Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_256_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     real *           vdwioffsetptr1;
91     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
106     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
107     __m256i          vfitab;
108     __m128i          vfitab_lo,vfitab_hi;
109     __m128i          ifour       = _mm_set1_epi32(4);
110     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
111     real             *vftab;
112     __m256           dummy_mask,cutoff_mask;
113     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
114     __m256           one     = _mm256_set1_ps(1.0);
115     __m256           two     = _mm256_set1_ps(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm256_set1_ps(fr->epsfac);
128     charge           = mdatoms->chargeA;
129     krf              = _mm256_set1_ps(fr->ic->k_rf);
130     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
131     crf              = _mm256_set1_ps(fr->ic->c_rf);
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135
136     vftab            = kernel_data->table_vdw->data;
137     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
138
139     /* Setup water-specific parameters */
140     inr              = nlist->iinr[0];
141     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
142     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
143     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
144     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150     j_coord_offsetC = 0;
151     j_coord_offsetD = 0;
152     j_coord_offsetE = 0;
153     j_coord_offsetF = 0;
154     j_coord_offsetG = 0;
155     j_coord_offsetH = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     for(iidx=0;iidx<4*DIM;iidx++)
161     {
162         scratch[iidx] = 0.0;
163     }
164
165     /* Start outer loop over neighborlists */
166     for(iidx=0; iidx<nri; iidx++)
167     {
168         /* Load shift vector for this list */
169         i_shift_offset   = DIM*shiftidx[iidx];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
181                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
182
183         fix0             = _mm256_setzero_ps();
184         fiy0             = _mm256_setzero_ps();
185         fiz0             = _mm256_setzero_ps();
186         fix1             = _mm256_setzero_ps();
187         fiy1             = _mm256_setzero_ps();
188         fiz1             = _mm256_setzero_ps();
189         fix2             = _mm256_setzero_ps();
190         fiy2             = _mm256_setzero_ps();
191         fiz2             = _mm256_setzero_ps();
192
193         /* Reset potential sums */
194         velecsum         = _mm256_setzero_ps();
195         vvdwsum          = _mm256_setzero_ps();
196
197         /* Start inner kernel loop */
198         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
199         {
200
201             /* Get j neighbor index, and coordinate index */
202             jnrA             = jjnr[jidx];
203             jnrB             = jjnr[jidx+1];
204             jnrC             = jjnr[jidx+2];
205             jnrD             = jjnr[jidx+3];
206             jnrE             = jjnr[jidx+4];
207             jnrF             = jjnr[jidx+5];
208             jnrG             = jjnr[jidx+6];
209             jnrH             = jjnr[jidx+7];
210             j_coord_offsetA  = DIM*jnrA;
211             j_coord_offsetB  = DIM*jnrB;
212             j_coord_offsetC  = DIM*jnrC;
213             j_coord_offsetD  = DIM*jnrD;
214             j_coord_offsetE  = DIM*jnrE;
215             j_coord_offsetF  = DIM*jnrF;
216             j_coord_offsetG  = DIM*jnrG;
217             j_coord_offsetH  = DIM*jnrH;
218
219             /* load j atom coordinates */
220             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
221                                                  x+j_coord_offsetC,x+j_coord_offsetD,
222                                                  x+j_coord_offsetE,x+j_coord_offsetF,
223                                                  x+j_coord_offsetG,x+j_coord_offsetH,
224                                                  &jx0,&jy0,&jz0);
225
226             /* Calculate displacement vector */
227             dx00             = _mm256_sub_ps(ix0,jx0);
228             dy00             = _mm256_sub_ps(iy0,jy0);
229             dz00             = _mm256_sub_ps(iz0,jz0);
230             dx10             = _mm256_sub_ps(ix1,jx0);
231             dy10             = _mm256_sub_ps(iy1,jy0);
232             dz10             = _mm256_sub_ps(iz1,jz0);
233             dx20             = _mm256_sub_ps(ix2,jx0);
234             dy20             = _mm256_sub_ps(iy2,jy0);
235             dz20             = _mm256_sub_ps(iz2,jz0);
236
237             /* Calculate squared distance and things based on it */
238             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
239             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
240             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
241
242             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
243             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
244             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
245
246             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
247             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
248             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
249
250             /* Load parameters for j particles */
251             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
252                                                                  charge+jnrC+0,charge+jnrD+0,
253                                                                  charge+jnrE+0,charge+jnrF+0,
254                                                                  charge+jnrG+0,charge+jnrH+0);
255             vdwjidx0A        = 2*vdwtype[jnrA+0];
256             vdwjidx0B        = 2*vdwtype[jnrB+0];
257             vdwjidx0C        = 2*vdwtype[jnrC+0];
258             vdwjidx0D        = 2*vdwtype[jnrD+0];
259             vdwjidx0E        = 2*vdwtype[jnrE+0];
260             vdwjidx0F        = 2*vdwtype[jnrF+0];
261             vdwjidx0G        = 2*vdwtype[jnrG+0];
262             vdwjidx0H        = 2*vdwtype[jnrH+0];
263
264             fjx0             = _mm256_setzero_ps();
265             fjy0             = _mm256_setzero_ps();
266             fjz0             = _mm256_setzero_ps();
267
268             /**************************
269              * CALCULATE INTERACTIONS *
270              **************************/
271
272             r00              = _mm256_mul_ps(rsq00,rinv00);
273
274             /* Compute parameters for interactions between i and j atoms */
275             qq00             = _mm256_mul_ps(iq0,jq0);
276             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
277                                             vdwioffsetptr0+vdwjidx0B,
278                                             vdwioffsetptr0+vdwjidx0C,
279                                             vdwioffsetptr0+vdwjidx0D,
280                                             vdwioffsetptr0+vdwjidx0E,
281                                             vdwioffsetptr0+vdwjidx0F,
282                                             vdwioffsetptr0+vdwjidx0G,
283                                             vdwioffsetptr0+vdwjidx0H,
284                                             &c6_00,&c12_00);
285
286             /* Calculate table index by multiplying r with table scale and truncate to integer */
287             rt               = _mm256_mul_ps(r00,vftabscale);
