Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_256_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
88     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
97     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
98     __m256i          vfitab;
99     __m128i          vfitab_lo,vfitab_hi;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m256           dummy_mask,cutoff_mask;
104     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
105     __m256           one     = _mm256_set1_ps(1.0);
106     __m256           two     = _mm256_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm256_set1_ps(fr->ic->epsfac);
119     charge           = mdatoms->chargeA;
120     krf              = _mm256_set1_ps(fr->ic->k_rf);
121     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
122     crf              = _mm256_set1_ps(fr->ic->c_rf);
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_vdw->data;
128     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136     j_coord_offsetE = 0;
137     j_coord_offsetF = 0;
138     j_coord_offsetG = 0;
139     j_coord_offsetH = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _mm256_setzero_ps();
167         fiy0             = _mm256_setzero_ps();
168         fiz0             = _mm256_setzero_ps();
169
170         /* Load parameters for i particles */
171         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
172         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm256_setzero_ps();
176         vvdwsum          = _mm256_setzero_ps();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             jnrE             = jjnr[jidx+4];
188             jnrF             = jjnr[jidx+5];
189             jnrG             = jjnr[jidx+6];
190             jnrH             = jjnr[jidx+7];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195             j_coord_offsetE  = DIM*jnrE;
196             j_coord_offsetF  = DIM*jnrF;
197             j_coord_offsetG  = DIM*jnrG;
198             j_coord_offsetH  = DIM*jnrH;
199
200             /* load j atom coordinates */
201             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
202                                                  x+j_coord_offsetC,x+j_coord_offsetD,
203                                                  x+j_coord_offsetE,x+j_coord_offsetF,
204                                                  x+j_coord_offsetG,x+j_coord_offsetH,
205                                                  &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm256_sub_ps(ix0,jx0);
209             dy00             = _mm256_sub_ps(iy0,jy0);
210             dz00             = _mm256_sub_ps(iz0,jz0);
211
212             /* Calculate squared distance and things based on it */
213             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
214
215             rinv00           = avx256_invsqrt_f(rsq00);
216
217             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
221                                                                  charge+jnrC+0,charge+jnrD+0,
222                                                                  charge+jnrE+0,charge+jnrF+0,
223                                                                  charge+jnrG+0,charge+jnrH+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226             vdwjidx0C        = 2*vdwtype[jnrC+0];
227             vdwjidx0D        = 2*vdwtype[jnrD+0];
228             vdwjidx0E        = 2*vdwtype[jnrE+0];
229             vdwjidx0F        = 2*vdwtype[jnrF+0];
230             vdwjidx0G        = 2*vdwtype[jnrG+0];
231             vdwjidx0H        = 2*vdwtype[jnrH+0];
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             r00              = _mm256_mul_ps(rsq00,rinv00);
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq00             = _mm256_mul_ps(iq0,jq0);
241             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
242                                             vdwioffsetptr0+vdwjidx0B,
243                                             vdwioffsetptr0+vdwjidx0C,
244                                             vdwioffsetptr0+vdwjidx0D,
245                                             vdwioffsetptr0+vdwjidx0E,
246                                             vdwioffsetptr0+vdwjidx0F,
247                                             vdwioffsetptr0+vdwjidx0G,
248                                             vdwioffsetptr0+vdwjidx0H,
249                                             &c6_00,&c12_00);
250
251             /* Calculate table index by multiplying r with table scale and truncate to integer */
252             rt               = _mm256_mul_ps(r00,vftabscale);
253             vfitab           = _mm256_cvttps_epi32(rt);
254             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
255             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
256             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
257             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
258             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
259             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
260
261             /* REACTION-FIELD ELECTROSTATICS */
262             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
263             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
264
265             /* CUBIC SPLINE TABLE DISPERSION */
266             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
267                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
268             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
269                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
270             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
271                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
272             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
273                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
274             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
275             Heps             = _mm256_mul_ps(vfeps,H);
276             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
277             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
