Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRF_VdwCSTab_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_256_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     real *           vdwioffsetptr1;
91     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     real *           vdwioffsetptr3;
95     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
96     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
97     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
98     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
99     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
100     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
101     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
102     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
103     real             *charge;
104     int              nvdwtype;
105     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
106     int              *vdwtype;
107     real             *vdwparam;
108     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
109     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
110     __m256i          vfitab;
111     __m128i          vfitab_lo,vfitab_hi;
112     __m128i          ifour       = _mm_set1_epi32(4);
113     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
114     real             *vftab;
115     __m256           dummy_mask,cutoff_mask;
116     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
117     __m256           one     = _mm256_set1_ps(1.0);
118     __m256           two     = _mm256_set1_ps(2.0);
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = _mm256_set1_ps(fr->epsfac);
131     charge           = mdatoms->chargeA;
132     krf              = _mm256_set1_ps(fr->ic->k_rf);
133     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
134     crf              = _mm256_set1_ps(fr->ic->c_rf);
135     nvdwtype         = fr->ntype;
136     vdwparam         = fr->nbfp;
137     vdwtype          = mdatoms->typeA;
138
139     vftab            = kernel_data->table_vdw->data;
140     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
141
142     /* Setup water-specific parameters */
143     inr              = nlist->iinr[0];
144     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
145     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
146     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
147     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
148
149     /* Avoid stupid compiler warnings */
150     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
151     j_coord_offsetA = 0;
152     j_coord_offsetB = 0;
153     j_coord_offsetC = 0;
154     j_coord_offsetD = 0;
155     j_coord_offsetE = 0;
156     j_coord_offsetF = 0;
157     j_coord_offsetG = 0;
158     j_coord_offsetH = 0;
159
160     outeriter        = 0;
161     inneriter        = 0;
162
163     for(iidx=0;iidx<4*DIM;iidx++)
164     {
165         scratch[iidx] = 0.0;
166     }
167
168     /* Start outer loop over neighborlists */
169     for(iidx=0; iidx<nri; iidx++)
170     {
171         /* Load shift vector for this list */
172         i_shift_offset   = DIM*shiftidx[iidx];
173
174         /* Load limits for loop over neighbors */
175         j_index_start    = jindex[iidx];
176         j_index_end      = jindex[iidx+1];
177
178         /* Get outer coordinate index */
179         inr              = iinr[iidx];
180         i_coord_offset   = DIM*inr;
181
182         /* Load i particle coords and add shift vector */
183         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
184                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
185
186         fix0             = _mm256_setzero_ps();
187         fiy0             = _mm256_setzero_ps();
188         fiz0             = _mm256_setzero_ps();
189         fix1             = _mm256_setzero_ps();
190         fiy1             = _mm256_setzero_ps();
191         fiz1             = _mm256_setzero_ps();
192         fix2             = _mm256_setzero_ps();
193         fiy2             = _mm256_setzero_ps();
194         fiz2             = _mm256_setzero_ps();
195         fix3             = _mm256_setzero_ps();
196         fiy3             = _mm256_setzero_ps();
197         fiz3             = _mm256_setzero_ps();
198
199         /* Reset potential sums */
200         velecsum         = _mm256_setzero_ps();
201         vvdwsum          = _mm256_setzero_ps();
202
203         /* Start inner kernel loop */
204         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
205         {
206
207             /* Get j neighbor index, and coordinate index */
208             jnrA             = jjnr[jidx];
209             jnrB             = jjnr[jidx+1];
210             jnrC             = jjnr[jidx+2];
211             jnrD             = jjnr[jidx+3];
212             jnrE             = jjnr[jidx+4];
213             jnrF             = jjnr[jidx+5];
214             jnrG             = jjnr[jidx+6];
215             jnrH             = jjnr[jidx+7];
216             j_coord_offsetA  = DIM*jnrA;
217             j_coord_offsetB  = DIM*jnrB;
218             j_coord_offsetC  = DIM*jnrC;
219             j_coord_offsetD  = DIM*jnrD;
220             j_coord_offsetE  = DIM*jnrE;
221             j_coord_offsetF  = DIM*jnrF;
222             j_coord_offsetG  = DIM*jnrG;
223             j_coord_offsetH  = DIM*jnrH;
224
225             /* load j atom coordinates */
226             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
227                                                  x+j_coord_offsetC,x+j_coord_offsetD,
228                                                  x+j_coord_offsetE,x+j_coord_offsetF,
229                                                  x+j_coord_offsetG,x+j_coord_offsetH,
230                                                  &jx0,&jy0,&jz0);
231
232             /* Calculate displacement vector */
233             dx00             = _mm256_sub_ps(ix0,jx0);
234             dy00             = _mm256_sub_ps(iy0,jy0);
235             dz00             = _mm256_sub_ps(iz0,jz0);
236             dx10             = _mm256_sub_ps(ix1,jx0);
237             dy10             = _mm256_sub_ps(iy1,jy0);
238             dz10             = _mm256_sub_ps(iz1,jz0);
239             dx20             = _mm256_sub_ps(ix2,jx0);
240             dy20             = _mm256_sub_ps(iy2,jy0);
241             dz20             = _mm256_sub_ps(iz2,jz0);
242             dx30             = _mm256_sub_ps(ix3,jx0);
243             dy30             = _mm256_sub_ps(iy3,jy0);
244             dz30             = _mm256_sub_ps(iz3,jz0);
245
246             /* Calculate squared distance and things based on it */
247             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
248             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
249             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
250             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
251
252             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
253             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
254             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
255             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
256
257             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
258             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
259             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
260
261             /* Load parameters for j particles */
262             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
263                                                                  charge+jnrC+0,charge+jnrD+0,
264                                                                  charge+jnrE+0,charge+jnrF+0,
265                                                                  charge+jnrG+0,charge+jnrH+0);
266             vdwjidx0A        = 2*vdwtype[jnrA+0];
267             vdwjidx0B        = 2*vdwtype[jnrB+0];
268             vdwjidx0C        = 2*vdwtype[jnrC+0];
269             vdwjidx0D        = 2*vdwtype[jnrD+0];
270             vdwjidx0E        = 2*vdwtype[jnrE+0];
271             vdwjidx0F        = 2*vdwtype[jnrF+0];
272             vdwjidx0G        = 2*vdwtype[jnrG+0];
273             vdwjidx0H        = 2*vdwtype[jnrH+0];
274
275             fjx0             = _mm256_setzero_ps();
276             fjy0             = _mm256_setzero_ps();
277             fjz0             = _mm256_setzero_ps();
278
279             /**************************
280              * CALCULATE INTERACTIONS *
281              **************************/
282
283             r00              = _mm256_mul_ps(rsq00,rinv00);
284
285             /* Compute parameters for interactions between i and j atoms */
286             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
287                                             vdwioffsetptr0+vdwjidx0B,
288                                             vdwioffsetptr0+vdwjidx0C,
289                                             vdwioffsetptr0+vdwjidx0D,
290                                             vdwioffsetptr0+vdwjidx0E,
