Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_256_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
93     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
104     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
105     __m256i          vfitab;
106     __m128i          vfitab_lo,vfitab_hi;
107     __m128i          ifour       = _mm_set1_epi32(4);
108     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
109     real             *vftab;
110     __m256           dummy_mask,cutoff_mask;
111     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
112     __m256           one     = _mm256_set1_ps(1.0);
113     __m256           two     = _mm256_set1_ps(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm256_set1_ps(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     krf              = _mm256_set1_ps(fr->ic->k_rf);
128     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
129     crf              = _mm256_set1_ps(fr->ic->c_rf);
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133
134     vftab            = kernel_data->table_vdw->data;
135     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
136
137     /* Setup water-specific parameters */
138     inr              = nlist->iinr[0];
139     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
140     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
141     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
142     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150     j_coord_offsetE = 0;
151     j_coord_offsetF = 0;
152     j_coord_offsetG = 0;
153     j_coord_offsetH = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
179                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
180
181         fix0             = _mm256_setzero_ps();
182         fiy0             = _mm256_setzero_ps();
183         fiz0             = _mm256_setzero_ps();
184         fix1             = _mm256_setzero_ps();
185         fiy1             = _mm256_setzero_ps();
186         fiz1             = _mm256_setzero_ps();
187         fix2             = _mm256_setzero_ps();
188         fiy2             = _mm256_setzero_ps();
189         fiz2             = _mm256_setzero_ps();
190
191         /* Reset potential sums */
192         velecsum         = _mm256_setzero_ps();
193         vvdwsum          = _mm256_setzero_ps();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             jnrC             = jjnr[jidx+2];
203             jnrD             = jjnr[jidx+3];
204             jnrE             = jjnr[jidx+4];
205             jnrF             = jjnr[jidx+5];
206             jnrG             = jjnr[jidx+6];
207             jnrH             = jjnr[jidx+7];
208             j_coord_offsetA  = DIM*jnrA;
209             j_coord_offsetB  = DIM*jnrB;
210             j_coord_offsetC  = DIM*jnrC;
211             j_coord_offsetD  = DIM*jnrD;
212             j_coord_offsetE  = DIM*jnrE;
213             j_coord_offsetF  = DIM*jnrF;
214             j_coord_offsetG  = DIM*jnrG;
215             j_coord_offsetH  = DIM*jnrH;
216
217             /* load j atom coordinates */
218             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
219                                                  x+j_coord_offsetC,x+j_coord_offsetD,
220                                                  x+j_coord_offsetE,x+j_coord_offsetF,
221                                                  x+j_coord_offsetG,x+j_coord_offsetH,
222                                                  &jx0,&jy0,&jz0);
223
224             /* Calculate displacement vector */
225             dx00             = _mm256_sub_ps(ix0,jx0);
226             dy00             = _mm256_sub_ps(iy0,jy0);
227             dz00             = _mm256_sub_ps(iz0,jz0);
228             dx10             = _mm256_sub_ps(ix1,jx0);
229             dy10             = _mm256_sub_ps(iy1,jy0);
230             dz10             = _mm256_sub_ps(iz1,jz0);
231             dx20             = _mm256_sub_ps(ix2,jx0);
232             dy20             = _mm256_sub_ps(iy2,jy0);
233             dz20             = _mm256_sub_ps(iz2,jz0);
234
235             /* Calculate squared distance and things based on it */
236             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
237             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
238             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
239
240             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
241             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
242             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
243
244             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
245             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
246             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
247
248             /* Load parameters for j particles */
249             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
250                                                                  charge+jnrC+0,charge+jnrD+0,
251                                                                  charge+jnrE+0,charge+jnrF+0,
252                                                                  charge+jnrG+0,charge+jnrH+0);
253             vdwjidx0A        = 2*vdwtype[jnrA+0];
254             vdwjidx0B        = 2*vdwtype[jnrB+0];
255             vdwjidx0C        = 2*vdwtype[jnrC+0];
256             vdwjidx0D        = 2*vdwtype[jnrD+0];
257             vdwjidx0E        = 2*vdwtype[jnrE+0];
258             vdwjidx0F        = 2*vdwtype[jnrF+0];
259             vdwjidx0G        = 2*vdwtype[jnrG+0];
260             vdwjidx0H        = 2*vdwtype[jnrH+0];
261
262             fjx0             = _mm256_setzero_ps();
263             fjy0             = _mm256_setzero_ps();
264             fjz0             = _mm256_setzero_ps();
265
266             /**************************
267              * CALCULATE INTERACTIONS *
268              **************************/
269
270             r00              = _mm256_mul_ps(rsq00,rinv00);
271
272             /* Compute parameters for interactions between i and j atoms */
273             qq00             = _mm256_mul_ps(iq0,jq0);
274             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
275                                             vdwioffsetptr0+vdwjidx0B,
276                                             vdwioffsetptr0+vdwjidx0C,
277                                             vdwioffsetptr0+vdwjidx0D,
278                                             vdwioffsetptr0+vdwjidx0E,
279                                             vdwioffsetptr0+vdwjidx0F,
280                                             vdwioffsetptr0+vdwjidx0G,
281                                             vdwioffsetptr0+vdwjidx0H,
282                                             &c6_00,&c12_00);
283
284             /* Calculate table index by multiplying r with table scale and truncate to integer */
285             rt               = _mm256_mul_ps(r00,vftabscale);
286             vfitab           = _mm256_cvttps_epi32(rt);
287             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
288             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
289             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
290             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
291             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
292             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
