[iidx];
174         j_index_end      = jindex[iidx+1];
175
176         /* Get outer coordinate index */
177         inr              = iinr[iidx];
178         i_coord_offset   = DIM*inr;
179
180         /* Load i particle coords and add shift vector */
181         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
182                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
183
184         fix0             = _mm256_setzero_ps();
185         fiy0             = _mm256_setzero_ps();
186         fiz0             = _mm256_setzero_ps();
187         fix1             = _mm256_setzero_ps();
188         fiy1             = _mm256_setzero_ps();
189         fiz1             = _mm256_setzero_ps();
190         fix2             = _mm256_setzero_ps();
191         fiy2             = _mm256_setzero_ps();
192         fiz2             = _mm256_setzero_ps();
193         fix3             = _mm256_setzero_ps();
194         fiy3             = _mm256_setzero_ps();
195         fiz3             = _mm256_setzero_ps();
196
197         /* Reset potential sums */
198         velecsum         = _mm256_setzero_ps();
199         vvdwsum          = _mm256_setzero_ps();
200
201         /* Start inner kernel loop */
202         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
203         {
204
205             /* Get j neighbor index, and coordinate index */
206             jnrA             = jjnr[jidx];
207             jnrB             = jjnr[jidx+1];
208             jnrC             = jjnr[jidx+2];
209             jnrD             = jjnr[jidx+3];
210             jnrE             = jjnr[jidx+4];
211             jnrF             = jjnr[jidx+5];
212             jnrG             = jjnr[jidx+6];
213             jnrH             = jjnr[jidx+7];
214             j_coord_offsetA  = DIM*jnrA;
215             j_coord_offsetB  = DIM*jnrB;
216             j_coord_offsetC  = DIM*jnrC;
217             j_coord_offsetD  = DIM*jnrD;
218             j_coord_offsetE  = DIM*jnrE;
219             j_coord_offsetF  = DIM*jnrF;
220             j_coord_offsetG  = DIM*jnrG;
221             j_coord_offsetH  = DIM*jnrH;
222
223             /* load j atom coordinates */
224             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
225                                                  x+j_coord_offsetC,x+j_coord_offsetD,
226                                                  x+j_coord_offsetE,x+j_coord_offsetF,
227                                                  x+j_coord_offsetG,x+j_coord_offsetH,
228                                                  &jx0,&jy0,&jz0);
229
230             /* Calculate displacement vector */
231             dx00             = _mm256_sub_ps(ix0,jx0);
232             dy00             = _mm256_sub_ps(iy0,jy0);
233             dz00             = _mm256_sub_ps(iz0,jz0);
234             dx10             = _mm256_sub_ps(ix1,jx0);
235             dy10             = _mm256_sub_ps(iy1,jy0);
236             dz10             = _mm256_sub_ps(iz1,jz0);
237             dx20             = _mm256_sub_ps(ix2,jx0);
238             dy20             = _mm256_sub_ps(iy2,jy0);
239             dz20             = _mm256_sub_ps(iz2,jz0);
240             dx30             = _mm256_sub_ps(ix3,jx0);
241             dy30             = _mm256_sub_ps(iy3,jy0);
242             dz30             = _mm256_sub_ps(iz3,jz0);
243
244             /* Calculate squared distance and things based on it */
245             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
246             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
247             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
248             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
249
250             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
251             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
252             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
253             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
254
255             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
256             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
257             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
258
259             /* Load parameters for j particles */
260             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
261                                                                  charge+jnrC+0,charge+jnrD+0,
262                                                                  charge+jnrE+0,charge+jnrF+0,
263                                                                  charge+jnrG+0,charge+jnrH+0);
264             vdwjidx0A        = 2*vdwtype[jnrA+0];
265             vdwjidx0B        = 2*vdwtype[jnrB+0];
266             vdwjidx0C        = 2*vdwtype[jnrC+0];
267             vdwjidx0D        = 2*vdwtype[jnrD+0];
268             vdwjidx0E        = 2*vdwtype[jnrE+0];
269             vdwjidx0F        = 2*vdwtype[jnrF+0];
270             vdwjidx0G        = 2*vdwtype[jnrG+0];
271             vdwjidx0H        = 2*vdwtype[jnrH+0];
272
273             fjx0             = _mm256_setzero_ps();
274             fjy0             = _mm256_setzero_ps();
275             fjz0             = _mm256_setzero_ps();
276
277             /**************************
278              * CALCULATE INTERACTIONS *
279              **************************/
280
281             r00              = _mm256_mul_ps(rsq00,rinv00);
282
283             /* Compute parameters for interactions between i and j atoms */
284             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
285                                             vdwioffsetptr0+vdwjidx0B,
286                                             vdwioffsetptr0+vdwjidx0C,
287                                             vdwioffsetptr0+vdwjidx0D,
288                                             vdwioffsetptr0+vdwjidx0E,
289                                             vdwioffsetptr0+vdwjidx0F,
290                                             vdwioffsetptr0+vdwjidx0G,
291                                             vdwioffsetptr0+vdwjidx0H,
292                                             &c6_00,&c12_00);
293
294             /* Calculate table index by multiplying r with table scale and truncate to integer */
295             rt               = _mm256_mul_ps(r00,vftabscale);
296             vfitab           = _mm256_cvttps_epi32(rt);
297             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
298             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
299             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
300             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
301             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
302             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
303
304             /* CUBIC SPLINE TABLE DISPERSION */
305             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
306                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
307             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
308                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
309             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
310                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
311             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
312                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
313             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
314             Heps             = _mm256_mul_ps(vfeps,H);
315             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