291                                             vdwioffsetptr0+vdwjidx0F,
292                                             vdwioffsetptr0+vdwjidx0G,
293                                             vdwioffsetptr0+vdwjidx0H,
294                                             &c6_00,&c12_00);
295
296             /* Calculate table index by multiplying r with table scale and truncate to integer */
297             rt               = _mm256_mul_ps(r00,vftabscale);
298             vfitab           = _mm256_cvttps_epi32(rt);
299             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
300             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
301             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
302             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
303             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
304             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
305
306             /* CUBIC SPLINE TABLE DISPERSION */
307             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
308                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
309             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
310                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
311             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
312                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
313             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
314                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
315             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
316             Heps             = _mm256_mul_ps(vfeps,H);
317             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
318             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
319             vvdw6            = _mm256_mul_ps(c6_00,VV);
320             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
321             fvdw6            = _mm256_mul_ps(c6_00,FF);
322
323             /* CUBIC SPLINE TABLE REPULSION */
324             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
325             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
326             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
327                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
328             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
329                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
330             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
331                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
332             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
333                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
334             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
335             Heps             = _mm256_mul_ps(vfeps,H);
336             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
337             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
338             vvdw12           = _mm256_mul_ps(c12_00,VV);
339             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
340             fvdw12           = _mm256_mul_ps(c12_00,FF);
341             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
342             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
346
347             fscal            = fvdw;
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm256_mul_ps(fscal,dx00);
351             ty               = _mm256_mul_ps(fscal,dy00);
352             tz               = _mm256_mul_ps(fscal,dz00);
353
354             /* Update vectorial force */
355             fix0             = _mm256_add_ps(fix0,tx);
356             fiy0             = _mm256_add_ps(fiy0,ty);
357             fiz0             = _mm256_add_ps(fiz0,tz);
358
359             fjx0             = _mm256_add_ps(fjx0,tx);
360             fjy0             = _mm256_add_ps(fjy0,ty);
361             fjz0             = _mm256_add_ps(fjz0,tz);
362
363             /**************************
364              * CALCULATE INTERACTIONS *
365              **************************/
366
367             /* Compute parameters for interactions between i and j atoms */
368             qq10             = _mm256_mul_ps(iq1,jq0);
369
370             /* REACTION-FIELD ELECTROSTATICS */
371             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
372             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
373
374             /* Update potential sum for this i atom from the interaction with this j atom. */
375             velecsum         = _mm256_add_ps(velecsum,velec);
376
377             fscal            = felec;
378
379             /* Calculate temporary vectorial force */
380             tx               = _mm256_mul_ps(fscal,dx10);
381             ty               = _mm256_mul_ps(fscal,dy10);
382             tz               = _mm256_mul_ps(fscal,dz10);
383
384             /* Update vectorial force */
385             fix1             = _mm256_add_ps(fix1,tx);
386             fiy1             = _mm256_add_ps(fiy1,ty);
387             fiz1             = _mm256_add_ps(fiz1,tz);
388
389             fjx0             = _mm256_add_ps(fjx0,tx);
390             fjy0             = _mm256_add_ps(fjy0,ty);
391             fjz0             = _mm256_add_ps(fjz0,tz);
392
393             /**************************
394              * CALCULATE INTERACTIONS *
395              **************************/
396
397             /* Compute parameters for interactions between i and j atoms */
398             qq20             = _mm256_mul_ps(iq2,jq0);
399
400             /* REACTION-FIELD ELECTROSTATICS */
401             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
402             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velecsum         = _mm256_add_ps(velecsum,velec);
406
407             fscal            = felec;
408
409             /* Calculate temporary vectorial force */
410             tx               = _mm256_mul_ps(fscal,dx20);
411             ty               = _mm256_mul_ps(fscal,dy20);
412             tz               = _mm256_mul_ps(fscal,dz20);
413
414             /* Update vectorial force */
415             fix2             = _mm256_add_ps(fix2,tx);
416             fiy2             = _mm256_add_ps(fiy2,ty);
417             fiz2             = _mm256_add_ps(fiz2,tz);
418
419             fjx0             = _mm256_add_ps(fjx0,tx);
420             fjy0             = _mm256_add_ps(fjy0,ty);
421             fjz0             = _mm256_add_ps(fjz0,tz);
422
423             /**************************
424              * CALCULATE INTERACTIONS *
425              **************************/
426
427             /* Compute parameters for interactions between i and j atoms */
428             qq30             = _mm256_mul_ps(iq3,jq0);
429
430             /* REACTION-FIELD ELECTROSTATICS */
431             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
432             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
433
434             /* Update potential sum for this i atom from the interaction with this j atom. */
435             velecsum         = _mm256_add_ps(velecsum,velec);
436
437             fscal            = felec;
438
439             /* Calculate temporary vectorial force */
440             tx               = _mm256_mul_ps(fscal,dx30);
441             ty               = _mm256_mul_ps(fscal,dy30);
442             tz               = _mm256_mul_ps(fscal,dz30);
443
444             /* Update vectorial force */
445             fix3             = _mm256_add_ps(fix3,tx);
446             fiy3             = _mm256_add_ps(fiy3,ty);
447             fiz3             = _mm256_add_ps(fiz3,tz);
448
449             fjx0             = _mm256_add_ps(fjx0,tx);
450             fjy0             = _mm256_add_ps(fjy0,ty);
451             fjz0             = _mm256_add_ps(fjz0,tz);
452
453             fjptrA             = f+j_coord_offsetA;
454             fjptrB             = f+j_coord_offsetB;
455             fjptrC             = f+j_coord_offsetC;
456             fjptrD             = f+j_coord_offsetD;
457             fjptrE             = f+j_coord_offsetE;
458             fjptrF             = f+j_coord_offsetF;
459             fjptrG             = f+j_coord_offsetG;
460             fjptrH             = f+j_coord_offsetH;
461
462             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
463
464             /* Inner loop uses 155 flops */
465         }
466
467         if(jidx<j_index_end)
468         {
469
470             /* Get j neighbor index, and coordinate index */
471             jnrlistA         = jjnr[jidx];
472             jnrlistB         = jjnr[jidx+1];
473             jnrlistC         = jjnr[jidx+2];
474             jnrlistD         = jjnr[jidx+3];
475             jnrlistE         = jjnr[jidx+4];
476             jnrlistF         = jjnr[jidx+5];
477             jnrlistG         = jjnr[jidx+6];
478             jnrlistH         = jjnr[jidx+7];
479             /* Sign of each element will be negative for non-real atoms.