293
294             /* REACTION-FIELD ELECTROSTATICS */
295             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
296             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
297
298             /* CUBIC SPLINE TABLE DISPERSION */
299             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
300                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
301             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
302                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
303             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
304                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
305             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
306                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
307             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
308             Heps             = _mm256_mul_ps(vfeps,H);
309             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
310             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
311             vvdw6            = _mm256_mul_ps(c6_00,VV);
312             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
313             fvdw6            = _mm256_mul_ps(c6_00,FF);
314
315             /* CUBIC SPLINE TABLE REPULSION */
316             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
317             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
318             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
319                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
320             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
321                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
322             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
323                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
324             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
325                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
326             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
327             Heps             = _mm256_mul_ps(vfeps,H);
328             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
329             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
330             vvdw12           = _mm256_mul_ps(c12_00,VV);
331             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
332             fvdw12           = _mm256_mul_ps(c12_00,FF);
333             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
334             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
335
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             velecsum         = _mm256_add_ps(velecsum,velec);
338             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
339
340             fscal            = _mm256_add_ps(felec,fvdw);
341
342             /* Calculate temporary vectorial force */
343             tx               = _mm256_mul_ps(fscal,dx00);
344             ty               = _mm256_mul_ps(fscal,dy00);
345             tz               = _mm256_mul_ps(fscal,dz00);
346
347             /* Update vectorial force */
348             fix0             = _mm256_add_ps(fix0,tx);
349             fiy0             = _mm256_add_ps(fiy0,ty);
350             fiz0             = _mm256_add_ps(fiz0,tz);
351
352             fjx0             = _mm256_add_ps(fjx0,tx);
353             fjy0             = _mm256_add_ps(fjy0,ty);
354             fjz0             = _mm256_add_ps(fjz0,tz);
355
356             /**************************
357              * CALCULATE INTERACTIONS *
358              **************************/
359
360             /* Compute parameters for interactions between i and j atoms */
361             qq10             = _mm256_mul_ps(iq1,jq0);
362
363             /* REACTION-FIELD ELECTROSTATICS */
364             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
365             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
366
367             /* Update potential sum for this i atom from the interaction with this j atom. */
368             velecsum         = _mm256_add_ps(velecsum,velec);
369
370             fscal            = felec;
371
372             /* Calculate temporary vectorial force */
373             tx               = _mm256_mul_ps(fscal,dx10);
374             ty               = _mm256_mul_ps(fscal,dy10);
375             tz               = _mm256_mul_ps(fscal,dz10);
376
377             /* Update vectorial force */
378             fix1             = _mm256_add_ps(fix1,tx);
379             fiy1             = _mm256_add_ps(fiy1,ty);
380             fiz1             = _mm256_add_ps(fiz1,tz);
381
382             fjx0             = _mm256_add_ps(fjx0,tx);
383             fjy0             = _mm256_add_ps(fjy0,ty);
384             fjz0             = _mm256_add_ps(fjz0,tz);
385
386             /**************************
387              * CALCULATE INTERACTIONS *
388              **************************/
389
390             /* Compute parameters for interactions between i and j atoms */
391             qq20             = _mm256_mul_ps(iq2,jq0);
392
393             /* REACTION-FIELD ELECTROSTATICS */
394             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
395             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
396
397             /* Update potential sum for this i atom from the interaction with this j atom. */
398             velecsum         = _mm256_add_ps(velecsum,velec);
399
400             fscal            = felec;
401
402             /* Calculate temporary vectorial force */
403             tx               = _mm256_mul_ps(fscal,dx20);
404             ty               = _mm256_mul_ps(fscal,dy20);
405             tz               = _mm256_mul_ps(fscal,dz20);
406
407             /* Update vectorial force */
408             fix2             = _mm256_add_ps(fix2,tx);
409             fiy2             = _mm256_add_ps(fiy2,ty);
410             fiz2             = _mm256_add_ps(fiz2,tz);
411
412             fjx0             = _mm256_add_ps(fjx0,tx);
413             fjy0             = _mm256_add_ps(fjy0,ty);
414             fjz0             = _mm256_add_ps(fjz0,tz);
415
416             fjptrA             = f+j_coord_offsetA;
417             fjptrB             = f+j_coord_offsetB;
418             fjptrC             = f+j_coord_offsetC;
419             fjptrD             = f+j_coord_offsetD;
420             fjptrE             = f+j_coord_offsetE;
421             fjptrF             = f+j_coord_offsetF;
422             fjptrG             = f+j_coord_offsetG;
423             fjptrH             = f+j_coord_offsetH;
424
425             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
426
427             /* Inner loop uses 134 flops */
428         }
429
430         if(jidx<j_index_end)
431         {
432
433             /* Get j neighbor index, and coordinate index */
434             jnrlistA         = jjnr[jidx];
435             jnrlistB         = jjnr[jidx+1];
436             jnrlistC         = jjnr[jidx+2];
437             jnrlistD         = jjnr[jidx+3];
438             jnrlistE         = jjnr[jidx+4];
439             jnrlistF         = jjnr[jidx+5];
440             jnrlistG         = jjnr[jidx+6];
441             jnrlistH         = jjnr[jidx+7];
442             /* Sign of each element will be negative for non-real atoms.