316             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
317             vvdw6            = _mm256_mul_ps(c6_00,VV);
318             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
319             fvdw6            = _mm256_mul_ps(c6_00,FF);
320
321             /* CUBIC SPLINE TABLE REPULSION */
322             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
323             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
324             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
325                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
326             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
327                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
328             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
329                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
330             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
331                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
332             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
333             Heps             = _mm256_mul_ps(vfeps,H);
334             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
335             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
336             vvdw12           = _mm256_mul_ps(c12_00,VV);
337             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
338             fvdw12           = _mm256_mul_ps(c12_00,FF);
339             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
340             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
341
342             /* Update potential sum for this i atom from the interaction with this j atom. */
343             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
344
345             fscal            = fvdw;
346
347             /* Calculate temporary vectorial force */
348             tx               = _mm256_mul_ps(fscal,dx00);
349             ty               = _mm256_mul_ps(fscal,dy00);
350             tz               = _mm256_mul_ps(fscal,dz00);
351
352             /* Update vectorial force */
353             fix0             = _mm256_add_ps(fix0,tx);
354             fiy0             = _mm256_add_ps(fiy0,ty);
355             fiz0             = _mm256_add_ps(fiz0,tz);
356
357             fjx0             = _mm256_add_ps(fjx0,tx);
358             fjy0             = _mm256_add_ps(fjy0,ty);
359             fjz0             = _mm256_add_ps(fjz0,tz);
360
361             /**************************
362              * CALCULATE INTERACTIONS *
363              **************************/
364
365             /* Compute parameters for interactions between i and j atoms */
366             qq10             = _mm256_mul_ps(iq1,jq0);
367
368             /* REACTION-FIELD ELECTROSTATICS */
369             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
370             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velecsum         = _mm256_add_ps(velecsum,velec);
374
375             fscal            = felec;
376
377             /* Calculate temporary vectorial force */
378             tx               = _mm256_mul_ps(fscal,dx10);
379             ty               = _mm256_mul_ps(fscal,dy10);
380             tz               = _mm256_mul_ps(fscal,dz10);
381
382             /* Update vectorial force */
383             fix1             = _mm256_add_ps(fix1,tx);
384             fiy1             = _mm256_add_ps(fiy1,ty);
385             fiz1             = _mm256_add_ps(fiz1,tz);
386
387             fjx0             = _mm256_add_ps(fjx0,tx);
388             fjy0             = _mm256_add_ps(fjy0,ty);
389             fjz0             = _mm256_add_ps(fjz0,tz);
390
391             /**************************
392              * CALCULATE INTERACTIONS *
393              **************************/
394
395             /* Compute parameters for interactions between i and j atoms */
396             qq20             = _mm256_mul_ps(iq2,jq0);
397
398             /* REACTION-FIELD ELECTROSTATICS */
399             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
400             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
401
402             /* Update potential sum for this i atom from the interaction with this j atom. */
403             velecsum         = _mm256_add_ps(velecsum,velec);
404
405             fscal            = felec;
406
407             /* Calculate temporary vectorial force */
408             tx               = _mm256_mul_ps(fscal,dx20);
409             ty               = _mm256_mul_ps(fscal,dy20);
410             tz               = _mm256_mul_ps(fscal,dz20);
411
412             /* Update vectorial force */
413             fix2             = _mm256_add_ps(fix2,tx);
414             fiy2             = _mm256_add_ps(fiy2,ty);
415             fiz2             = _mm256_add_ps(fiz2,tz);
416
417             fjx0             = _mm256_add_ps(fjx0,tx);
418             fjy0             = _mm256_add_ps(fjy0,ty);
419             fjz0             = _mm256_add_ps(fjz0,tz);
420
421             /**************************
422              * CALCULATE INTERACTIONS *
423              **************************/
424
425             /* Compute parameters for interactions between i and j atoms */
426             qq30             = _mm256_mul_ps(iq3,jq0);
427
428             /* REACTION-FIELD ELECTROSTATICS */
429             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
430             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
431
432             /* Update potential sum for this i atom from the interaction with this j atom. */
433             velecsum         = _mm256_add_ps(velecsum,velec);
434
435             fscal            = felec;
436
437             /* Calculate temporary vectorial force */
438             tx               = _mm256_mul_ps(fscal,dx30);
439             ty               = _mm256_mul_ps(fscal,dy30);
440             tz               = _mm256_mul_ps(fscal,dz30);
441
442             /* Update vectorial force */
443             fix3             = _mm256_add_ps(fix3,tx);
444             fiy3             = _mm256_add_ps(fiy3,ty);
445             fiz3             = _mm256_add_ps(fiz3,tz);
446
447             fjx0             = _mm256_add_ps(fjx0,tx);
448             fjy0             = _mm256_add_ps(fjy0,ty);
449             fjz0             = _mm256_add_ps(fjz0,tz);
450
451             fjptrA             = f+j_coord_offsetA;
452             fjptrB             = f+j_coord_offsetB;
453             fjptrC             = f+j_coord_offsetC;
454             fjptrD             = f+j_coord_offsetD;
455             fjptrE             = f+j_coord_offsetE;
456             fjptrF             = f+j_coord_offsetF;
457             fjptrG             = f+j_coord_offsetG;
458             fjptrH             = f+j_coord_offsetH;
459
460             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
461
462             /* Inner loop uses 155 flops */
463         }
464
465         if(jidx<j_index_end)
466         {
467
468             /* Get j neighbor index, and coordinate index */
469             jnrlistA         = jjnr[jidx];
470             jnrlistB         = jjnr[jidx+1];
471             jnrlistC         = jjnr[jidx+2];
472             jnrlistD         = jjnr[jidx+3];
473             jnrlistE         = jjnr[jidx+4];
474             jnrlistF         = jjnr[jidx+5];
475             jnrlistG         = jjnr[jidx+6];
476             jnrlistH         = jjnr[jidx+7];
477             /* Sign of each element will be negative for non-real atoms.