480              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
481              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
482              */
483             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
484                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
485                                             
486             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
487             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
488             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
489             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
490             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
491             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
492             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
493             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
494             j_coord_offsetA  = DIM*jnrA;
495             j_coord_offsetB  = DIM*jnrB;
496             j_coord_offsetC  = DIM*jnrC;
497             j_coord_offsetD  = DIM*jnrD;
498             j_coord_offsetE  = DIM*jnrE;
499             j_coord_offsetF  = DIM*jnrF;
500             j_coord_offsetG  = DIM*jnrG;
501             j_coord_offsetH  = DIM*jnrH;
502
503             /* load j atom coordinates */
504             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
505                                                  x+j_coord_offsetC,x+j_coord_offsetD,
506                                                  x+j_coord_offsetE,x+j_coord_offsetF,
507                                                  x+j_coord_offsetG,x+j_coord_offsetH,
508                                                  &jx0,&jy0,&jz0);
509
510             /* Calculate displacement vector */
511             dx00             = _mm256_sub_ps(ix0,jx0);
512             dy00             = _mm256_sub_ps(iy0,jy0);
513             dz00             = _mm256_sub_ps(iz0,jz0);
514             dx10             = _mm256_sub_ps(ix1,jx0);
515             dy10             = _mm256_sub_ps(iy1,jy0);
516             dz10             = _mm256_sub_ps(iz1,jz0);
517             dx20             = _mm256_sub_ps(ix2,jx0);
518             dy20             = _mm256_sub_ps(iy2,jy0);
519             dz20             = _mm256_sub_ps(iz2,jz0);
520             dx30             = _mm256_sub_ps(ix3,jx0);
521             dy30             = _mm256_sub_ps(iy3,jy0);
522             dz30             = _mm256_sub_ps(iz3,jz0);
523
524             /* Calculate squared distance and things based on it */
525             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
526             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
527             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
528             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
529
530             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
531             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
532             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
533             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
534
535             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
536             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
537             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
538
539             /* Load parameters for j particles */
540             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
541                                                                  charge+jnrC+0,charge+jnrD+0,
542                                                                  charge+jnrE+0,charge+jnrF+0,
543                                                                  charge+jnrG+0,charge+jnrH+0);
544             vdwjidx0A        = 2*vdwtype[jnrA+0];
545             vdwjidx0B        = 2*vdwtype[jnrB+0];
546             vdwjidx0C        = 2*vdwtype[jnrC+0];
547             vdwjidx0D        = 2*vdwtype[jnrD+0];
548             vdwjidx0E        = 2*vdwtype[jnrE+0];
549             vdwjidx0F        = 2*vdwtype[jnrF+0];
550             vdwjidx0G        = 2*vdwtype[jnrG+0];
551             vdwjidx0H        = 2*vdwtype[jnrH+0];
552
553             fjx0             = _mm256_setzero_ps();
554             fjy0             = _mm256_setzero_ps();
555             fjz0             = _mm256_setzero_ps();
556
557             /**************************
558              * CALCULATE INTERACTIONS *
559              **************************/
560
561             r00              = _mm256_mul_ps(rsq00,rinv00);
562             r00              = _mm256_andnot_ps(dummy_mask,r00);
563
564             /* Compute parameters for interactions between i and j atoms */
565             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
566                                             vdwioffsetptr0+vdwjidx0B,
567                                             vdwioffsetptr0+vdwjidx0C,
568                                             vdwioffsetptr0+vdwjidx0D,
569                                             vdwioffsetptr0+vdwjidx0E,
570                                             vdwioffsetptr0+vdwjidx0F,
571                                             vdwioffsetptr0+vdwjidx0G,
572                                             vdwioffsetptr0+vdwjidx0H,
573                                             &c6_00,&c12_00);
574
575             /* Calculate table index by multiplying r with table scale and truncate to integer */
576             rt               = _mm256_mul_ps(r00,vftabscale);
577             vfitab           = _mm256_cvttps_epi32(rt);
578             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
579             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
580             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
581             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
582             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
583             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
584
585             /* CUBIC SPLINE TABLE DISPERSION */
586             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
587                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
588             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
589                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
590             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
591                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
592             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
593                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
594             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
595             Heps             = _mm256_mul_ps(vfeps,H);
596             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
597             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
598             vvdw6            = _mm256_mul_ps(c6_00,VV);
599             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
600             fvdw6            = _mm256_mul_ps(c6_00,FF);
601
602             /* CUBIC SPLINE TABLE REPULSION */
603             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
604             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
605             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
606                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
607             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
608                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
609             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
610                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
611             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
612                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
613             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
614             Heps             = _mm256_mul_ps(vfeps,H);
615             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
616             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
617             vvdw12           = _mm256_mul_ps(c12_00,VV);
618             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