443              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
444              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
445              */
446             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
447                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
448                                             
449             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
450             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
451             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
452             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
453             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
454             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
455             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
456             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
457             j_coord_offsetA  = DIM*jnrA;
458             j_coord_offsetB  = DIM*jnrB;
459             j_coord_offsetC  = DIM*jnrC;
460             j_coord_offsetD  = DIM*jnrD;
461             j_coord_offsetE  = DIM*jnrE;
462             j_coord_offsetF  = DIM*jnrF;
463             j_coord_offsetG  = DIM*jnrG;
464             j_coord_offsetH  = DIM*jnrH;
465
466             /* load j atom coordinates */
467             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
468                                                  x+j_coord_offsetC,x+j_coord_offsetD,
469                                                  x+j_coord_offsetE,x+j_coord_offsetF,
470                                                  x+j_coord_offsetG,x+j_coord_offsetH,
471                                                  &jx0,&jy0,&jz0);
472
473             /* Calculate displacement vector */
474             dx00             = _mm256_sub_ps(ix0,jx0);
475             dy00             = _mm256_sub_ps(iy0,jy0);
476             dz00             = _mm256_sub_ps(iz0,jz0);
477             dx10             = _mm256_sub_ps(ix1,jx0);
478             dy10             = _mm256_sub_ps(iy1,jy0);
479             dz10             = _mm256_sub_ps(iz1,jz0);
480             dx20             = _mm256_sub_ps(ix2,jx0);
481             dy20             = _mm256_sub_ps(iy2,jy0);
482             dz20             = _mm256_sub_ps(iz2,jz0);
483
484             /* Calculate squared distance and things based on it */
485             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
486             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
487             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
488
489             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
490             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
491             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
492
493             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
494             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
495             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
496
497             /* Load parameters for j particles */
498             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
499                                                                  charge+jnrC+0,charge+jnrD+0,
500                                                                  charge+jnrE+0,charge+jnrF+0,
501                                                                  charge+jnrG+0,charge+jnrH+0);
502             vdwjidx0A        = 2*vdwtype[jnrA+0];
503             vdwjidx0B        = 2*vdwtype[jnrB+0];
504             vdwjidx0C        = 2*vdwtype[jnrC+0];
505             vdwjidx0D        = 2*vdwtype[jnrD+0];
506             vdwjidx0E        = 2*vdwtype[jnrE+0];
507             vdwjidx0F        = 2*vdwtype[jnrF+0];
508             vdwjidx0G        = 2*vdwtype[jnrG+0];
509             vdwjidx0H        = 2*vdwtype[jnrH+0];
510
511             fjx0             = _mm256_setzero_ps();
512             fjy0             = _mm256_setzero_ps();
513             fjz0             = _mm256_setzero_ps();
514
515             /**************************
516              * CALCULATE INTERACTIONS *
517              **************************/
518
519             r00              = _mm256_mul_ps(rsq00,rinv00);
520             r00              = _mm256_andnot_ps(dummy_mask,r00);
521
522             /* Compute parameters for interactions between i and j atoms */
523             qq00             = _mm256_mul_ps(iq0,jq0);
524             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
525                                             vdwioffsetptr0+vdwjidx0B,
526                                             vdwioffsetptr0+vdwjidx0C,
527                                             vdwioffsetptr0+vdwjidx0D,
528                                             vdwioffsetptr0+vdwjidx0E,
529                                             vdwioffsetptr0+vdwjidx0F,
530                                             vdwioffsetptr0+vdwjidx0G,
531                                             vdwioffsetptr0+vdwjidx0H,
532                                             &c6_00,&c12_00);
533
534             /* Calculate table index by multiplying r with table scale and truncate to integer */
535             rt               = _mm256_mul_ps(r00,vftabscale);
536             vfitab           = _mm256_cvttps_epi32(rt);
537             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
538             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
539             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
540             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
541             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
542             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
543
544             /* REACTION-FIELD ELECTROSTATICS */
545             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
546             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
547
548             /* CUBIC SPLINE TABLE DISPERSION */
549             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
550                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
551             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
552                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
553             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
554                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
555             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
556                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
557             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
558             Heps             = _mm256_mul_ps(vfeps,H);
559             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
560             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
561             vvdw6            = _mm256_mul_ps(c6_00,VV);
562             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
563             fvdw6            = _mm256_mul_ps(c6_00,FF);
564
565             /* CUBIC SPLINE TABLE REPULSION */
566             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
567             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
568             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
569                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
570             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
571                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
572             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