478              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
479              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
480              */
481             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
482                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
483                                             
484             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
485             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
486             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
487             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
488             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
489             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
490             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
491             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
492             j_coord_offsetA  = DIM*jnrA;
493             j_coord_offsetB  = DIM*jnrB;
494             j_coord_offsetC  = DIM*jnrC;
495             j_coord_offsetD  = DIM*jnrD;
496             j_coord_offsetE  = DIM*jnrE;
497             j_coord_offsetF  = DIM*jnrF;
498             j_coord_offsetG  = DIM*jnrG;
499             j_coord_offsetH  = DIM*jnrH;
500
501             /* load j atom coordinates */
502             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
503                                                  x+j_coord_offsetC,x+j_coord_offsetD,
504                                                  x+j_coord_offsetE,x+j_coord_offsetF,
505                                                  x+j_coord_offsetG,x+j_coord_offsetH,
506                                                  &jx0,&jy0,&jz0);
507
508             /* Calculate displacement vector */
509             dx00             = _mm256_sub_ps(ix0,jx0);
510             dy00             = _mm256_sub_ps(iy0,jy0);
511             dz00             = _mm256_sub_ps(iz0,jz0);
512             dx10             = _mm256_sub_ps(ix1,jx0);
513             dy10             = _mm256_sub_ps(iy1,jy0);
514             dz10             = _mm256_sub_ps(iz1,jz0);
515             dx20             = _mm256_sub_ps(ix2,jx0);
516             dy20             = _mm256_sub_ps(iy2,jy0);
517             dz20             = _mm256_sub_ps(iz2,jz0);
518             dx30             = _mm256_sub_ps(ix3,jx0);
519             dy30             = _mm256_sub_ps(iy3,jy0);
520             dz30             = _mm256_sub_ps(iz3,jz0);
521
522             /* Calculate squared distance and things based on it */
523             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
524             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
525             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
526             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
527
528             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
529             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
530             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
531             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
532
533             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
534             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
535             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
536
537             /* Load parameters for j particles */
538             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
539                                                                  charge+jnrC+0,charge+jnrD+0,
540                                                                  charge+jnrE+0,charge+jnrF+0,
541                                                                  charge+jnrG+0,charge+jnrH+0);
542             vdwjidx0A        = 2*vdwtype[jnrA+0];
543             vdwjidx0B        = 2*vdwtype[jnrB+0];
544             vdwjidx0C        = 2*vdwtype[jnrC+0];
545             vdwjidx0D        = 2*vdwtype[jnrD+0];
546             vdwjidx0E        = 2*vdwtype[jnrE+0];
547             vdwjidx0F        = 2*vdwtype[jnrF+0];
548             vdwjidx0G        = 2*vdwtype[jnrG+0];
549             vdwjidx0H        = 2*vdwtype[jnrH+0];
550
551             fjx0             = _mm256_setzero_ps();
552             fjy0             = _mm256_setzero_ps();
553             fjz0             = _mm256_setzero_ps();
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             r00              = _mm256_mul_ps(rsq00,rinv00);
560             r00              = _mm256_andnot_ps(dummy_mask,r00);
561
562             /* Compute parameters for interactions between i and j atoms */
563             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
564                                             vdwioffsetptr0+vdwjidx0B,
565                                             vdwioffsetptr0+vdwjidx0C,
566                                             vdwioffsetptr0+vdwjidx0D,
567                                             vdwioffsetptr0+vdwjidx0E,
568                                             vdwioffsetptr0+vdwjidx0F,
569                                             vdwioffsetptr0+vdwjidx0G,
570                                             vdwioffsetptr0+vdwjidx0H,
571                                             &c6_00,&c12_00);
572
573             /* Calculate table index by multiplying r with table scale and truncate to integer */
574             rt               = _mm256_mul_ps(r00,vftabscale);
575             vfitab           = _mm256_cvttps_epi32(rt);
576             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
577             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
578             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
579             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
580             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
581             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
582
583             /* CUBIC SPLINE TABLE DISPERSION */
584             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
585                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
586             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
587                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
588             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
589                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
590             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
591                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
592             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
593             Heps             = _mm256_mul_ps(vfeps,H);
594             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
595             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
596             vvdw6            = _mm256_mul_ps(c6_00,VV);
597             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
598             fvdw6            = _mm256_mul_ps(c6_00,FF);
599
600             /* CUBIC SPLINE TABLE REPULSION */
601             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
602             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
603             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
604                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
605             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
606                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
607             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
608                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
609             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
610                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
611             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
612             Heps             = _mm256_mul_ps(vfeps,H);
613             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
614             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
615             vvdw12           = _mm256_mul_ps(c12_00,VV);
616             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
617             fvdw12           = _mm256_mul_ps(c12_00,FF);
618             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