619             fvdw12           = _mm256_mul_ps(c12_00,FF);
620             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
621             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
622
623             /* Update potential sum for this i atom from the interaction with this j atom. */
624             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
625             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
626
627             fscal            = fvdw;
628
629             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
630
631             /* Calculate temporary vectorial force */
632             tx               = _mm256_mul_ps(fscal,dx00);
633             ty               = _mm256_mul_ps(fscal,dy00);
634             tz               = _mm256_mul_ps(fscal,dz00);
635
636             /* Update vectorial force */
637             fix0             = _mm256_add_ps(fix0,tx);
638             fiy0             = _mm256_add_ps(fiy0,ty);
639             fiz0             = _mm256_add_ps(fiz0,tz);
640
641             fjx0             = _mm256_add_ps(fjx0,tx);
642             fjy0             = _mm256_add_ps(fjy0,ty);
643             fjz0             = _mm256_add_ps(fjz0,tz);
644
645             /**************************
646              * CALCULATE INTERACTIONS *
647              **************************/
648
649             /* Compute parameters for interactions between i and j atoms */
650             qq10             = _mm256_mul_ps(iq1,jq0);
651
652             /* REACTION-FIELD ELECTROSTATICS */
653             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
654             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
655
656             /* Update potential sum for this i atom from the interaction with this j atom. */
657             velec            = _mm256_andnot_ps(dummy_mask,velec);
658             velecsum         = _mm256_add_ps(velecsum,velec);
659
660             fscal            = felec;
661
662             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
663
664             /* Calculate temporary vectorial force */
665             tx               = _mm256_mul_ps(fscal,dx10);
666             ty               = _mm256_mul_ps(fscal,dy10);
667             tz               = _mm256_mul_ps(fscal,dz10);
668
669             /* Update vectorial force */
670             fix1             = _mm256_add_ps(fix1,tx);
671             fiy1             = _mm256_add_ps(fiy1,ty);
672             fiz1             = _mm256_add_ps(fiz1,tz);
673
674             fjx0             = _mm256_add_ps(fjx0,tx);
675             fjy0             = _mm256_add_ps(fjy0,ty);
676             fjz0             = _mm256_add_ps(fjz0,tz);
677
678             /**************************
679              * CALCULATE INTERACTIONS *
680              **************************/
681
682             /* Compute parameters for interactions between i and j atoms */
683             qq20             = _mm256_mul_ps(iq2,jq0);
684
685             /* REACTION-FIELD ELECTROSTATICS */
686             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
687             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
688
689             /* Update potential sum for this i atom from the interaction with this j atom. */
690             velec            = _mm256_andnot_ps(dummy_mask,velec);
691             velecsum         = _mm256_add_ps(velecsum,velec);
692
693             fscal            = felec;
694
695             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
696
697             /* Calculate temporary vectorial force */
698             tx               = _mm256_mul_ps(fscal,dx20);
699             ty               = _mm256_mul_ps(fscal,dy20);
700             tz               = _mm256_mul_ps(fscal,dz20);
701
702             /* Update vectorial force */
703             fix2             = _mm256_add_ps(fix2,tx);
704             fiy2             = _mm256_add_ps(fiy2,ty);
705             fiz2             = _mm256_add_ps(fiz2,tz);
706
707             fjx0             = _mm256_add_ps(fjx0,tx);
708             fjy0             = _mm256_add_ps(fjy0,ty);
709             fjz0             = _mm256_add_ps(fjz0,tz);
710
711             /**************************
712              * CALCULATE INTERACTIONS *
713              **************************/
714
715             /* Compute parameters for interactions between i and j atoms */
716             qq30             = _mm256_mul_ps(iq3,jq0);
717
718             /* REACTION-FIELD ELECTROSTATICS */
719             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
720             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
721
722             /* Update potential sum for this i atom from the interaction with this j atom. */
723             velec            = _mm256_andnot_ps(dummy_mask,velec);
724             velecsum         = _mm256_add_ps(velecsum,velec);
725
726             fscal            = felec;
727
728             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
729
730             /* Calculate temporary vectorial force */
731             tx               = _mm256_mul_ps(fscal,dx30);
732             ty               = _mm256_mul_ps(fscal,dy30);
733             tz               = _mm256_mul_ps(fscal,dz30);
734
735             /* Update vectorial force */
736             fix3             = _mm256_add_ps(fix3,tx);
737             fiy3             = _mm256_add_ps(fiy3,ty);
738             fiz3             = _mm256_add_ps(fiz3,tz);
739
740             fjx0             = _mm256_add_ps(fjx0,tx);
741             fjy0             = _mm256_add_ps(fjy0,ty);
742             fjz0             = _mm256_add_ps(fjz0,tz);
743
744             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
745             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
746             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
747             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
748             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
749             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
750             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
751             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
752
753             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
754
755             /* Inner loop uses 156 flops */
756         }
757
758         /* End of innermost loop */
759
760         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
761                                                  f+i_coord_offset,fshift+i_shift_offset);
762
763         ggid                        = gid[iidx];
764         /* Update potential energies */
765         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
766         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
767
768         /* Increment number of inner iterations */
769         inneriter                  += j_index_end - j_index_start;
770
771         /* Outer loop uses 26 flops */
772     }
773
774     /* Increment number of outer iterations */
775     outeriter        += nri;
776
777     /* Update outer/inner flops */
778
779     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*156);
780 }
781 /*
782  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_256_single
783  * Electrostatics interaction: ReactionField
784  * VdW interaction:            CubicSplineTable
785  * Geometry:                   Water4-Particle
786  * Calculate force/pot:        Force
787  */
788 void
789 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_256_single
790                     (t_nblist                    * gmx_restrict       nlist,
791                      rvec                        * gmx_restrict          xx,
792                      rvec                        * gmx_restrict          ff,
793                      t_forcerec                  * gmx_restrict          fr,
794                      t_mdatoms                   * gmx_restrict     mdatoms,
795                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
796                      t_nrnb                      * gmx_restrict        nrnb)
797 {
798     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
799      * just 0 for non-waters.