573                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
574             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
575                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
576             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
577             Heps             = _mm256_mul_ps(vfeps,H);
578             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
579             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
580             vvdw12           = _mm256_mul_ps(c12_00,VV);
581             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
582             fvdw12           = _mm256_mul_ps(c12_00,FF);
583             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
584             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
585
586             /* Update potential sum for this i atom from the interaction with this j atom. */
587             velec            = _mm256_andnot_ps(dummy_mask,velec);
588             velecsum         = _mm256_add_ps(velecsum,velec);
589             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
590             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
591
592             fscal            = _mm256_add_ps(felec,fvdw);
593
594             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
595
596             /* Calculate temporary vectorial force */
597             tx               = _mm256_mul_ps(fscal,dx00);
598             ty               = _mm256_mul_ps(fscal,dy00);
599             tz               = _mm256_mul_ps(fscal,dz00);
600
601             /* Update vectorial force */
602             fix0             = _mm256_add_ps(fix0,tx);
603             fiy0             = _mm256_add_ps(fiy0,ty);
604             fiz0             = _mm256_add_ps(fiz0,tz);
605
606             fjx0             = _mm256_add_ps(fjx0,tx);
607             fjy0             = _mm256_add_ps(fjy0,ty);
608             fjz0             = _mm256_add_ps(fjz0,tz);
609
610             /**************************
611              * CALCULATE INTERACTIONS *
612              **************************/
613
614             /* Compute parameters for interactions between i and j atoms */
615             qq10             = _mm256_mul_ps(iq1,jq0);
616
617             /* REACTION-FIELD ELECTROSTATICS */
618             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
619             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
620
621             /* Update potential sum for this i atom from the interaction with this j atom. */
622             velec            = _mm256_andnot_ps(dummy_mask,velec);
623             velecsum         = _mm256_add_ps(velecsum,velec);
624
625             fscal            = felec;
626
627             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
628
629             /* Calculate temporary vectorial force */
630             tx               = _mm256_mul_ps(fscal,dx10);
631             ty               = _mm256_mul_ps(fscal,dy10);
632             tz               = _mm256_mul_ps(fscal,dz10);
633
634             /* Update vectorial force */
635             fix1             = _mm256_add_ps(fix1,tx);
636             fiy1             = _mm256_add_ps(fiy1,ty);
637             fiz1             = _mm256_add_ps(fiz1,tz);
638
639             fjx0             = _mm256_add_ps(fjx0,tx);
640             fjy0             = _mm256_add_ps(fjy0,ty);
641             fjz0             = _mm256_add_ps(fjz0,tz);
642
643             /**************************
644              * CALCULATE INTERACTIONS *
645              **************************/
646
647             /* Compute parameters for interactions between i and j atoms */
648             qq20             = _mm256_mul_ps(iq2,jq0);
649
650             /* REACTION-FIELD ELECTROSTATICS */
651             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
652             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
653
654             /* Update potential sum for this i atom from the interaction with this j atom. */
655             velec            = _mm256_andnot_ps(dummy_mask,velec);
656             velecsum         = _mm256_add_ps(velecsum,velec);
657
658             fscal            = felec;
659
660             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
661
662             /* Calculate temporary vectorial force */
663             tx               = _mm256_mul_ps(fscal,dx20);
664             ty               = _mm256_mul_ps(fscal,dy20);
665             tz               = _mm256_mul_ps(fscal,dz20);
666
667             /* Update vectorial force */
668             fix2             = _mm256_add_ps(fix2,tx);
669             fiy2             = _mm256_add_ps(fiy2,ty);
670             fiz2             = _mm256_add_ps(fiz2,tz);
671
672             fjx0             = _mm256_add_ps(fjx0,tx);
673             fjy0             = _mm256_add_ps(fjy0,ty);
674             fjz0             = _mm256_add_ps(fjz0,tz);
675
676             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
677             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
678             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
679             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
680             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
681             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
682             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
683             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
684
685             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
686
687             /* Inner loop uses 135 flops */
688         }
689
690         /* End of innermost loop */
691
692         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
693                                                  f+i_coord_offset,fshift+i_shift_offset);
694
695         ggid                        = gid[iidx];
696         /* Update potential energies */
697         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
698         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
699
700         /* Increment number of inner iterations */
701         inneriter                  += j_index_end - j_index_start;
702
703         /* Outer loop uses 20 flops */
704     }
705
706     /* Increment number of outer iterations */
707     outeriter        += nri;
708
709     /* Update outer/inner flops */
710
711     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*135);
712 }
713 /*
714  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_256_single
715  * Electrostatics interaction: ReactionField
716  * VdW interaction:            CubicSplineTable
717  * Geometry:                   Water3-Particle
718  * Calculate force/pot:        Force
719  */
720 void
721 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_256_single
722                     (t_nblist                    * gmx_restrict       nlist,
723                      rvec                        * gmx_restrict          xx,
724                      rvec                        * gmx_restrict          ff,
725                      t_forcerec                  * gmx_restrict          fr,
726                      t_mdatoms                   * gmx_restrict     mdatoms,
727                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
728                      t_nrnb                      * gmx_restrict        nrnb)
729 {
730     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
731      * just 0 for non-waters.
732      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
733      * jnr indices corresponding to data put in the four positions in the SIMD register.