619             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
620
621             /* Update potential sum for this i atom from the interaction with this j atom. */
622             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
623             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
624
625             fscal            = fvdw;
626
627             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
628
629             /* Calculate temporary vectorial force */
630             tx               = _mm256_mul_ps(fscal,dx00);
631             ty               = _mm256_mul_ps(fscal,dy00);
632             tz               = _mm256_mul_ps(fscal,dz00);
633
634             /* Update vectorial force */
635             fix0             = _mm256_add_ps(fix0,tx);
636             fiy0             = _mm256_add_ps(fiy0,ty);
637             fiz0             = _mm256_add_ps(fiz0,tz);
638
639             fjx0             = _mm256_add_ps(fjx0,tx);
640             fjy0             = _mm256_add_ps(fjy0,ty);
641             fjz0             = _mm256_add_ps(fjz0,tz);
642
643             /**************************
644              * CALCULATE INTERACTIONS *
645              **************************/
646
647             /* Compute parameters for interactions between i and j atoms */
648             qq10             = _mm256_mul_ps(iq1,jq0);
649
650             /* REACTION-FIELD ELECTROSTATICS */
651             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
652             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
653
654             /* Update potential sum for this i atom from the interaction with this j atom. */
655             velec            = _mm256_andnot_ps(dummy_mask,velec);
656             velecsum         = _mm256_add_ps(velecsum,velec);
657
658             fscal            = felec;
659
660             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
661
662             /* Calculate temporary vectorial force */
663             tx               = _mm256_mul_ps(fscal,dx10);
664             ty               = _mm256_mul_ps(fscal,dy10);
665             tz               = _mm256_mul_ps(fscal,dz10);
666
667             /* Update vectorial force */
668             fix1             = _mm256_add_ps(fix1,tx);
669             fiy1             = _mm256_add_ps(fiy1,ty);
670             fiz1             = _mm256_add_ps(fiz1,tz);
671
672             fjx0             = _mm256_add_ps(fjx0,tx);
673             fjy0             = _mm256_add_ps(fjy0,ty);
674             fjz0             = _mm256_add_ps(fjz0,tz);
675
676             /**************************
677              * CALCULATE INTERACTIONS *
678              **************************/
679
680             /* Compute parameters for interactions between i and j atoms */
681             qq20             = _mm256_mul_ps(iq2,jq0);
682
683             /* REACTION-FIELD ELECTROSTATICS */
684             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
685             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
686
687             /* Update potential sum for this i atom from the interaction with this j atom. */
688             velec            = _mm256_andnot_ps(dummy_mask,velec);
689             velecsum         = _mm256_add_ps(velecsum,velec);
690
691             fscal            = felec;
692
693             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
694
695             /* Calculate temporary vectorial force */
696             tx               = _mm256_mul_ps(fscal,dx20);
697             ty               = _mm256_mul_ps(fscal,dy20);
698             tz               = _mm256_mul_ps(fscal,dz20);
699
700             /* Update vectorial force */
701             fix2             = _mm256_add_ps(fix2,tx);
702             fiy2             = _mm256_add_ps(fiy2,ty);
703             fiz2             = _mm256_add_ps(fiz2,tz);
704
705             fjx0             = _mm256_add_ps(fjx0,tx);
706             fjy0             = _mm256_add_ps(fjy0,ty);
707             fjz0             = _mm256_add_ps(fjz0,tz);
708
709             /**************************
710              * CALCULATE INTERACTIONS *
711              **************************/
712
713             /* Compute parameters for interactions between i and j atoms */
714             qq30             = _mm256_mul_ps(iq3,jq0);
715
716             /* REACTION-FIELD ELECTROSTATICS */
717             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
718             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
719
720             /* Update potential sum for this i atom from the interaction with this j atom. */
721             velec            = _mm256_andnot_ps(dummy_mask,velec);
722             velecsum         = _mm256_add_ps(velecsum,velec);
723
724             fscal            = felec;
725
726             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
727
728             /* Calculate temporary vectorial force */
729             tx               = _mm256_mul_ps(fscal,dx30);
730             ty               = _mm256_mul_ps(fscal,dy30);
731             tz               = _mm256_mul_ps(fscal,dz30);
732
733             /* Update vectorial force */
734             fix3             = _mm256_add_ps(fix3,tx);
735             fiy3             = _mm256_add_ps(fiy3,ty);
736             fiz3             = _mm256_add_ps(fiz3,tz);
737
738             fjx0             = _mm256_add_ps(fjx0,tx);
739             fjy0             = _mm256_add_ps(fjy0,ty);
740             fjz0             = _mm256_add_ps(fjz0,tz);
741
742             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
743             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
744             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
745             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
746             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
747             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
748             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
749             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
750
751             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
752
753             /* Inner loop uses 156 flops */
754         }
755
756         /* End of innermost loop */
757
758         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
759                                                  f+i_coord_offset,fshift+i_shift_offset);
760
761         ggid                        = gid[iidx];
762         /* Update potential energies */
763         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
764         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
765
766         /* Increment number of inner iterations */
767         inneriter                  += j_index_end - j_index_start;
768
769         /* Outer loop uses 26 flops */
770     }
771
772     /* Increment number of outer iterations */
773     outeriter        += nri;
774
775     /* Update outer/inner flops */
776
777     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*156);
778 }
779 /*
780  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_256_single
781  * Electrostatics interaction: ReactionField
782  * VdW interaction:            CubicSplineTable
783  * Geometry:                   Water4-Particle
784  * Calculate force/pot:        Force
785  */
786 void
787 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_256_single
788                     (t_nblist                    * gmx_restrict       nlist,
789                      rvec                        * gmx_restrict          xx,
790                      rvec                        * gmx_restrict          ff,
791                      t_forcerec                  * gmx_restrict          fr,
792                      t_mdatoms                   * gmx_restrict     mdatoms,
793                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
794                      t_nrnb                      * gmx_restrict        nrnb)
795 {
796     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
797      * just 0 for non-waters.
798      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
799      * jnr indices corresponding to data put in the four positions in the SIMD register.