288             vfitab           = _mm256_cvttps_epi32(rt);
289             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
290             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
291             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
292             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
293             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
294             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
295
296             /* REACTION-FIELD ELECTROSTATICS */
297             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
298             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
299
300             /* CUBIC SPLINE TABLE DISPERSION */
301             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
302                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
303             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
304                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
305             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
306                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
307             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
308                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
309             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
310             Heps             = _mm256_mul_ps(vfeps,H);
311             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
312             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
313             vvdw6            = _mm256_mul_ps(c6_00,VV);
314             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
315             fvdw6            = _mm256_mul_ps(c6_00,FF);
316
317             /* CUBIC SPLINE TABLE REPULSION */
318             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
319             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
320             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
321                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
322             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
323                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
324             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
325                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
326             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
327                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
328             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
329             Heps             = _mm256_mul_ps(vfeps,H);
330             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
331             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
332             vvdw12           = _mm256_mul_ps(c12_00,VV);
333             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
334             fvdw12           = _mm256_mul_ps(c12_00,FF);
335             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
336             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velecsum         = _mm256_add_ps(velecsum,velec);
340             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
341
342             fscal            = _mm256_add_ps(felec,fvdw);
343
344             /* Calculate temporary vectorial force */
345             tx               = _mm256_mul_ps(fscal,dx00);
346             ty               = _mm256_mul_ps(fscal,dy00);
347             tz               = _mm256_mul_ps(fscal,dz00);
348
349             /* Update vectorial force */
350             fix0             = _mm256_add_ps(fix0,tx);
351             fiy0             = _mm256_add_ps(fiy0,ty);
352             fiz0             = _mm256_add_ps(fiz0,tz);
353
354             fjx0             = _mm256_add_ps(fjx0,tx);
355             fjy0             = _mm256_add_ps(fjy0,ty);
356             fjz0             = _mm256_add_ps(fjz0,tz);
357
358             /**************************
359              * CALCULATE INTERACTIONS *
360              **************************/
361
362             /* Compute parameters for interactions between i and j atoms */
363             qq10             = _mm256_mul_ps(iq1,jq0);
364
365             /* REACTION-FIELD ELECTROSTATICS */
366             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
367             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velecsum         = _mm256_add_ps(velecsum,velec);
371
372             fscal            = felec;
373
374             /* Calculate temporary vectorial force */
375             tx               = _mm256_mul_ps(fscal,dx10);
376             ty               = _mm256_mul_ps(fscal,dy10);
377             tz               = _mm256_mul_ps(fscal,dz10);
378
379             /* Update vectorial force */
380             fix1             = _mm256_add_ps(fix1,tx);
381             fiy1             = _mm256_add_ps(fiy1,ty);
382             fiz1             = _mm256_add_ps(fiz1,tz);
383
384             fjx0             = _mm256_add_ps(fjx0,tx);
385             fjy0             = _mm256_add_ps(fjy0,ty);
386             fjz0             = _mm256_add_ps(fjz0,tz);
387
388             /**************************
389              * CALCULATE INTERACTIONS *
390              **************************/
391
392             /* Compute parameters for interactions between i and j atoms */
393             qq20             = _mm256_mul_ps(iq2,jq0);
394
395             /* REACTION-FIELD ELECTROSTATICS */
396             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
397             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
398
399             /* Update potential sum for this i atom from the interaction with this j atom. */
400             velecsum         = _mm256_add_ps(velecsum,velec);
401
402             fscal            = felec;
403
404             /* Calculate temporary vectorial force */
405             tx               = _mm256_mul_ps(fscal,dx20);
406             ty               = _mm256_mul_ps(fscal,dy20);
407             tz               = _mm256_mul_ps(fscal,dz20);
408
409             /* Update vectorial force */
410             fix2             = _mm256_add_ps(fix2,tx);
411             fiy2             = _mm256_add_ps(fiy2,ty);
412             fiz2             = _mm256_add_ps(fiz2,tz);
413
414             fjx0             = _mm256_add_ps(fjx0,tx);
415             fjy0             = _mm256_add_ps(fjy0,ty);
416             fjz0             = _mm256_add_ps(fjz0,tz);
417
418             fjptrA             = f+j_coord_offsetA;
419             fjptrB             = f+j_coord_offsetB;
420             fjptrC             = f+j_coord_offsetC;
421             fjptrD             = f+j_coord_offsetD;
422             fjptrE             = f+j_coord_offsetE;
423             fjptrF             = f+j_coord_offsetF;
424             fjptrG             = f+j_coord_offsetG;
425             fjptrH             = f+j_coord_offsetH;
426
427             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
428
429             /* Inner loop uses 134 flops */
430         }
431
432         if(jidx<j_index_end)
433         {
434
435             /* Get j neighbor index, and coordinate index */
436             jnrlistA         = jjnr[jidx];
437             jnrlistB         = jjnr[jidx+1];
438             jnrlistC         = jjnr[jidx+2];
439             jnrlistD         = jjnr[jidx+3];
440             jnrlistE         = jjnr[jidx+4];
441             jnrlistF         = jjnr[jidx+5];
442             jnrlistG         = jjnr[jidx+6];
443             jnrlistH         = jjnr[jidx+7];
444             /* Sign of each element will be negative for non-real atoms.