800      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
801      * jnr indices corresponding to data put in the four positions in the SIMD register.
802      */
803     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
804     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
805     int              jnrA,jnrB,jnrC,jnrD;
806     int              jnrE,jnrF,jnrG,jnrH;
807     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
808     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
809     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
810     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
811     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
812     real             rcutoff_scalar;
813     real             *shiftvec,*fshift,*x,*f;
814     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
815     real             scratch[4*DIM];
816     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
817     real *           vdwioffsetptr0;
818     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
819     real *           vdwioffsetptr1;
820     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
821     real *           vdwioffsetptr2;
822     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
823     real *           vdwioffsetptr3;
824     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
825     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
826     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
827     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
828     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
829     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
830     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
831     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
832     real             *charge;
833     int              nvdwtype;
834     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
835     int              *vdwtype;
836     real             *vdwparam;
837     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
838     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
839     __m256i          vfitab;
840     __m128i          vfitab_lo,vfitab_hi;
841     __m128i          ifour       = _mm_set1_epi32(4);
842     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
843     real             *vftab;
844     __m256           dummy_mask,cutoff_mask;
845     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
846     __m256           one     = _mm256_set1_ps(1.0);
847     __m256           two     = _mm256_set1_ps(2.0);
848     x                = xx[0];
849     f                = ff[0];
850
851     nri              = nlist->nri;
852     iinr             = nlist->iinr;
853     jindex           = nlist->jindex;
854     jjnr             = nlist->jjnr;
855     shiftidx         = nlist->shift;
856     gid              = nlist->gid;
857     shiftvec         = fr->shift_vec[0];
858     fshift           = fr->fshift[0];
859     facel            = _mm256_set1_ps(fr->epsfac);
860     charge           = mdatoms->chargeA;
861     krf              = _mm256_set1_ps(fr->ic->k_rf);
862     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
863     crf              = _mm256_set1_ps(fr->ic->c_rf);
864     nvdwtype         = fr->ntype;
865     vdwparam         = fr->nbfp;
866     vdwtype          = mdatoms->typeA;
867
868     vftab            = kernel_data->table_vdw->data;
869     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
870
871     /* Setup water-specific parameters */
872     inr              = nlist->iinr[0];
873     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
874     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
875     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
876     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
877
878     /* Avoid stupid compiler warnings */
879     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
880     j_coord_offsetA = 0;
881     j_coord_offsetB = 0;
882     j_coord_offsetC = 0;
883     j_coord_offsetD = 0;
884     j_coord_offsetE = 0;
885     j_coord_offsetF = 0;
886     j_coord_offsetG = 0;
887     j_coord_offsetH = 0;
888
889     outeriter        = 0;
890     inneriter        = 0;
891
892     for(iidx=0;iidx<4*DIM;iidx++)
893     {
894         scratch[iidx] = 0.0;
895     }
896
897     /* Start outer loop over neighborlists */
898     for(iidx=0; iidx<nri; iidx++)
899     {
900         /* Load shift vector for this list */
901         i_shift_offset   = DIM*shiftidx[iidx];
902
903         /* Load limits for loop over neighbors */
904         j_index_start    = jindex[iidx];
905         j_index_end      = jindex[iidx+1];
906
907         /* Get outer coordinate index */
908         inr              = iinr[iidx];
909         i_coord_offset   = DIM*inr;
910
911         /* Load i particle coords and add shift vector */
912         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
913                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
914
915         fix0             = _mm256_setzero_ps();
916         fiy0             = _mm256_setzero_ps();
917         fiz0             = _mm256_setzero_ps();
918         fix1             = _mm256_setzero_ps();
919         fiy1             = _mm256_setzero_ps();
920         fiz1             = _mm256_setzero_ps();
921         fix2             = _mm256_setzero_ps();
922         fiy2             = _mm256_setzero_ps();
923         fiz2             = _mm256_setzero_ps();
924         fix3             = _mm256_setzero_ps();
925         fiy3             = _mm256_setzero_ps();
926         fiz3             = _mm256_setzero_ps();
927
928         /* Start inner kernel loop */
929         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
930         {
931
932             /* Get j neighbor index, and coordinate index */
933             jnrA             = jjnr[jidx];
934             jnrB             = jjnr[jidx+1];
935             jnrC             = jjnr[jidx+2];
936             jnrD             = jjnr[jidx+3];
937             jnrE             = jjnr[jidx+4];
938             jnrF             = jjnr[jidx+5];
939             jnrG             = jjnr[jidx+6];
940             jnrH             = jjnr[jidx+7];
941             j_coord_offsetA  = DIM*jnrA;
942             j_coord_offsetB  = DIM*jnrB;
943             j_coord_offsetC  = DIM*jnrC;
944             j_coord_offsetD  = DIM*jnrD;
945             j_coord_offsetE  = DIM*jnrE;
946             j_coord_offsetF  = DIM*jnrF;
947             j_coord_offsetG  = DIM*jnrG;
948             j_coord_offsetH  = DIM*jnrH;
949
950             /* load j atom coordinates */
951             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
952                                                  x+j_coord_offsetC,x+j_coord_offsetD,
953                                                  x+j_coord_offsetE,x+j_coord_offsetF,
954                                                  x+j_coord_offsetG,x+j_coord_offsetH,
955                                                  &jx0,&jy0,&jz0);
956
957             /* Calculate displacement vector */
958             dx00             = _mm256_sub_ps(ix0,jx0);
959             dy00             = _mm256_sub_ps(iy0,jy0);
960             dz00             = _mm256_sub_ps(iz0,jz0);
961             dx10             = _mm256_sub_ps(ix1,jx0);
962             dy10             = _mm256_sub_ps(iy1,jy0);
963             dz10             = _mm256_sub_ps(iz1,jz0);
964             dx20             = _mm256_sub_ps(ix2,jx0);
965             dy20             = _mm256_sub_ps(iy2,jy0);
966             dz20             = _mm256_sub_ps(iz2,jz0);
967             dx30             = _mm256_sub_ps(ix3,jx0);
968             dy30             = _mm256_sub_ps(iy3,jy0);
969             dz30             = _mm256_sub_ps(iz3,jz0);
970
971             /* Calculate squared distance and things based on it */
972             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
973             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
974             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
975             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