800      */
801     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
802     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
803     int              jnrA,jnrB,jnrC,jnrD;
804     int              jnrE,jnrF,jnrG,jnrH;
805     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
806     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
807     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
808     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
809     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
810     real             rcutoff_scalar;
811     real             *shiftvec,*fshift,*x,*f;
812     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
813     real             scratch[4*DIM];
814     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
815     real *           vdwioffsetptr0;
816     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
817     real *           vdwioffsetptr1;
818     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
819     real *           vdwioffsetptr2;
820     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
821     real *           vdwioffsetptr3;
822     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
823     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
824     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
825     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
826     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
827     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
828     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
829     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
830     real             *charge;
831     int              nvdwtype;
832     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
833     int              *vdwtype;
834     real             *vdwparam;
835     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
836     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
837     __m256i          vfitab;
838     __m128i          vfitab_lo,vfitab_hi;
839     __m128i          ifour       = _mm_set1_epi32(4);
840     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
841     real             *vftab;
842     __m256           dummy_mask,cutoff_mask;
843     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
844     __m256           one     = _mm256_set1_ps(1.0);
845     __m256           two     = _mm256_set1_ps(2.0);
846     x                = xx[0];
847     f                = ff[0];
848
849     nri              = nlist->nri;
850     iinr             = nlist->iinr;
851     jindex           = nlist->jindex;
852     jjnr             = nlist->jjnr;
853     shiftidx         = nlist->shift;
854     gid              = nlist->gid;
855     shiftvec         = fr->shift_vec[0];
856     fshift           = fr->fshift[0];
857     facel            = _mm256_set1_ps(fr->epsfac);
858     charge           = mdatoms->chargeA;
859     krf              = _mm256_set1_ps(fr->ic->k_rf);
860     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
861     crf              = _mm256_set1_ps(fr->ic->c_rf);
862     nvdwtype         = fr->ntype;
863     vdwparam         = fr->nbfp;
864     vdwtype          = mdatoms->typeA;
865
866     vftab            = kernel_data->table_vdw->data;
867     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
868
869     /* Setup water-specific parameters */
870     inr              = nlist->iinr[0];
871     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
872     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
873     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
874     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
875
876     /* Avoid stupid compiler warnings */
877     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
878     j_coord_offsetA = 0;
879     j_coord_offsetB = 0;
880     j_coord_offsetC = 0;
881     j_coord_offsetD = 0;
882     j_coord_offsetE = 0;
883     j_coord_offsetF = 0;
884     j_coord_offsetG = 0;
885     j_coord_offsetH = 0;
886
887     outeriter        = 0;
888     inneriter        = 0;
889
890     for(iidx=0;iidx<4*DIM;iidx++)
891     {
892         scratch[iidx] = 0.0;
893     }
894
895     /* Start outer loop over neighborlists */
896     for(iidx=0; iidx<nri; iidx++)
897     {
898         /* Load shift vector for this list */
899         i_shift_offset   = DIM*shiftidx[iidx];
900
901         /* Load limits for loop over neighbors */
902         j_index_start    = jindex[iidx];
903         j_index_end      = jindex[iidx+1];
904
905         /* Get outer coordinate index */
906         inr              = iinr[iidx];
907         i_coord_offset   = DIM*inr;
908
909         /* Load i particle coords and add shift vector */
910         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
911                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
912
913         fix0             = _mm256_setzero_ps();
914         fiy0             = _mm256_setzero_ps();
915         fiz0             = _mm256_setzero_ps();
916         fix1             = _mm256_setzero_ps();
917         fiy1             = _mm256_setzero_ps();
918         fiz1             = _mm256_setzero_ps();
919         fix2             = _mm256_setzero_ps();
920         fiy2             = _mm256_setzero_ps();
921         fiz2             = _mm256_setzero_ps();
922         fix3             = _mm256_setzero_ps();
923         fiy3             = _mm256_setzero_ps();
924         fiz3             = _mm256_setzero_ps();
925
926         /* Start inner kernel loop */
927         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
928         {
929
930             /* Get j neighbor index, and coordinate index */
931             jnrA             = jjnr[jidx];
932             jnrB             = jjnr[jidx+1];
933             jnrC             = jjnr[jidx+2];
934             jnrD             = jjnr[jidx+3];
935             jnrE             = jjnr[jidx+4];
936             jnrF             = jjnr[jidx+5];
937             jnrG             = jjnr[jidx+6];
938             jnrH             = jjnr[jidx+7];
939             j_coord_offsetA  = DIM*jnrA;
940             j_coord_offsetB  = DIM*jnrB;
941             j_coord_offsetC  = DIM*jnrC;
942             j_coord_offsetD  = DIM*jnrD;
943             j_coord_offsetE  = DIM*jnrE;
944             j_coord_offsetF  = DIM*jnrF;
945             j_coord_offsetG  = DIM*jnrG;
946             j_coord_offsetH  = DIM*jnrH;
947
948             /* load j atom coordinates */
949             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
950                                                  x+j_coord_offsetC,x+j_coord_offsetD,
951                                                  x+j_coord_offsetE,x+j_coord_offsetF,
952                                                  x+j_coord_offsetG,x+j_coord_offsetH,
953                                                  &jx0,&jy0,&jz0);
954
955             /* Calculate displacement vector */
956             dx00             = _mm256_sub_ps(ix0,jx0);
957             dy00             = _mm256_sub_ps(iy0,jy0);
958             dz00             = _mm256_sub_ps(iz0,jz0);
959             dx10             = _mm256_sub_ps(ix1,jx0);
960             dy10             = _mm256_sub_ps(iy1,jy0);
961             dz10             = _mm256_sub_ps(iz1,jz0);
962             dx20             = _mm256_sub_ps(ix2,jx0);
963             dy20             = _mm256_sub_ps(iy2,jy0);
964             dz20             = _mm256_sub_ps(iz2,jz0);
965             dx30             = _mm256_sub_ps(ix3,jx0);
966             dy30             = _mm256_sub_ps(iy3,jy0);
967             dz30             = _mm256_sub_ps(iz3,jz0);
968
969             /* Calculate squared distance and things based on it */
970             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
971             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
972             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
973             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
974
975             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
976             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