734      */
735     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
736     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
737     int              jnrA,jnrB,jnrC,jnrD;
738     int              jnrE,jnrF,jnrG,jnrH;
739     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
740     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
741     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
742     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
743     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
744     real             rcutoff_scalar;
745     real             *shiftvec,*fshift,*x,*f;
746     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
747     real             scratch[4*DIM];
748     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
749     real *           vdwioffsetptr0;
750     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
751     real *           vdwioffsetptr1;
752     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
753     real *           vdwioffsetptr2;
754     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
755     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
756     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
757     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
758     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
759     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
760     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
761     real             *charge;
762     int              nvdwtype;
763     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
764     int              *vdwtype;
765     real             *vdwparam;
766     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
767     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
768     __m256i          vfitab;
769     __m128i          vfitab_lo,vfitab_hi;
770     __m128i          ifour       = _mm_set1_epi32(4);
771     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
772     real             *vftab;
773     __m256           dummy_mask,cutoff_mask;
774     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
775     __m256           one     = _mm256_set1_ps(1.0);
776     __m256           two     = _mm256_set1_ps(2.0);
777     x                = xx[0];
778     f                = ff[0];
779
780     nri              = nlist->nri;
781     iinr             = nlist->iinr;
782     jindex           = nlist->jindex;
783     jjnr             = nlist->jjnr;
784     shiftidx         = nlist->shift;
785     gid              = nlist->gid;
786     shiftvec         = fr->shift_vec[0];
787     fshift           = fr->fshift[0];
788     facel            = _mm256_set1_ps(fr->epsfac);
789     charge           = mdatoms->chargeA;
790     krf              = _mm256_set1_ps(fr->ic->k_rf);
791     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
792     crf              = _mm256_set1_ps(fr->ic->c_rf);
793     nvdwtype         = fr->ntype;
794     vdwparam         = fr->nbfp;
795     vdwtype          = mdatoms->typeA;
796
797     vftab            = kernel_data->table_vdw->data;
798     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
799
800     /* Setup water-specific parameters */
801     inr              = nlist->iinr[0];
802     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
803     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
804     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
805     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
806
807     /* Avoid stupid compiler warnings */
808     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
809     j_coord_offsetA = 0;
810     j_coord_offsetB = 0;
811     j_coord_offsetC = 0;
812     j_coord_offsetD = 0;
813     j_coord_offsetE = 0;
814     j_coord_offsetF = 0;
815     j_coord_offsetG = 0;
816     j_coord_offsetH = 0;
817
818     outeriter        = 0;
819     inneriter        = 0;
820
821     for(iidx=0;iidx<4*DIM;iidx++)
822     {
823         scratch[iidx] = 0.0;
824     }
825
826     /* Start outer loop over neighborlists */
827     for(iidx=0; iidx<nri; iidx++)
828     {
829         /* Load shift vector for this list */
830         i_shift_offset   = DIM*shiftidx[iidx];
831
832         /* Load limits for loop over neighbors */
833         j_index_start    = jindex[iidx];
834         j_index_end      = jindex[iidx+1];
835
836         /* Get outer coordinate index */
837         inr              = iinr[iidx];
838         i_coord_offset   = DIM*inr;
839
840         /* Load i particle coords and add shift vector */
841         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
842                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
843
844         fix0             = _mm256_setzero_ps();
845         fiy0             = _mm256_setzero_ps();
846         fiz0             = _mm256_setzero_ps();
847         fix1             = _mm256_setzero_ps();
848         fiy1             = _mm256_setzero_ps();
849         fiz1             = _mm256_setzero_ps();
850         fix2             = _mm256_setzero_ps();
851         fiy2             = _mm256_setzero_ps();
852         fiz2             = _mm256_setzero_ps();
853
854         /* Start inner kernel loop */
855         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
856         {
857
858             /* Get j neighbor index, and coordinate index */
859             jnrA             = jjnr[jidx];
860             jnrB             = jjnr[jidx+1];
861             jnrC             = jjnr[jidx+2];
862             jnrD             = jjnr[jidx+3];
863             jnrE             = jjnr[jidx+4];
864             jnrF             = jjnr[jidx+5];
865             jnrG             = jjnr[jidx+6];
866             jnrH             = jjnr[jidx+7];
867             j_coord_offsetA  = DIM*jnrA;
868             j_coord_offsetB  = DIM*jnrB;
869             j_coord_offsetC  = DIM*jnrC;
870             j_coord_offsetD  = DIM*jnrD;
871             j_coord_offsetE  = DIM*jnrE;
872             j_coord_offsetF  = DIM*jnrF;
873             j_coord_offsetG  = DIM*jnrG;
874             j_coord_offsetH  = DIM*jnrH;
875
876             /* load j atom coordinates */
877             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
878                                                  x+j_coord_offsetC,x+j_coord_offsetD,
879                                                  x+j_coord_offsetE,x+j_coord_offsetF,
880                                                  x+j_coord_offsetG,x+j_coord_offsetH,
881                                                  &jx0,&jy0,&jz0);
882
883             /* Calculate displacement vector */
884             dx00             = _mm256_sub_ps(ix0,jx0);
885             dy00             = _mm256_sub_ps(iy0,jy0);
886             dz00             = _mm256_sub_ps(iz0,jz0);
887             dx10             = _mm256_sub_ps(ix1,jx0);
888             dy10             = _mm256_sub_ps(iy1,jy0);
889             dz10             = _mm256_sub_ps(iz1,jz0);
890             dx20             = _mm256_sub_ps(ix2,jx0);
891             dy20             = _mm256_sub_ps(iy2,jy0);
892             dz20             = _mm256_sub_ps(iz2,jz0);
893
894             /* Calculate squared distance and things based on it */
895             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
896             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