976
977             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
978             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
979             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
980             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
981
982             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
983             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
984             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
985
986             /* Load parameters for j particles */
987             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
988                                                                  charge+jnrC+0,charge+jnrD+0,
989                                                                  charge+jnrE+0,charge+jnrF+0,
990                                                                  charge+jnrG+0,charge+jnrH+0);
991             vdwjidx0A        = 2*vdwtype[jnrA+0];
992             vdwjidx0B        = 2*vdwtype[jnrB+0];
993             vdwjidx0C        = 2*vdwtype[jnrC+0];
994             vdwjidx0D        = 2*vdwtype[jnrD+0];
995             vdwjidx0E        = 2*vdwtype[jnrE+0];
996             vdwjidx0F        = 2*vdwtype[jnrF+0];
997             vdwjidx0G        = 2*vdwtype[jnrG+0];
998             vdwjidx0H        = 2*vdwtype[jnrH+0];
999
1000             fjx0             = _mm256_setzero_ps();
1001             fjy0             = _mm256_setzero_ps();
1002             fjz0             = _mm256_setzero_ps();
1003
1004             /**************************
1005              * CALCULATE INTERACTIONS *
1006              **************************/
1007
1008             r00              = _mm256_mul_ps(rsq00,rinv00);
1009
1010             /* Compute parameters for interactions between i and j atoms */
1011             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1012                                             vdwioffsetptr0+vdwjidx0B,
1013                                             vdwioffsetptr0+vdwjidx0C,
1014                                             vdwioffsetptr0+vdwjidx0D,
1015                                             vdwioffsetptr0+vdwjidx0E,
1016                                             vdwioffsetptr0+vdwjidx0F,
1017                                             vdwioffsetptr0+vdwjidx0G,
1018                                             vdwioffsetptr0+vdwjidx0H,
1019                                             &c6_00,&c12_00);
1020
1021             /* Calculate table index by multiplying r with table scale and truncate to integer */
1022             rt               = _mm256_mul_ps(r00,vftabscale);
1023             vfitab           = _mm256_cvttps_epi32(rt);
1024             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1025             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1026             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1027             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1028             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1029             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1030
1031             /* CUBIC SPLINE TABLE DISPERSION */
1032             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1033                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1034             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1035                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1036             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1037                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1038             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1039                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1040             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1041             Heps             = _mm256_mul_ps(vfeps,H);
1042             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1043             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1044             fvdw6            = _mm256_mul_ps(c6_00,FF);
1045
1046             /* CUBIC SPLINE TABLE REPULSION */
1047             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1048             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1049             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1050                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1051             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1052                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1053             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1054                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1055             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1056                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1057             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1058             Heps             = _mm256_mul_ps(vfeps,H);
1059             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1060             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1061             fvdw12           = _mm256_mul_ps(c12_00,FF);
1062             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1063
1064             fscal            = fvdw;
1065
1066             /* Calculate temporary vectorial force */
1067             tx               = _mm256_mul_ps(fscal,dx00);
1068             ty               = _mm256_mul_ps(fscal,dy00);
1069             tz               = _mm256_mul_ps(fscal,dz00);
1070
1071             /* Update vectorial force */
1072             fix0             = _mm256_add_ps(fix0,tx);
1073             fiy0             = _mm256_add_ps(fiy0,ty);
1074             fiz0             = _mm256_add_ps(fiz0,tz);
1075
1076             fjx0             = _mm256_add_ps(fjx0,tx);
1077             fjy0             = _mm256_add_ps(fjy0,ty);
1078             fjz0             = _mm256_add_ps(fjz0,tz);
1079
1080             /**************************
1081              * CALCULATE INTERACTIONS *
1082              **************************/
1083
1084             /* Compute parameters for interactions between i and j atoms */
1085             qq10             = _mm256_mul_ps(iq1,jq0);
1086
1087             /* REACTION-FIELD ELECTROSTATICS */
1088             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1089
1090             fscal            = felec;
1091
1092             /* Calculate temporary vectorial force */
1093             tx               = _mm256_mul_ps(fscal,dx10);
1094             ty               = _mm256_mul_ps(fscal,dy10);
1095             tz               = _mm256_mul_ps(fscal,dz10);
1096
1097             /* Update vectorial force */
1098             fix1             = _mm256_add_ps(fix1,tx);
1099             fiy1             = _mm256_add_ps(fiy1,ty);
1100             fiz1             = _mm256_add_ps(fiz1,tz);
1101
1102             fjx0             = _mm256_add_ps(fjx0,tx);
1103             fjy0             = _mm256_add_ps(fjy0,ty);
1104             fjz0             = _mm256_add_ps(fjz0,tz);
1105
1106             /**************************
1107              * CALCULATE INTERACTIONS *
1108              **************************/
1109
1110             /* Compute parameters for interactions between i and j atoms */
1111             qq20             = _mm256_mul_ps(iq2,jq0);
1112
1113             /* REACTION-FIELD ELECTROSTATICS */
1114             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1115
1116             fscal            = felec;
1117
1118             /* Calculate temporary vectorial force */
1119             tx               = _mm256_mul_ps(fscal,dx20);
1120             ty               = _mm256_mul_ps(fscal,dy20);
1121             tz               = _mm256_mul_ps(fscal,dz20);
1122
1123             /* Update vectorial force */
1124             fix2             = _mm256_add_ps(fix2,tx);
1125             fiy2             = _mm256_add_ps(fiy2,ty);
1126             fiz2             = _mm256_add_ps(fiz2,tz);
1127
1128             fjx0             = _mm256_add_ps(fjx0,tx);
1129             fjy0             = _mm256_add_ps(fjy0,ty);