977             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
978             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
979
980             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
981             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
982             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
983
984             /* Load parameters for j particles */
985             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
986                                                                  charge+jnrC+0,charge+jnrD+0,
987                                                                  charge+jnrE+0,charge+jnrF+0,
988                                                                  charge+jnrG+0,charge+jnrH+0);
989             vdwjidx0A        = 2*vdwtype[jnrA+0];
990             vdwjidx0B        = 2*vdwtype[jnrB+0];
991             vdwjidx0C        = 2*vdwtype[jnrC+0];
992             vdwjidx0D        = 2*vdwtype[jnrD+0];
993             vdwjidx0E        = 2*vdwtype[jnrE+0];
994             vdwjidx0F        = 2*vdwtype[jnrF+0];
995             vdwjidx0G        = 2*vdwtype[jnrG+0];
996             vdwjidx0H        = 2*vdwtype[jnrH+0];
997
998             fjx0             = _mm256_setzero_ps();
999             fjy0             = _mm256_setzero_ps();
1000             fjz0             = _mm256_setzero_ps();
1001
1002             /**************************
1003              * CALCULATE INTERACTIONS *
1004              **************************/
1005
1006             r00              = _mm256_mul_ps(rsq00,rinv00);
1007
1008             /* Compute parameters for interactions between i and j atoms */
1009             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1010                                             vdwioffsetptr0+vdwjidx0B,
1011                                             vdwioffsetptr0+vdwjidx0C,
1012                                             vdwioffsetptr0+vdwjidx0D,
1013                                             vdwioffsetptr0+vdwjidx0E,
1014                                             vdwioffsetptr0+vdwjidx0F,
1015                                             vdwioffsetptr0+vdwjidx0G,
1016                                             vdwioffsetptr0+vdwjidx0H,
1017                                             &c6_00,&c12_00);
1018
1019             /* Calculate table index by multiplying r with table scale and truncate to integer */
1020             rt               = _mm256_mul_ps(r00,vftabscale);
1021             vfitab           = _mm256_cvttps_epi32(rt);
1022             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1023             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1024             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1025             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1026             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1027             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1028
1029             /* CUBIC SPLINE TABLE DISPERSION */
1030             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1031                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1032             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1033                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1034             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1035                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1036             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1037                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1038             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1039             Heps             = _mm256_mul_ps(vfeps,H);
1040             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1041             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1042             fvdw6            = _mm256_mul_ps(c6_00,FF);
1043
1044             /* CUBIC SPLINE TABLE REPULSION */
1045             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1046             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1047             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1048                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1049             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1050                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1051             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1052                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1053             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1054                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1055             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1056             Heps             = _mm256_mul_ps(vfeps,H);
1057             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1058             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1059             fvdw12           = _mm256_mul_ps(c12_00,FF);
1060             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1061
1062             fscal            = fvdw;
1063
1064             /* Calculate temporary vectorial force */
1065             tx               = _mm256_mul_ps(fscal,dx00);
1066             ty               = _mm256_mul_ps(fscal,dy00);
1067             tz               = _mm256_mul_ps(fscal,dz00);
1068
1069             /* Update vectorial force */
1070             fix0             = _mm256_add_ps(fix0,tx);
1071             fiy0             = _mm256_add_ps(fiy0,ty);
1072             fiz0             = _mm256_add_ps(fiz0,tz);
1073
1074             fjx0             = _mm256_add_ps(fjx0,tx);
1075             fjy0             = _mm256_add_ps(fjy0,ty);
1076             fjz0             = _mm256_add_ps(fjz0,tz);
1077
1078             /**************************
1079              * CALCULATE INTERACTIONS *
1080              **************************/
1081
1082             /* Compute parameters for interactions between i and j atoms */
1083             qq10             = _mm256_mul_ps(iq1,jq0);
1084
1085             /* REACTION-FIELD ELECTROSTATICS */
1086             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1087
1088             fscal            = felec;
1089
1090             /* Calculate temporary vectorial force */
1091             tx               = _mm256_mul_ps(fscal,dx10);
1092             ty               = _mm256_mul_ps(fscal,dy10);
1093             tz               = _mm256_mul_ps(fscal,dz10);
1094
1095             /* Update vectorial force */
1096             fix1             = _mm256_add_ps(fix1,tx);
1097             fiy1             = _mm256_add_ps(fiy1,ty);
1098             fiz1             = _mm256_add_ps(fiz1,tz);
1099
1100             fjx0             = _mm256_add_ps(fjx0,tx);
1101             fjy0             = _mm256_add_ps(fjy0,ty);
1102             fjz0             = _mm256_add_ps(fjz0,tz);
1103
1104             /**************************
1105              * CALCULATE INTERACTIONS *
1106              **************************/
1107
1108             /* Compute parameters for interactions between i and j atoms */
1109             qq20             = _mm256_mul_ps(iq2,jq0);
1110
1111             /* REACTION-FIELD ELECTROSTATICS */
1112             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1113
1114             fscal            = felec;
1115
1116             /* Calculate temporary vectorial force */
1117             tx               = _mm256_mul_ps(fscal,dx20);
1118             ty               = _mm256_mul_ps(fscal,dy20);
1119             tz               = _mm256_mul_ps(fscal,dz20);
1120
1121             /* Update vectorial force */
1122             fix2             = _mm256_add_ps(fix2,tx);
1123             fiy2             = _mm256_add_ps(fiy2,ty);
1124             fiz2             = _mm256_add_ps(fiz2,tz);
1125
1126             fjx0             = _mm256_add_ps(fjx0,tx);
1127             fjy0             = _mm256_add_ps(fjy0,ty);
1128             fjz0             = _mm256_add_ps(fjz0,tz);