445              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
446              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
447              */
448             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
449                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
450                                             
451             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
452             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
453             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
454             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
455             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
456             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
457             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
458             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
459             j_coord_offsetA  = DIM*jnrA;
460             j_coord_offsetB  = DIM*jnrB;
461             j_coord_offsetC  = DIM*jnrC;
462             j_coord_offsetD  = DIM*jnrD;
463             j_coord_offsetE  = DIM*jnrE;
464             j_coord_offsetF  = DIM*jnrF;
465             j_coord_offsetG  = DIM*jnrG;
466             j_coord_offsetH  = DIM*jnrH;
467
468             /* load j atom coordinates */
469             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
470                                                  x+j_coord_offsetC,x+j_coord_offsetD,
471                                                  x+j_coord_offsetE,x+j_coord_offsetF,
472                                                  x+j_coord_offsetG,x+j_coord_offsetH,
473                                                  &jx0,&jy0,&jz0);
474
475             /* Calculate displacement vector */
476             dx00             = _mm256_sub_ps(ix0,jx0);
477             dy00             = _mm256_sub_ps(iy0,jy0);
478             dz00             = _mm256_sub_ps(iz0,jz0);
479             dx10             = _mm256_sub_ps(ix1,jx0);
480             dy10             = _mm256_sub_ps(iy1,jy0);
481             dz10             = _mm256_sub_ps(iz1,jz0);
482             dx20             = _mm256_sub_ps(ix2,jx0);
483             dy20             = _mm256_sub_ps(iy2,jy0);
484             dz20             = _mm256_sub_ps(iz2,jz0);
485
486             /* Calculate squared distance and things based on it */
487             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
488             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
489             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
490
491             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
492             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
493             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
494
495             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
496             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
497             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
498
499             /* Load parameters for j particles */
500             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
501                                                                  charge+jnrC+0,charge+jnrD+0,
502                                                                  charge+jnrE+0,charge+jnrF+0,
503                                                                  charge+jnrG+0,charge+jnrH+0);
504             vdwjidx0A        = 2*vdwtype[jnrA+0];
505             vdwjidx0B        = 2*vdwtype[jnrB+0];
506             vdwjidx0C        = 2*vdwtype[jnrC+0];
507             vdwjidx0D        = 2*vdwtype[jnrD+0];
508             vdwjidx0E        = 2*vdwtype[jnrE+0];
509             vdwjidx0F        = 2*vdwtype[jnrF+0];
510             vdwjidx0G        = 2*vdwtype[jnrG+0];
511             vdwjidx0H        = 2*vdwtype[jnrH+0];
512
513             fjx0             = _mm256_setzero_ps();
514             fjy0             = _mm256_setzero_ps();
515             fjz0             = _mm256_setzero_ps();
516
517             /**************************
518              * CALCULATE INTERACTIONS *
519              **************************/
520
521             r00              = _mm256_mul_ps(rsq00,rinv00);
522             r00              = _mm256_andnot_ps(dummy_mask,r00);
523
524             /* Compute parameters for interactions between i and j atoms */
525             qq00             = _mm256_mul_ps(iq0,jq0);
526             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
527                                             vdwioffsetptr0+vdwjidx0B,
528                                             vdwioffsetptr0+vdwjidx0C,
529                                             vdwioffsetptr0+vdwjidx0D,
530                                             vdwioffsetptr0+vdwjidx0E,
531                                             vdwioffsetptr0+vdwjidx0F,
532                                             vdwioffsetptr0+vdwjidx0G,
533                                             vdwioffsetptr0+vdwjidx0H,
534                                             &c6_00,&c12_00);
535
536             /* Calculate table index by multiplying r with table scale and truncate to integer */
537             rt               = _mm256_mul_ps(r00,vftabscale);
538             vfitab           = _mm256_cvttps_epi32(rt);
539             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
540             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
541             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
542             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
543             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
544             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
545
546             /* REACTION-FIELD ELECTROSTATICS */
547             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
548             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
549
550             /* CUBIC SPLINE TABLE DISPERSION */
551             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
552                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
553             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
554                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
555             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
556                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
557             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
558                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
559             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
560             Heps             = _mm256_mul_ps(vfeps,H);
561             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
562             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
563             vvdw6            = _mm256_mul_ps(c6_00,VV);
564             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
565             fvdw6            = _mm256_mul_ps(c6_00,FF);
566
567             /* CUBIC SPLINE TABLE REPULSION */
568             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
569             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
570             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
571                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
572             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
573                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