1130             fjz0             = _mm256_add_ps(fjz0,tz);
1131
1132             /**************************
1133              * CALCULATE INTERACTIONS *
1134              **************************/
1135
1136             /* Compute parameters for interactions between i and j atoms */
1137             qq30             = _mm256_mul_ps(iq3,jq0);
1138
1139             /* REACTION-FIELD ELECTROSTATICS */
1140             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1141
1142             fscal            = felec;
1143
1144             /* Calculate temporary vectorial force */
1145             tx               = _mm256_mul_ps(fscal,dx30);
1146             ty               = _mm256_mul_ps(fscal,dy30);
1147             tz               = _mm256_mul_ps(fscal,dz30);
1148
1149             /* Update vectorial force */
1150             fix3             = _mm256_add_ps(fix3,tx);
1151             fiy3             = _mm256_add_ps(fiy3,ty);
1152             fiz3             = _mm256_add_ps(fiz3,tz);
1153
1154             fjx0             = _mm256_add_ps(fjx0,tx);
1155             fjy0             = _mm256_add_ps(fjy0,ty);
1156             fjz0             = _mm256_add_ps(fjz0,tz);
1157
1158             fjptrA             = f+j_coord_offsetA;
1159             fjptrB             = f+j_coord_offsetB;
1160             fjptrC             = f+j_coord_offsetC;
1161             fjptrD             = f+j_coord_offsetD;
1162             fjptrE             = f+j_coord_offsetE;
1163             fjptrF             = f+j_coord_offsetF;
1164             fjptrG             = f+j_coord_offsetG;
1165             fjptrH             = f+j_coord_offsetH;
1166
1167             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1168
1169             /* Inner loop uses 132 flops */
1170         }
1171
1172         if(jidx<j_index_end)
1173         {
1174
1175             /* Get j neighbor index, and coordinate index */
1176             jnrlistA         = jjnr[jidx];
1177             jnrlistB         = jjnr[jidx+1];
1178             jnrlistC         = jjnr[jidx+2];
1179             jnrlistD         = jjnr[jidx+3];
1180             jnrlistE         = jjnr[jidx+4];
1181             jnrlistF         = jjnr[jidx+5];
1182             jnrlistG         = jjnr[jidx+6];
1183             jnrlistH         = jjnr[jidx+7];
1184             /* Sign of each element will be negative for non-real atoms.
1185              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1186              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1187              */
1188             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1189                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1190                                             
1191             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1192             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1193             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1194             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1195             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1196             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1197             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1198             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1199             j_coord_offsetA  = DIM*jnrA;
1200             j_coord_offsetB  = DIM*jnrB;
1201             j_coord_offsetC  = DIM*jnrC;
1202             j_coord_offsetD  = DIM*jnrD;
1203             j_coord_offsetE  = DIM*jnrE;
1204             j_coord_offsetF  = DIM*jnrF;
1205             j_coord_offsetG  = DIM*jnrG;
1206             j_coord_offsetH  = DIM*jnrH;
1207
1208             /* load j atom coordinates */
1209             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1210                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1211                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1212                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1213                                                  &jx0,&jy0,&jz0);
1214
1215             /* Calculate displacement vector */
1216             dx00             = _mm256_sub_ps(ix0,jx0);
1217             dy00             = _mm256_sub_ps(iy0,jy0);
1218             dz00             = _mm256_sub_ps(iz0,jz0);
1219             dx10             = _mm256_sub_ps(ix1,jx0);
1220             dy10             = _mm256_sub_ps(iy1,jy0);
1221             dz10             = _mm256_sub_ps(iz1,jz0);
1222             dx20             = _mm256_sub_ps(ix2,jx0);
1223             dy20             = _mm256_sub_ps(iy2,jy0);
1224             dz20             = _mm256_sub_ps(iz2,jz0);
1225             dx30             = _mm256_sub_ps(ix3,jx0);
1226             dy30             = _mm256_sub_ps(iy3,jy0);
1227             dz30             = _mm256_sub_ps(iz3,jz0);
1228
1229             /* Calculate squared distance and things based on it */
1230             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1231             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1232             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1233             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1234
1235             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1236             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1237             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1238             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1239
1240             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1241             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1242             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1243
1244             /* Load parameters for j particles */
1245             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1246                                                                  charge+jnrC+0,charge+jnrD+0,
1247                                                                  charge+jnrE+0,charge+jnrF+0,
1248                                                                  charge+jnrG+0,charge+jnrH+0);
1249             vdwjidx0A        = 2*vdwtype[jnrA+0];
1250             vdwjidx0B        = 2*vdwtype[jnrB+0];
1251             vdwjidx0C        = 2*vdwtype[jnrC+0];
1252             vdwjidx0D        = 2*vdwtype[jnrD+0];
1253             vdwjidx0E        = 2*vdwtype[jnrE+0];
1254             vdwjidx0F        = 2*vdwtype[jnrF+0];
1255             vdwjidx0G        = 2*vdwtype[jnrG+0];
1256             vdwjidx0H        = 2*vdwtype[jnrH+0];
1257
1258             fjx0             = _mm256_setzero_ps();
1259             fjy0             = _mm256_setzero_ps();
1260             fjz0             = _mm256_setzero_ps();
1261
1262             /**************************
1263              * CALCULATE INTERACTIONS *
1264              **************************/
1265
1266             r00              = _mm256_mul_ps(rsq00,rinv00);
1267             r00              = _mm256_andnot_ps(dummy_mask,r00);
1268
1269             /* Compute parameters for interactions between i and j atoms */
1270             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1271                                             vdwioffsetptr0+vdwjidx0B,
1272                                             vdwioffsetptr0+vdwjidx0C,
1273                                             vdwioffsetptr0+vdwjidx0D,
1274                                             vdwioffsetptr0+vdwjidx0E,
1275                                             vdwioffsetptr0+vdwjidx0F,
1276                                             vdwioffsetptr0+vdwjidx0G,
1277                                             vdwioffsetptr0+vdwjidx0H,
1278                                             &c6_00,&c12_00);
1279
1280             /* Calculate table index by multiplying r with table scale and truncate to integer */
1281             rt               = _mm256_mul_ps(r00,vftabscale);
1282             vfitab           = _mm256_cvttps_epi32(rt);