1129
1130             /**************************
1131              * CALCULATE INTERACTIONS *
1132              **************************/
1133
1134             /* Compute parameters for interactions between i and j atoms */
1135             qq30             = _mm256_mul_ps(iq3,jq0);
1136
1137             /* REACTION-FIELD ELECTROSTATICS */
1138             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1139
1140             fscal            = felec;
1141
1142             /* Calculate temporary vectorial force */
1143             tx               = _mm256_mul_ps(fscal,dx30);
1144             ty               = _mm256_mul_ps(fscal,dy30);
1145             tz               = _mm256_mul_ps(fscal,dz30);
1146
1147             /* Update vectorial force */
1148             fix3             = _mm256_add_ps(fix3,tx);
1149             fiy3             = _mm256_add_ps(fiy3,ty);
1150             fiz3             = _mm256_add_ps(fiz3,tz);
1151
1152             fjx0             = _mm256_add_ps(fjx0,tx);
1153             fjy0             = _mm256_add_ps(fjy0,ty);
1154             fjz0             = _mm256_add_ps(fjz0,tz);
1155
1156             fjptrA             = f+j_coord_offsetA;
1157             fjptrB             = f+j_coord_offsetB;
1158             fjptrC             = f+j_coord_offsetC;
1159             fjptrD             = f+j_coord_offsetD;
1160             fjptrE             = f+j_coord_offsetE;
1161             fjptrF             = f+j_coord_offsetF;
1162             fjptrG             = f+j_coord_offsetG;
1163             fjptrH             = f+j_coord_offsetH;
1164
1165             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1166
1167             /* Inner loop uses 132 flops */
1168         }
1169
1170         if(jidx<j_index_end)
1171         {
1172
1173             /* Get j neighbor index, and coordinate index */
1174             jnrlistA         = jjnr[jidx];
1175             jnrlistB         = jjnr[jidx+1];
1176             jnrlistC         = jjnr[jidx+2];
1177             jnrlistD         = jjnr[jidx+3];
1178             jnrlistE         = jjnr[jidx+4];
1179             jnrlistF         = jjnr[jidx+5];
1180             jnrlistG         = jjnr[jidx+6];
1181             jnrlistH         = jjnr[jidx+7];
1182             /* Sign of each element will be negative for non-real atoms.
1183              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1184              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1185              */
1186             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1187                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1188                                             
1189             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1190             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1191             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1192             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1193             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1194             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1195             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1196             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1197             j_coord_offsetA  = DIM*jnrA;
1198             j_coord_offsetB  = DIM*jnrB;
1199             j_coord_offsetC  = DIM*jnrC;
1200             j_coord_offsetD  = DIM*jnrD;
1201             j_coord_offsetE  = DIM*jnrE;
1202             j_coord_offsetF  = DIM*jnrF;
1203             j_coord_offsetG  = DIM*jnrG;
1204             j_coord_offsetH  = DIM*jnrH;
1205
1206             /* load j atom coordinates */
1207             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1208                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1209                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1210                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1211                                                  &jx0,&jy0,&jz0);
1212
1213             /* Calculate displacement vector */
1214             dx00             = _mm256_sub_ps(ix0,jx0);
1215             dy00             = _mm256_sub_ps(iy0,jy0);
1216             dz00             = _mm256_sub_ps(iz0,jz0);
1217             dx10             = _mm256_sub_ps(ix1,jx0);
1218             dy10             = _mm256_sub_ps(iy1,jy0);
1219             dz10             = _mm256_sub_ps(iz1,jz0);
1220             dx20             = _mm256_sub_ps(ix2,jx0);
1221             dy20             = _mm256_sub_ps(iy2,jy0);
1222             dz20             = _mm256_sub_ps(iz2,jz0);
1223             dx30             = _mm256_sub_ps(ix3,jx0);
1224             dy30             = _mm256_sub_ps(iy3,jy0);
1225             dz30             = _mm256_sub_ps(iz3,jz0);
1226
1227             /* Calculate squared distance and things based on it */
1228             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1229             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1230             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1231             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1232
1233             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1234             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1235             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1236             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1237
1238             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1239             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1240             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1241
1242             /* Load parameters for j particles */
1243             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1244                                                                  charge+jnrC+0,charge+jnrD+0,
1245                                                                  charge+jnrE+0,charge+jnrF+0,
1246                                                                  charge+jnrG+0,charge+jnrH+0);
1247             vdwjidx0A        = 2*vdwtype[jnrA+0];
1248             vdwjidx0B        = 2*vdwtype[jnrB+0];
1249             vdwjidx0C        = 2*vdwtype[jnrC+0];
1250             vdwjidx0D        = 2*vdwtype[jnrD+0];
1251             vdwjidx0E        = 2*vdwtype[jnrE+0];
1252             vdwjidx0F        = 2*vdwtype[jnrF+0];
1253             vdwjidx0G        = 2*vdwtype[jnrG+0];
1254             vdwjidx0H        = 2*vdwtype[jnrH+0];
1255
1256             fjx0             = _mm256_setzero_ps();
1257             fjy0             = _mm256_setzero_ps();
1258             fjz0             = _mm256_setzero_ps();
1259
1260             /**************************
1261              * CALCULATE INTERACTIONS *
1262              **************************/
1263
1264             r00              = _mm256_mul_ps(rsq00,rinv00);
1265             r00              = _mm256_andnot_ps(dummy_mask,r00);
1266
1267             /* Compute parameters for interactions between i and j atoms */
1268             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1269                                             vdwioffsetptr0+vdwjidx0B,
1270                                             vdwioffsetptr0+vdwjidx0C,
1271                                             vdwioffsetptr0+vdwjidx0D,
1272                                             vdwioffsetptr0+vdwjidx0E,
1273                                             vdwioffsetptr0+vdwjidx0F,
1274                                             vdwioffsetptr0+vdwjidx0G,
1275                                             vdwioffsetptr0+vdwjidx0H,
1276                                             &c6_00,&c12_00);
1277
1278             /* Calculate table index by multiplying r with table scale and truncate to integer */
1279             rt               = _mm256_mul_ps(r00,vftabscale);
1280             vfitab           = _mm256_cvttps_epi32(rt);