574             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
575                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
576             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
577                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
578             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
579             Heps             = _mm256_mul_ps(vfeps,H);
580             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
581             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
582             vvdw12           = _mm256_mul_ps(c12_00,VV);
583             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
584             fvdw12           = _mm256_mul_ps(c12_00,FF);
585             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
586             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
587
588             /* Update potential sum for this i atom from the interaction with this j atom. */
589             velec            = _mm256_andnot_ps(dummy_mask,velec);
590             velecsum         = _mm256_add_ps(velecsum,velec);
591             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
592             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
593
594             fscal            = _mm256_add_ps(felec,fvdw);
595
596             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
597
598             /* Calculate temporary vectorial force */
599             tx               = _mm256_mul_ps(fscal,dx00);
600             ty               = _mm256_mul_ps(fscal,dy00);
601             tz               = _mm256_mul_ps(fscal,dz00);
602
603             /* Update vectorial force */
604             fix0             = _mm256_add_ps(fix0,tx);
605             fiy0             = _mm256_add_ps(fiy0,ty);
606             fiz0             = _mm256_add_ps(fiz0,tz);
607
608             fjx0             = _mm256_add_ps(fjx0,tx);
609             fjy0             = _mm256_add_ps(fjy0,ty);
610             fjz0             = _mm256_add_ps(fjz0,tz);
611
612             /**************************
613              * CALCULATE INTERACTIONS *
614              **************************/
615
616             /* Compute parameters for interactions between i and j atoms */
617             qq10             = _mm256_mul_ps(iq1,jq0);
618
619             /* REACTION-FIELD ELECTROSTATICS */
620             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
621             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
622
623             /* Update potential sum for this i atom from the interaction with this j atom. */
624             velec            = _mm256_andnot_ps(dummy_mask,velec);
625             velecsum         = _mm256_add_ps(velecsum,velec);
626
627             fscal            = felec;
628
629             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
630
631             /* Calculate temporary vectorial force */
632             tx               = _mm256_mul_ps(fscal,dx10);
633             ty               = _mm256_mul_ps(fscal,dy10);
634             tz               = _mm256_mul_ps(fscal,dz10);
635
636             /* Update vectorial force */
637             fix1             = _mm256_add_ps(fix1,tx);
638             fiy1             = _mm256_add_ps(fiy1,ty);
639             fiz1             = _mm256_add_ps(fiz1,tz);
640
641             fjx0             = _mm256_add_ps(fjx0,tx);
642             fjy0             = _mm256_add_ps(fjy0,ty);
643             fjz0             = _mm256_add_ps(fjz0,tz);
644
645             /**************************
646              * CALCULATE INTERACTIONS *
647              **************************/
648
649             /* Compute parameters for interactions between i and j atoms */
650             qq20             = _mm256_mul_ps(iq2,jq0);
651
652             /* REACTION-FIELD ELECTROSTATICS */
653             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
654             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
655
656             /* Update potential sum for this i atom from the interaction with this j atom. */
657             velec            = _mm256_andnot_ps(dummy_mask,velec);
658             velecsum         = _mm256_add_ps(velecsum,velec);
659
660             fscal            = felec;
661
662             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
663
664             /* Calculate temporary vectorial force */
665             tx               = _mm256_mul_ps(fscal,dx20);
666             ty               = _mm256_mul_ps(fscal,dy20);
667             tz               = _mm256_mul_ps(fscal,dz20);
668
669             /* Update vectorial force */
670             fix2             = _mm256_add_ps(fix2,tx);
671             fiy2             = _mm256_add_ps(fiy2,ty);
672             fiz2             = _mm256_add_ps(fiz2,tz);
673
674             fjx0             = _mm256_add_ps(fjx0,tx);
675             fjy0             = _mm256_add_ps(fjy0,ty);
676             fjz0             = _mm256_add_ps(fjz0,tz);
677
678             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
679             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
680             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
681             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
682             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
683             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
684             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
685             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
686
687             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
688
689             /* Inner loop uses 135 flops */
690         }
691
692         /* End of innermost loop */
693
694         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
695                                                  f+i_coord_offset,fshift+i_shift_offset);
696
697         ggid                        = gid[iidx];
698         /* Update potential energies */
699         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
700         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
701
702         /* Increment number of inner iterations */
703         inneriter                  += j_index_end - j_index_start;
704
705         /* Outer loop uses 20 flops */
706     }
707
708     /* Increment number of outer iterations */
709     outeriter        += nri;
710
711     /* Update outer/inner flops */
712
713     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*135);
714 }
715 /*
716  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_256_single
717  * Electrostatics interaction: ReactionField
718  * VdW interaction:            CubicSplineTable
719  * Geometry:                   Water3-Particle
720  * Calculate force/pot:        Force
721  */
722 void
723 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_256_single
724                     (t_nblist                    * gmx_restrict       nlist,
725                      rvec                        * gmx_restrict          xx,
726                      rvec                        * gmx_restrict          ff,
727                      t_forcerec                  * gmx_restrict          fr,
728                      t_mdatoms                   * gmx_restrict     mdatoms,
729                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
730                      t_nrnb                      * gmx_restrict        nrnb)
731 {
732     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
733      * just 0 for non-waters.