897             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
898
899             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
900             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
901             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
902
903             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
904             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
905             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
906
907             /* Load parameters for j particles */
908             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
909                                                                  charge+jnrC+0,charge+jnrD+0,
910                                                                  charge+jnrE+0,charge+jnrF+0,
911                                                                  charge+jnrG+0,charge+jnrH+0);
912             vdwjidx0A        = 2*vdwtype[jnrA+0];
913             vdwjidx0B        = 2*vdwtype[jnrB+0];
914             vdwjidx0C        = 2*vdwtype[jnrC+0];
915             vdwjidx0D        = 2*vdwtype[jnrD+0];
916             vdwjidx0E        = 2*vdwtype[jnrE+0];
917             vdwjidx0F        = 2*vdwtype[jnrF+0];
918             vdwjidx0G        = 2*vdwtype[jnrG+0];
919             vdwjidx0H        = 2*vdwtype[jnrH+0];
920
921             fjx0             = _mm256_setzero_ps();
922             fjy0             = _mm256_setzero_ps();
923             fjz0             = _mm256_setzero_ps();
924
925             /**************************
926              * CALCULATE INTERACTIONS *
927              **************************/
928
929             r00              = _mm256_mul_ps(rsq00,rinv00);
930
931             /* Compute parameters for interactions between i and j atoms */
932             qq00             = _mm256_mul_ps(iq0,jq0);
933             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
934                                             vdwioffsetptr0+vdwjidx0B,
935                                             vdwioffsetptr0+vdwjidx0C,
936                                             vdwioffsetptr0+vdwjidx0D,
937                                             vdwioffsetptr0+vdwjidx0E,
938                                             vdwioffsetptr0+vdwjidx0F,
939                                             vdwioffsetptr0+vdwjidx0G,
940                                             vdwioffsetptr0+vdwjidx0H,
941                                             &c6_00,&c12_00);
942
943             /* Calculate table index by multiplying r with table scale and truncate to integer */
944             rt               = _mm256_mul_ps(r00,vftabscale);
945             vfitab           = _mm256_cvttps_epi32(rt);
946             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
947             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
948             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
949             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
950             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
951             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
952
953             /* REACTION-FIELD ELECTROSTATICS */
954             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
955
956             /* CUBIC SPLINE TABLE DISPERSION */
957             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
958                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
959             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
960                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
961             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
962                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
963             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
964                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
965             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
966             Heps             = _mm256_mul_ps(vfeps,H);
967             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
968             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
969             fvdw6            = _mm256_mul_ps(c6_00,FF);
970
971             /* CUBIC SPLINE TABLE REPULSION */
972             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
973             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
974             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
975                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
976             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
977                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
978             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
979                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
980             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
981                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
982             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
983             Heps             = _mm256_mul_ps(vfeps,H);
984             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
985             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
986             fvdw12           = _mm256_mul_ps(c12_00,FF);
987             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
988
989             fscal            = _mm256_add_ps(felec,fvdw);
990
991             /* Calculate temporary vectorial force */
992             tx               = _mm256_mul_ps(fscal,dx00);
993             ty               = _mm256_mul_ps(fscal,dy00);
994             tz               = _mm256_mul_ps(fscal,dz00);
995
996             /* Update vectorial force */
997             fix0             = _mm256_add_ps(fix0,tx);
998             fiy0             = _mm256_add_ps(fiy0,ty);
999             fiz0             = _mm256_add_ps(fiz0,tz);
1000
1001             fjx0             = _mm256_add_ps(fjx0,tx);
1002             fjy0             = _mm256_add_ps(fjy0,ty);
1003             fjz0             = _mm256_add_ps(fjz0,tz);
1004
1005             /**************************
1006              * CALCULATE INTERACTIONS *
1007              **************************/
1008
1009             /* Compute parameters for interactions between i and j atoms */
1010             qq10             = _mm256_mul_ps(iq1,jq0);
1011
1012             /* REACTION-FIELD ELECTROSTATICS */
1013             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1014
1015             fscal            = felec;
1016
1017             /* Calculate temporary vectorial force */
1018             tx               = _mm256_mul_ps(fscal,dx10);
1019             ty               = _mm256_mul_ps(fscal,dy10);
1020             tz               = _mm256_mul_ps(fscal,dz10);
1021
1022             /* Update vectorial force */
1023             fix1             = _mm256_add_ps(fix1,tx);
1024             fiy1             = _mm256_add_ps(fiy1,ty);
1025             fiz1             = _mm256_add_ps(fiz1,tz);
1026
1027             fjx0             = _mm256_add_ps(fjx0,tx);
1028             fjy0             = _mm256_add_ps(fjy0,ty);
1029             fjz0             = _mm256_add_ps(fjz0,tz);
1030
1031             /**************************
1032              * CALCULATE INTERACTIONS *
1033              **************************/