1281             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1282             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1283             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1284             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1285             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1286             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1287
1288             /* CUBIC SPLINE TABLE DISPERSION */
1289             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1290                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1291             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1292                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1293             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1294                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1295             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1296                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1297             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1298             Heps             = _mm256_mul_ps(vfeps,H);
1299             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1300             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1301             fvdw6            = _mm256_mul_ps(c6_00,FF);
1302
1303             /* CUBIC SPLINE TABLE REPULSION */
1304             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1305             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1306             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1307                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1308             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1309                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1310             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1311                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1312             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1313                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1314             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1315             Heps             = _mm256_mul_ps(vfeps,H);
1316             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1317             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1318             fvdw12           = _mm256_mul_ps(c12_00,FF);
1319             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1320
1321             fscal            = fvdw;
1322
1323             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1324
1325             /* Calculate temporary vectorial force */
1326             tx               = _mm256_mul_ps(fscal,dx00);
1327             ty               = _mm256_mul_ps(fscal,dy00);
1328             tz               = _mm256_mul_ps(fscal,dz00);
1329
1330             /* Update vectorial force */
1331             fix0             = _mm256_add_ps(fix0,tx);
1332             fiy0             = _mm256_add_ps(fiy0,ty);
1333             fiz0             = _mm256_add_ps(fiz0,tz);
1334
1335             fjx0             = _mm256_add_ps(fjx0,tx);
1336             fjy0             = _mm256_add_ps(fjy0,ty);
1337             fjz0             = _mm256_add_ps(fjz0,tz);
1338
1339             /**************************
1340              * CALCULATE INTERACTIONS *
1341              **************************/
1342
1343             /* Compute parameters for interactions between i and j atoms */
1344             qq10             = _mm256_mul_ps(iq1,jq0);
1345
1346             /* REACTION-FIELD ELECTROSTATICS */
1347             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1348
1349             fscal            = felec;
1350
1351             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1352
1353             /* Calculate temporary vectorial force */
1354             tx               = _mm256_mul_ps(fscal,dx10);
1355             ty               = _mm256_mul_ps(fscal,dy10);
1356             tz               = _mm256_mul_ps(fscal,dz10);
1357
1358             /* Update vectorial force */
1359             fix1             = _mm256_add_ps(fix1,tx);
1360             fiy1             = _mm256_add_ps(fiy1,ty);
1361             fiz1             = _mm256_add_ps(fiz1,tz);
1362
1363             fjx0             = _mm256_add_ps(fjx0,tx);
1364             fjy0             = _mm256_add_ps(fjy0,ty);
1365             fjz0             = _mm256_add_ps(fjz0,tz);
1366
1367             /**************************
1368              * CALCULATE INTERACTIONS *
1369              **************************/
1370
1371             /* Compute parameters for interactions between i and j atoms */
1372             qq20             = _mm256_mul_ps(iq2,jq0);
1373
1374             /* REACTION-FIELD ELECTROSTATICS */
1375             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1376
1377             fscal            = felec;
1378
1379             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1380
1381             /* Calculate temporary vectorial force */
1382             tx               = _mm256_mul_ps(fscal,dx20);
1383             ty               = _mm256_mul_ps(fscal,dy20);
1384             tz               = _mm256_mul_ps(fscal,dz20);
1385
1386             /* Update vectorial force */
1387             fix2             = _mm256_add_ps(fix2,tx);
1388             fiy2             = _mm256_add_ps(fiy2,ty);
1389             fiz2             = _mm256_add_ps(fiz2,tz);
1390
1391             fjx0             = _mm256_add_ps(fjx0,tx);
1392             fjy0             = _mm256_add_ps(fjy0,ty);
1393             fjz0             = _mm256_add_ps(fjz0,tz);
1394
1395             /**************************
1396              * CALCULATE INTERACTIONS *
1397              **************************/
1398
1399             /* Compute parameters for interactions between i and j atoms */
1400             qq30             = _mm256_mul_ps(iq3,jq0);
1401
1402             /* REACTION-FIELD ELECTROSTATICS */
1403             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1404
1405             fscal            = felec;
1406
1407             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1408
1409             /* Calculate temporary vectorial force */
1410             tx               = _mm256_mul_ps(fscal,dx30);
1411             ty               = _mm256_mul_ps(fscal,dy30);
1412             tz               = _mm256_mul_ps(fscal,dz30);
1413
1414             /* Update vectorial force */
1415             fix3             = _mm256_add_ps(fix3,tx);
1416             fiy3             = _mm256_add_ps(fiy3,ty);
1417             fiz3             = _mm256_add_ps(fiz3,tz);
1418
1419             fjx0             = _mm256_add_ps(fjx0,tx);
1420             fjy0             = _mm256_add_ps(fjy0,ty);
1421             fjz0             = _mm256_add_ps(fjz0,tz);
1422
1423             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1424             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1425             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1426             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1427             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1428             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1429             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1430             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1431
1432             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1433
1434             /* Inner loop uses 133 flops */
1435         }
1436
1437         /* End of innermost loop */
1438
1439         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1440                                                  f+i_coord_offset,fshift+i_shift_offset);
1441
1442         /* Increment number of inner iterations */
1443         inneriter                  += j_index_end - j_index_start;
1444
1445         /* Outer loop uses 24 flops */
1446     }
1447
1448     /* Increment number of outer iterations */
1449     outeriter        += nri;
1450
1451     /* Update outer/inner flops */
1452
1453     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*133);
1454 }