734      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
735      * jnr indices corresponding to data put in the four positions in the SIMD register.
736      */
737     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
738     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
739     int              jnrA,jnrB,jnrC,jnrD;
740     int              jnrE,jnrF,jnrG,jnrH;
741     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
742     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
743     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
744     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
745     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
746     real             rcutoff_scalar;
747     real             *shiftvec,*fshift,*x,*f;
748     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
749     real             scratch[4*DIM];
750     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
751     real *           vdwioffsetptr0;
752     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
753     real *           vdwioffsetptr1;
754     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
755     real *           vdwioffsetptr2;
756     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
757     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
758     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
759     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
760     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
761     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
762     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
763     real             *charge;
764     int              nvdwtype;
765     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
766     int              *vdwtype;
767     real             *vdwparam;
768     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
769     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
770     __m256i          vfitab;
771     __m128i          vfitab_lo,vfitab_hi;
772     __m128i          ifour       = _mm_set1_epi32(4);
773     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
774     real             *vftab;
775     __m256           dummy_mask,cutoff_mask;
776     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
777     __m256           one     = _mm256_set1_ps(1.0);
778     __m256           two     = _mm256_set1_ps(2.0);
779     x                = xx[0];
780     f                = ff[0];
781
782     nri              = nlist->nri;
783     iinr             = nlist->iinr;
784     jindex           = nlist->jindex;
785     jjnr             = nlist->jjnr;
786     shiftidx         = nlist->shift;
787     gid              = nlist->gid;
788     shiftvec         = fr->shift_vec[0];
789     fshift           = fr->fshift[0];
790     facel            = _mm256_set1_ps(fr->epsfac);
791     charge           = mdatoms->chargeA;
792     krf              = _mm256_set1_ps(fr->ic->k_rf);
793     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
794     crf              = _mm256_set1_ps(fr->ic->c_rf);
795     nvdwtype         = fr->ntype;
796     vdwparam         = fr->nbfp;
797     vdwtype          = mdatoms->typeA;
798
799     vftab            = kernel_data->table_vdw->data;
800     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
801
802     /* Setup water-specific parameters */
803     inr              = nlist->iinr[0];
804     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
805     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
806     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
807     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
808
809     /* Avoid stupid compiler warnings */
810     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
811     j_coord_offsetA = 0;
812     j_coord_offsetB = 0;
813     j_coord_offsetC = 0;
814     j_coord_offsetD = 0;
815     j_coord_offsetE = 0;
816     j_coord_offsetF = 0;
817     j_coord_offsetG = 0;
818     j_coord_offsetH = 0;
819
820     outeriter        = 0;
821     inneriter        = 0;
822
823     for(iidx=0;iidx<4*DIM;iidx++)
824     {
825         scratch[iidx] = 0.0;
826     }
827
828     /* Start outer loop over neighborlists */
829     for(iidx=0; iidx<nri; iidx++)
830     {
831         /* Load shift vector for this list */
832         i_shift_offset   = DIM*shiftidx[iidx];
833
834         /* Load limits for loop over neighbors */
835         j_index_start    = jindex[iidx];
836         j_index_end      = jindex[iidx+1];
837
838         /* Get outer coordinate index */
839         inr              = iinr[iidx];
840         i_coord_offset   = DIM*inr;
841
842         /* Load i particle coords and add shift vector */
843         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
844                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
845
846         fix0             = _mm256_setzero_ps();
847         fiy0             = _mm256_setzero_ps();
848         fiz0             = _mm256_setzero_ps();
849         fix1             = _mm256_setzero_ps();
850         fiy1             = _mm256_setzero_ps();
851         fiz1             = _mm256_setzero_ps();
852         fix2             = _mm256_setzero_ps();
853         fiy2             = _mm256_setzero_ps();
854         fiz2             = _mm256_setzero_ps();
855
856         /* Start inner kernel loop */
857         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
858         {
859
860             /* Get j neighbor index, and coordinate index */
861             jnrA             = jjnr[jidx];
862             jnrB             = jjnr[jidx+1];
863             jnrC             = jjnr[jidx+2];
864             jnrD             = jjnr[jidx+3];
865             jnrE             = jjnr[jidx+4];
866             jnrF             = jjnr[jidx+5];
867             jnrG             = jjnr[jidx+6];
868             jnrH             = jjnr[jidx+7];
869             j_coord_offsetA  = DIM*jnrA;
870             j_coord_offsetB  = DIM*jnrB;
871             j_coord_offsetC  = DIM*jnrC;
872             j_coord_offsetD  = DIM*jnrD;
873             j_coord_offsetE  = DIM*jnrE;
874             j_coord_offsetF  = DIM*jnrF;
875             j_coord_offsetG  = DIM*jnrG;
876             j_coord_offsetH  = DIM*jnrH;
877
878             /* load j atom coordinates */
879             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
880                                                  x+j_coord_offsetC,x+j_coord_offsetD,
881                                                  x+j_coord_offsetE,x+j_coord_offsetF,
882                                                  x+j_coord_offsetG,x+j_coord_offsetH,
883                                                  &jx0,&jy0,&jz0);
884
885             /* Calculate displacement vector */
886             dx00             = _mm256_sub_ps(ix0,jx0);
887             dy00             = _mm256_sub_ps(iy0,jy0);
888             dz00             = _mm256_sub_ps(iz0,jz0);
889             dx10             = _mm256_sub_ps(ix1,jx0);
890             dy10             = _mm256_sub_ps(iy1,jy0);
891             dz10             = _mm256_sub_ps(iz1,jz0);
892             dx20             = _mm256_sub_ps(ix2,jx0);
893             dy20             = _mm256_sub_ps(iy2,jy0);
894             dz20             = _mm256_sub_ps(iz2,jz0);
895
896             /* Calculate squared distance and things based on it */
897             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