1034
1035             /* Compute parameters for interactions between i and j atoms */
1036             qq20             = _mm256_mul_ps(iq2,jq0);
1037
1038             /* REACTION-FIELD ELECTROSTATICS */
1039             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1040
1041             fscal            = felec;
1042
1043             /* Calculate temporary vectorial force */
1044             tx               = _mm256_mul_ps(fscal,dx20);
1045             ty               = _mm256_mul_ps(fscal,dy20);
1046             tz               = _mm256_mul_ps(fscal,dz20);
1047
1048             /* Update vectorial force */
1049             fix2             = _mm256_add_ps(fix2,tx);
1050             fiy2             = _mm256_add_ps(fiy2,ty);
1051             fiz2             = _mm256_add_ps(fiz2,tz);
1052
1053             fjx0             = _mm256_add_ps(fjx0,tx);
1054             fjy0             = _mm256_add_ps(fjy0,ty);
1055             fjz0             = _mm256_add_ps(fjz0,tz);
1056
1057             fjptrA             = f+j_coord_offsetA;
1058             fjptrB             = f+j_coord_offsetB;
1059             fjptrC             = f+j_coord_offsetC;
1060             fjptrD             = f+j_coord_offsetD;
1061             fjptrE             = f+j_coord_offsetE;
1062             fjptrF             = f+j_coord_offsetF;
1063             fjptrG             = f+j_coord_offsetG;
1064             fjptrH             = f+j_coord_offsetH;
1065
1066             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1067
1068             /* Inner loop uses 111 flops */
1069         }
1070
1071         if(jidx<j_index_end)
1072         {
1073
1074             /* Get j neighbor index, and coordinate index */
1075             jnrlistA         = jjnr[jidx];
1076             jnrlistB         = jjnr[jidx+1];
1077             jnrlistC         = jjnr[jidx+2];
1078             jnrlistD         = jjnr[jidx+3];
1079             jnrlistE         = jjnr[jidx+4];
1080             jnrlistF         = jjnr[jidx+5];
1081             jnrlistG         = jjnr[jidx+6];
1082             jnrlistH         = jjnr[jidx+7];
1083             /* Sign of each element will be negative for non-real atoms.
1084              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1085              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1086              */
1087             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1088                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1089                                             
1090             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1091             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1092             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1093             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1094             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1095             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1096             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1097             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1098             j_coord_offsetA  = DIM*jnrA;
1099             j_coord_offsetB  = DIM*jnrB;
1100             j_coord_offsetC  = DIM*jnrC;
1101             j_coord_offsetD  = DIM*jnrD;
1102             j_coord_offsetE  = DIM*jnrE;
1103             j_coord_offsetF  = DIM*jnrF;
1104             j_coord_offsetG  = DIM*jnrG;
1105             j_coord_offsetH  = DIM*jnrH;
1106
1107             /* load j atom coordinates */
1108             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1109                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1110                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1111                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1112                                                  &jx0,&jy0,&jz0);
1113
1114             /* Calculate displacement vector */
1115             dx00             = _mm256_sub_ps(ix0,jx0);
1116             dy00             = _mm256_sub_ps(iy0,jy0);
1117             dz00             = _mm256_sub_ps(iz0,jz0);
1118             dx10             = _mm256_sub_ps(ix1,jx0);
1119             dy10             = _mm256_sub_ps(iy1,jy0);
1120             dz10             = _mm256_sub_ps(iz1,jz0);
1121             dx20             = _mm256_sub_ps(ix2,jx0);
1122             dy20             = _mm256_sub_ps(iy2,jy0);
1123             dz20             = _mm256_sub_ps(iz2,jz0);
1124
1125             /* Calculate squared distance and things based on it */
1126             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1127             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1128             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1129
1130             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1131             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1132             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1133
1134             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1135             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1136             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1137
1138             /* Load parameters for j particles */
1139             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1140                                                                  charge+jnrC+0,charge+jnrD+0,
1141                                                                  charge+jnrE+0,charge+jnrF+0,
1142                                                                  charge+jnrG+0,charge+jnrH+0);
1143             vdwjidx0A        = 2*vdwtype[jnrA+0];
1144             vdwjidx0B        = 2*vdwtype[jnrB+0];
1145             vdwjidx0C        = 2*vdwtype[jnrC+0];
1146             vdwjidx0D        = 2*vdwtype[jnrD+0];
1147             vdwjidx0E        = 2*vdwtype[jnrE+0];
1148             vdwjidx0F        = 2*vdwtype[jnrF+0];
1149             vdwjidx0G        = 2*vdwtype[jnrG+0];
1150             vdwjidx0H        = 2*vdwtype[jnrH+0];
1151
1152             fjx0             = _mm256_setzero_ps();
1153             fjy0             = _mm256_setzero_ps();
1154             fjz0             = _mm256_setzero_ps();
1155
1156             /**************************
1157              * CALCULATE INTERACTIONS *
1158              **************************/
1159
1160             r00              = _mm256_mul_ps(rsq00,rinv00);
1161             r00              = _mm256_andnot_ps(dummy_mask,r00);
1162
1163             /* Compute parameters for interactions between i and j atoms */
1164             qq00             = _mm256_mul_ps(iq0,jq0);
1165             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1166                                             vdwioffsetptr0+vdwjidx0B,
1167                                             vdwioffsetptr0+vdwjidx0C,
1168                                             vdwioffsetptr0+vdwjidx0D,
1169                                             vdwioffsetptr0+vdwjidx0E,
1170                                             vdwioffsetptr0+vdwjidx0F,
1171                                             vdwioffsetptr0+vdwjidx0G,
1172                                             vdwioffsetptr0+vdwjidx0H,
1173                                             &c6_00,&c12_00);
1174
1175             /* Calculate table index by multiplying r with table scale and truncate to integer */