1283             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1284             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1285             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1286             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1287             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1288             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1289
1290             /* CUBIC SPLINE TABLE DISPERSION */
1291             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1292                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1293             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1294                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1295             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1296                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1297             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1298                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1299             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1300             Heps             = _mm256_mul_ps(vfeps,H);
1301             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1302             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1303             fvdw6            = _mm256_mul_ps(c6_00,FF);
1304
1305             /* CUBIC SPLINE TABLE REPULSION */
1306             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1307             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1308             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1309                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1310             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1311                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1312             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1313                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1314             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1315                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1316             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1317             Heps             = _mm256_mul_ps(vfeps,H);
1318             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1319             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1320             fvdw12           = _mm256_mul_ps(c12_00,FF);
1321             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1322
1323             fscal            = fvdw;
1324
1325             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1326
1327             /* Calculate temporary vectorial force */
1328             tx               = _mm256_mul_ps(fscal,dx00);
1329             ty               = _mm256_mul_ps(fscal,dy00);
1330             tz               = _mm256_mul_ps(fscal,dz00);
1331
1332             /* Update vectorial force */
1333             fix0             = _mm256_add_ps(fix0,tx);
1334             fiy0             = _mm256_add_ps(fiy0,ty);
1335             fiz0             = _mm256_add_ps(fiz0,tz);
1336
1337             fjx0             = _mm256_add_ps(fjx0,tx);
1338             fjy0             = _mm256_add_ps(fjy0,ty);
1339             fjz0             = _mm256_add_ps(fjz0,tz);
1340
1341             /**************************
1342              * CALCULATE INTERACTIONS *
1343              **************************/
1344
1345             /* Compute parameters for interactions between i and j atoms */
1346             qq10             = _mm256_mul_ps(iq1,jq0);
1347
1348             /* REACTION-FIELD ELECTROSTATICS */
1349             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1350
1351             fscal            = felec;
1352
1353             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1354
1355             /* Calculate temporary vectorial force */
1356             tx               = _mm256_mul_ps(fscal,dx10);
1357             ty               = _mm256_mul_ps(fscal,dy10);
1358             tz               = _mm256_mul_ps(fscal,dz10);
1359
1360             /* Update vectorial force */
1361             fix1             = _mm256_add_ps(fix1,tx);
1362             fiy1             = _mm256_add_ps(fiy1,ty);
1363             fiz1             = _mm256_add_ps(fiz1,tz);
1364
1365             fjx0             = _mm256_add_ps(fjx0,tx);
1366             fjy0             = _mm256_add_ps(fjy0,ty);
1367             fjz0             = _mm256_add_ps(fjz0,tz);
1368
1369             /**************************
1370              * CALCULATE INTERACTIONS *
1371              **************************/
1372
1373             /* Compute parameters for interactions between i and j atoms */
1374             qq20             = _mm256_mul_ps(iq2,jq0);
1375
1376             /* REACTION-FIELD ELECTROSTATICS */
1377             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1378
1379             fscal            = felec;
1380
1381             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1382
1383             /* Calculate temporary vectorial force */
1384             tx               = _mm256_mul_ps(fscal,dx20);
1385             ty               = _mm256_mul_ps(fscal,dy20);
1386             tz               = _mm256_mul_ps(fscal,dz20);
1387
1388             /* Update vectorial force */
1389             fix2             = _mm256_add_ps(fix2,tx);
1390             fiy2             = _mm256_add_ps(fiy2,ty);
1391             fiz2             = _mm256_add_ps(fiz2,tz);
1392
1393             fjx0             = _mm256_add_ps(fjx0,tx);
1394             fjy0             = _mm256_add_ps(fjy0,ty);
1395             fjz0             = _mm256_add_ps(fjz0,tz);
1396
1397             /**************************
1398              * CALCULATE INTERACTIONS *
1399              **************************/
1400
1401             /* Compute parameters for interactions between i and j atoms */
1402             qq30             = _mm256_mul_ps(iq3,jq0);
1403
1404             /* REACTION-FIELD ELECTROSTATICS */
1405             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1406
1407             fscal            = felec;
1408
1409             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1410
1411             /* Calculate temporary vectorial force */
1412             tx               = _mm256_mul_ps(fscal,dx30);
1413             ty               = _mm256_mul_ps(fscal,dy30);
1414             tz               = _mm256_mul_ps(fscal,dz30);
1415
1416             /* Update vectorial force */
1417             fix3             = _mm256_add_ps(fix3,tx);
1418             fiy3             = _mm256_add_ps(fiy3,ty);
1419             fiz3             = _mm256_add_ps(fiz3,tz);
1420
1421             fjx0             = _mm256_add_ps(fjx0,tx);
1422             fjy0             = _mm256_add_ps(fjy0,ty);
1423             fjz0             = _mm256_add_ps(fjz0,tz);
1424
1425             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1426             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1427             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1428             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1429             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1430             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1431             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1432             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1433
1434             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1435
1436             /* Inner loop uses 133 flops */
1437         }
1438
1439         /* End of innermost loop */
1440
1441         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1442                                                  f+i_coord_offset,fshift+i_shift_offset);
1443
1444         /* Increment number of inner iterations */
1445         inneriter                  += j_index_end - j_index_start;
1446
1447         /* Outer loop uses 24 flops */
1448     }
1449
1450     /* Increment number of outer iterations */
1451     outeriter        += nri;
1452
1453     /* Update outer/inner flops */
1454
1455     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*133);
1456 }