898             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
899             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
900
901             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
902             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
903             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
904
905             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
906             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
907             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
908
909             /* Load parameters for j particles */
910             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
911                                                                  charge+jnrC+0,charge+jnrD+0,
912                                                                  charge+jnrE+0,charge+jnrF+0,
913                                                                  charge+jnrG+0,charge+jnrH+0);
914             vdwjidx0A        = 2*vdwtype[jnrA+0];
915             vdwjidx0B        = 2*vdwtype[jnrB+0];
916             vdwjidx0C        = 2*vdwtype[jnrC+0];
917             vdwjidx0D        = 2*vdwtype[jnrD+0];
918             vdwjidx0E        = 2*vdwtype[jnrE+0];
919             vdwjidx0F        = 2*vdwtype[jnrF+0];
920             vdwjidx0G        = 2*vdwtype[jnrG+0];
921             vdwjidx0H        = 2*vdwtype[jnrH+0];
922
923             fjx0             = _mm256_setzero_ps();
924             fjy0             = _mm256_setzero_ps();
925             fjz0             = _mm256_setzero_ps();
926
927             /**************************
928              * CALCULATE INTERACTIONS *
929              **************************/
930
931             r00              = _mm256_mul_ps(rsq00,rinv00);
932
933             /* Compute parameters for interactions between i and j atoms */
934             qq00             = _mm256_mul_ps(iq0,jq0);
935             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
936                                             vdwioffsetptr0+vdwjidx0B,
937                                             vdwioffsetptr0+vdwjidx0C,
938                                             vdwioffsetptr0+vdwjidx0D,
939                                             vdwioffsetptr0+vdwjidx0E,
940                                             vdwioffsetptr0+vdwjidx0F,
941                                             vdwioffsetptr0+vdwjidx0G,
942                                             vdwioffsetptr0+vdwjidx0H,
943                                             &c6_00,&c12_00);
944
945             /* Calculate table index by multiplying r with table scale and truncate to integer */
946             rt               = _mm256_mul_ps(r00,vftabscale);
947             vfitab           = _mm256_cvttps_epi32(rt);
948             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
949             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
950             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
951             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
952             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
953             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
954
955             /* REACTION-FIELD ELECTROSTATICS */
956             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
957
958             /* CUBIC SPLINE TABLE DISPERSION */
959             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
960                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
961             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
962                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
963             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
964                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
965             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
966                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
967             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
968             Heps             = _mm256_mul_ps(vfeps,H);
969             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
970             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
971             fvdw6            = _mm256_mul_ps(c6_00,FF);
972
973             /* CUBIC SPLINE TABLE REPULSION */
974             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
975             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
976             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
977                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
978             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
979                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
980             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
981                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
982             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
983                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
984             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
985             Heps             = _mm256_mul_ps(vfeps,H);
986             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
987             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
988             fvdw12           = _mm256_mul_ps(c12_00,FF);
989             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
990
991             fscal            = _mm256_add_ps(felec,fvdw);
992
993             /* Calculate temporary vectorial force */
994             tx               = _mm256_mul_ps(fscal,dx00);
995             ty               = _mm256_mul_ps(fscal,dy00);
996             tz               = _mm256_mul_ps(fscal,dz00);
997
998             /* Update vectorial force */
999             fix0             = _mm256_add_ps(fix0,tx);
1000             fiy0             = _mm256_add_ps(fiy0,ty);
1001             fiz0             = _mm256_add_ps(fiz0,tz);
1002
1003             fjx0             = _mm256_add_ps(fjx0,tx);
1004             fjy0             = _mm256_add_ps(fjy0,ty);
1005             fjz0             = _mm256_add_ps(fjz0,tz);
1006
1007             /**************************
1008              * CALCULATE INTERACTIONS *
1009              **************************/
1010
1011             /* Compute parameters for interactions between i and j atoms */
1012             qq10             = _mm256_mul_ps(iq1,jq0);
1013
1014             /* REACTION-FIELD ELECTROSTATICS */
1015             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1016
1017             fscal            = felec;
1018
1019             /* Calculate temporary vectorial force */
1020             tx               = _mm256_mul_ps(fscal,dx10);
1021             ty               = _mm256_mul_ps(fscal,dy10);
1022             tz               = _mm256_mul_ps(fscal,dz10);
1023
1024             /* Update vectorial force */
1025             fix1             = _mm256_add_ps(fix1,tx);
1026             fiy1             = _mm256_add_ps(fiy1,ty);
1027             fiz1             = _mm256_add_ps(fiz1,tz);
1028
1029             fjx0             = _mm256_add_ps(fjx0,tx);
1030             fjy0             = _mm256_add_ps(fjy0,ty);
1031             fjz0             = _mm256_add_ps(fjz0,tz);
1032
1033             /**************************