1176             rt               = _mm256_mul_ps(r00,vftabscale);
1177             vfitab           = _mm256_cvttps_epi32(rt);
1178             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1179             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1180             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1181             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1182             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1183             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1184
1185             /* REACTION-FIELD ELECTROSTATICS */
1186             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
1187
1188             /* CUBIC SPLINE TABLE DISPERSION */
1189             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1190                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1191             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1192                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1193             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1194                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1195             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1196                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1197             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1198             Heps             = _mm256_mul_ps(vfeps,H);
1199             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1200             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1201             fvdw6            = _mm256_mul_ps(c6_00,FF);
1202
1203             /* CUBIC SPLINE TABLE REPULSION */
1204             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1205             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1206             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1207                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1208             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1209                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1210             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1211                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1212             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1213                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1214             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1215             Heps             = _mm256_mul_ps(vfeps,H);
1216             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1217             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1218             fvdw12           = _mm256_mul_ps(c12_00,FF);
1219             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1220
1221             fscal            = _mm256_add_ps(felec,fvdw);
1222
1223             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1224
1225             /* Calculate temporary vectorial force */
1226             tx               = _mm256_mul_ps(fscal,dx00);
1227             ty               = _mm256_mul_ps(fscal,dy00);
1228             tz               = _mm256_mul_ps(fscal,dz00);
1229
1230             /* Update vectorial force */
1231             fix0             = _mm256_add_ps(fix0,tx);
1232             fiy0             = _mm256_add_ps(fiy0,ty);
1233             fiz0             = _mm256_add_ps(fiz0,tz);
1234
1235             fjx0             = _mm256_add_ps(fjx0,tx);
1236             fjy0             = _mm256_add_ps(fjy0,ty);
1237             fjz0             = _mm256_add_ps(fjz0,tz);
1238
1239             /**************************
1240              * CALCULATE INTERACTIONS *
1241              **************************/
1242
1243             /* Compute parameters for interactions between i and j atoms */
1244             qq10             = _mm256_mul_ps(iq1,jq0);
1245
1246             /* REACTION-FIELD ELECTROSTATICS */
1247             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1248
1249             fscal            = felec;
1250
1251             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1252
1253             /* Calculate temporary vectorial force */
1254             tx               = _mm256_mul_ps(fscal,dx10);
1255             ty               = _mm256_mul_ps(fscal,dy10);
1256             tz               = _mm256_mul_ps(fscal,dz10);
1257
1258             /* Update vectorial force */
1259             fix1             = _mm256_add_ps(fix1,tx);
1260             fiy1             = _mm256_add_ps(fiy1,ty);
1261             fiz1             = _mm256_add_ps(fiz1,tz);
1262
1263             fjx0             = _mm256_add_ps(fjx0,tx);
1264             fjy0             = _mm256_add_ps(fjy0,ty);
1265             fjz0             = _mm256_add_ps(fjz0,tz);
1266
1267             /**************************
1268              * CALCULATE INTERACTIONS *
1269              **************************/
1270
1271             /* Compute parameters for interactions between i and j atoms */
1272             qq20             = _mm256_mul_ps(iq2,jq0);
1273
1274             /* REACTION-FIELD ELECTROSTATICS */
1275             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1276
1277             fscal            = felec;
1278
1279             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1280
1281             /* Calculate temporary vectorial force */
1282             tx               = _mm256_mul_ps(fscal,dx20);
1283             ty               = _mm256_mul_ps(fscal,dy20);
1284             tz               = _mm256_mul_ps(fscal,dz20);
1285
1286             /* Update vectorial force */
1287             fix2             = _mm256_add_ps(fix2,tx);
1288             fiy2             = _mm256_add_ps(fiy2,ty);
1289             fiz2             = _mm256_add_ps(fiz2,tz);
1290
1291             fjx0             = _mm256_add_ps(fjx0,tx);
1292             fjy0             = _mm256_add_ps(fjy0,ty);
1293             fjz0             = _mm256_add_ps(fjz0,tz);
1294
1295             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1296             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1297             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1298             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1299             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1300             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1301             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1302             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1303
1304             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1305
1306             /* Inner loop uses 112 flops */
1307         }
1308
1309         /* End of innermost loop */
1310
1311         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1312                                                  f+i_coord_offset,fshift+i_shift_offset);
1313
1314         /* Increment number of inner iterations */
1315         inneriter                  += j_index_end - j_index_start;
1316
1317         /* Outer loop uses 18 flops */
1318     }
1319
1320     /* Increment number of outer iterations */
1321     outeriter        += nri;
1322
1323     /* Update outer/inner flops */
1324
1325     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*112);
1326 }