1034              * CALCULATE INTERACTIONS *
1035              **************************/
1036
1037             /* Compute parameters for interactions between i and j atoms */
1038             qq20             = _mm256_mul_ps(iq2,jq0);
1039
1040             /* REACTION-FIELD ELECTROSTATICS */
1041             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1042
1043             fscal            = felec;
1044
1045             /* Calculate temporary vectorial force */
1046             tx               = _mm256_mul_ps(fscal,dx20);
1047             ty               = _mm256_mul_ps(fscal,dy20);
1048             tz               = _mm256_mul_ps(fscal,dz20);
1049
1050             /* Update vectorial force */
1051             fix2             = _mm256_add_ps(fix2,tx);
1052             fiy2             = _mm256_add_ps(fiy2,ty);
1053             fiz2             = _mm256_add_ps(fiz2,tz);
1054
1055             fjx0             = _mm256_add_ps(fjx0,tx);
1056             fjy0             = _mm256_add_ps(fjy0,ty);
1057             fjz0             = _mm256_add_ps(fjz0,tz);
1058
1059             fjptrA             = f+j_coord_offsetA;
1060             fjptrB             = f+j_coord_offsetB;
1061             fjptrC             = f+j_coord_offsetC;
1062             fjptrD             = f+j_coord_offsetD;
1063             fjptrE             = f+j_coord_offsetE;
1064             fjptrF             = f+j_coord_offsetF;
1065             fjptrG             = f+j_coord_offsetG;
1066             fjptrH             = f+j_coord_offsetH;
1067
1068             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1069
1070             /* Inner loop uses 111 flops */
1071         }
1072
1073         if(jidx<j_index_end)
1074         {
1075
1076             /* Get j neighbor index, and coordinate index */
1077             jnrlistA         = jjnr[jidx];
1078             jnrlistB         = jjnr[jidx+1];
1079             jnrlistC         = jjnr[jidx+2];
1080             jnrlistD         = jjnr[jidx+3];
1081             jnrlistE         = jjnr[jidx+4];
1082             jnrlistF         = jjnr[jidx+5];
1083             jnrlistG         = jjnr[jidx+6];
1084             jnrlistH         = jjnr[jidx+7];
1085             /* Sign of each element will be negative for non-real atoms.
1086              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1087              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1088              */
1089             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1090                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1091                                             
1092             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1093             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1094             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1095             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1096             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1097             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1098             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1099             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1100             j_coord_offsetA  = DIM*jnrA;
1101             j_coord_offsetB  = DIM*jnrB;
1102             j_coord_offsetC  = DIM*jnrC;
1103             j_coord_offsetD  = DIM*jnrD;
1104             j_coord_offsetE  = DIM*jnrE;
1105             j_coord_offsetF  = DIM*jnrF;
1106             j_coord_offsetG  = DIM*jnrG;
1107             j_coord_offsetH  = DIM*jnrH;
1108
1109             /* load j atom coordinates */
1110             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1111                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1112                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1113                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1114                                                  &jx0,&jy0,&jz0);
1115
1116             /* Calculate displacement vector */
1117             dx00             = _mm256_sub_ps(ix0,jx0);
1118             dy00             = _mm256_sub_ps(iy0,jy0);
1119             dz00             = _mm256_sub_ps(iz0,jz0);
1120             dx10             = _mm256_sub_ps(ix1,jx0);
1121             dy10             = _mm256_sub_ps(iy1,jy0);
1122             dz10             = _mm256_sub_ps(iz1,jz0);
1123             dx20             = _mm256_sub_ps(ix2,jx0);
1124             dy20             = _mm256_sub_ps(iy2,jy0);
1125             dz20             = _mm256_sub_ps(iz2,jz0);
1126
1127             /* Calculate squared distance and things based on it */
1128             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1129             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1130             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1131
1132             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1133             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1134             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1135
1136             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1137             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1138             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1139
1140             /* Load parameters for j particles */
1141             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1142                                                                  charge+jnrC+0,charge+jnrD+0,
1143                                                                  charge+jnrE+0,charge+jnrF+0,
1144                                                                  charge+jnrG+0,charge+jnrH+0);
1145             vdwjidx0A        = 2*vdwtype[jnrA+0];
1146             vdwjidx0B        = 2*vdwtype[jnrB+0];
1147             vdwjidx0C        = 2*vdwtype[jnrC+0];
1148             vdwjidx0D        = 2*vdwtype[jnrD+0];
1149             vdwjidx0E        = 2*vdwtype[jnrE+0];
1150             vdwjidx0F        = 2*vdwtype[jnrF+0];
1151             vdwjidx0G        = 2*vdwtype[jnrG+0];
1152             vdwjidx0H        = 2*vdwtype[jnrH+0];
1153
1154             fjx0             = _mm256_setzero_ps();
1155             fjy0             = _mm256_setzero_ps();
1156             fjz0             = _mm256_setzero_ps();
1157
1158             /**************************
1159              * CALCULATE INTERACTIONS *
1160              **************************/
1161
1162             r00              = _mm256_mul_ps(rsq00,rinv00);
1163             r00              = _mm256_andnot_ps(dummy_mask,r00);
1164
1165             /* Compute parameters for interactions between i and j atoms */
1166             qq00             = _mm256_mul_ps(iq0,jq0);
1167             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1168                                             vdwioffsetptr0+vdwjidx0B,
1169                                             vdwioffsetptr0+vdwjidx0C,
1170                                             vdwioffsetptr0+vdwjidx0D,
1171                                             vdwioffsetptr0+vdwjidx0E,
1172                                             vdwioffsetptr0+vdwjidx0F,
1173                                             vdwioffsetptr0+vdwjidx0G,
1174                                             vdwioffsetptr0+vdwjidx0H,
1175                                             &c6_00,&c12_00);
1176
1177             /* Calculate table index by multiplying r with table scale and truncate to integer */
1178             rt               = _mm256_mul_ps(r00,vftabscale);
1179             vfitab           = _mm256_cvttps_epi32(rt);
1180             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1181             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1182             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1183             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1184             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1185             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1186
1187             /* REACTION-FIELD ELECTROSTATICS */
1188             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
1189
1190             /* CUBIC SPLINE TABLE DISPERSION */
1191             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1192                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1193             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1194                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1195             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1196                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1197             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1198                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1199             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1200             Heps             = _mm256_mul_ps(vfeps,H);
1201             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1202             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1203             fvdw6            = _mm256_mul_ps(c6_00,FF);
1204
1205             /* CUBIC SPLINE TABLE REPULSION */
1206             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1207             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1208             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1209                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1210             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1211                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1212             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1213                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1214             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1215                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1216             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1217             Heps             = _mm256_mul_ps(vfeps,H);
1218             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1219             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1220             fvdw12           = _mm256_mul_ps(c12_00,FF);
1221             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1222
1223             fscal            = _mm256_add_ps(felec,fvdw);
1224
1225             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1226
1227             /* Calculate temporary vectorial force */
1228             tx               = _mm256_mul_ps(fscal,dx00);
1229             ty               = _mm256_mul_ps(fscal,dy00);
1230             tz               = _mm256_mul_ps(fscal,dz00);
1231
1232             /* Update vectorial force */
1233             fix0             = _mm256_add_ps(fix0,tx);
1234             fiy0             = _mm256_add_ps(fiy0,ty);
1235             fiz0             = _mm256_add_ps(fiz0,tz);
1236
1237             fjx0             = _mm256_add_ps(fjx0,tx);
1238             fjy0             = _mm256_add_ps(fjy0,ty);
1239             fjz0             = _mm256_add_ps(fjz0,tz);
1240
1241             /**************************
1242              * CALCULATE INTERACTIONS *
1243              **************************/
1244
1245             /* Compute parameters for interactions between i and j atoms */
1246             qq10             = _mm256_mul_ps(iq1,jq0);
1247
1248             /* REACTION-FIELD ELECTROSTATICS */
1249             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1250
1251             fscal            = felec;
1252
1253             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1254
1255             /* Calculate temporary vectorial force */
1256             tx               = _mm256_mul_ps(fscal,dx10);
1257             ty               = _mm256_mul_ps(fscal,dy10);
1258             tz               = _mm256_mul_ps(fscal,dz10);
1259
1260             /* Update vectorial force */
1261             fix1             = _mm256_add_ps(fix1,tx);
1262             fiy1             = _mm256_add_ps(fiy1,ty);
1263             fiz1             = _mm256_add_ps(fiz1,tz);
1264
1265             fjx0             = _mm256_add_ps(fjx0,tx);
1266             fjy0             = _mm256_add_ps(fjy0,ty);
1267             fjz0             = _mm256_add_ps(fjz0,tz);
1268
1269             /**************************
1270              * CALCULATE INTERACTIONS *
1271              **************************/
1272
1273             /* Compute parameters for interactions between i and j atoms */
1274             qq20             = _mm256_mul_ps(iq2,jq0);
1275
1276             /* REACTION-FIELD ELECTROSTATICS */
1277             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1278
1279             fscal            = felec;
1280
1281             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1282
1283             /* Calculate temporary vectorial force */
1284             tx               = _mm256_mul_ps(fscal,dx20);
1285             ty               = _mm256_mul_ps(fscal,dy20);
1286             tz               = _mm256_mul_ps(fscal,dz20);
1287
1288             /* Update vectorial force */
1289             fix2             = _mm256_add_ps(fix2,tx);
1290             fiy2             = _mm256_add_ps(fiy2,ty);
1291             fiz2             = _mm256_add_ps(fiz2,tz);
1292
1293             fjx0             = _mm256_add_ps(fjx0,tx);
1294             fjy0             = _mm256_add_ps(fjy0,ty);
1295             fjz0             = _mm256_add_ps(fjz0,tz);
1296
1297             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1298             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1299             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1300             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1301             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1302             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1303             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1304             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1305
1306             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1307
1308             /* Inner loop uses 112 flops */
1309         }
1310
1311         /* End of innermost loop */
1312
1313         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1314                                                  f+i_coord_offset,fshift+i_shift_offset);
1315
1316         /* Increment number of inner iterations */
1317         inneriter                  += j_index_end - j_index_start;
1318
1319         /* Outer loop uses 18 flops */
1320     }
1321
1322     /* Increment number of outer iterations */
1323     outeriter        += nri;
1324
1325     /* Update outer/inner flops */
1326
1327     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*112);
1328 }