278             vvdw6            = _mm256_mul_ps(c6_00,VV);
279             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
280             fvdw6            = _mm256_mul_ps(c6_00,FF);
281
282             /* CUBIC SPLINE TABLE REPULSION */
283             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
284             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
285             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
286                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
287             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
288                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
289             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
290                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
291             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
292                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
293             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
294             Heps             = _mm256_mul_ps(vfeps,H);
295             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
296             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
297             vvdw12           = _mm256_mul_ps(c12_00,VV);
298             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
299             fvdw12           = _mm256_mul_ps(c12_00,FF);
300             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
301             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             velecsum         = _mm256_add_ps(velecsum,velec);
305             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
306
307             fscal            = _mm256_add_ps(felec,fvdw);
308
309             /* Calculate temporary vectorial force */
310             tx               = _mm256_mul_ps(fscal,dx00);
311             ty               = _mm256_mul_ps(fscal,dy00);
312             tz               = _mm256_mul_ps(fscal,dz00);
313
314             /* Update vectorial force */
315             fix0             = _mm256_add_ps(fix0,tx);
316             fiy0             = _mm256_add_ps(fiy0,ty);
317             fiz0             = _mm256_add_ps(fiz0,tz);
318
319             fjptrA             = f+j_coord_offsetA;
320             fjptrB             = f+j_coord_offsetB;
321             fjptrC             = f+j_coord_offsetC;
322             fjptrD             = f+j_coord_offsetD;
323             fjptrE             = f+j_coord_offsetE;
324             fjptrF             = f+j_coord_offsetF;
325             fjptrG             = f+j_coord_offsetG;
326             fjptrH             = f+j_coord_offsetH;
327             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
328
329             /* Inner loop uses 67 flops */
330         }
331
332         if(jidx<j_index_end)
333         {
334
335             /* Get j neighbor index, and coordinate index */
336             jnrlistA         = jjnr[jidx];
337             jnrlistB         = jjnr[jidx+1];
338             jnrlistC         = jjnr[jidx+2];
339             jnrlistD         = jjnr[jidx+3];
340             jnrlistE         = jjnr[jidx+4];
341             jnrlistF         = jjnr[jidx+5];
342             jnrlistG         = jjnr[jidx+6];
343             jnrlistH         = jjnr[jidx+7];
344             /* Sign of each element will be negative for non-real atoms.
345              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
346              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
347              */
348             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
349                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
350                                             
351             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
352             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
353             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
354             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
355             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
356             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
357             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
358             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
359             j_coord_offsetA  = DIM*jnrA;
360             j_coord_offsetB  = DIM*jnrB;
361             j_coord_offsetC  = DIM*jnrC;
362             j_coord_offsetD  = DIM*jnrD;
363             j_coord_offsetE  = DIM*jnrE;
364             j_coord_offsetF  = DIM*jnrF;
365             j_coord_offsetG  = DIM*jnrG;
366             j_coord_offsetH  = DIM*jnrH;
367
368             /* load j atom coordinates */
369             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
370                                                  x+j_coord_offsetC,x+j_coord_offsetD,
371                                                  x+j_coord_offsetE,x+j_coord_offsetF,
372                                                  x+j_coord_offsetG,x+j_coord_offsetH,
373                                                  &jx0,&jy0,&jz0);
374
375             /* Calculate displacement vector */
376             dx00             = _mm256_sub_ps(ix0,jx0);
377             dy00             = _mm256_sub_ps(iy0,jy0);
378             dz00             = _mm256_sub_ps(iz0,jz0);
379
380             /* Calculate squared distance and things based on it */
381             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
382
383             rinv00           = avx256_invsqrt_f(rsq00);
384
385             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
386
387             /* Load parameters for j particles */
388             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
389                                                                  charge+jnrC+0,charge+jnrD+0,
390                                                                  charge+jnrE+0,charge+jnrF+0,
391                                                                  charge+jnrG+0,charge+jnrH+0);
392             vdwjidx0A        = 2*vdwtype[jnrA+0];
393             vdwjidx0B        = 2*vdwtype[jnrB+0];
394             vdwjidx0C        = 2*vdwtype[jnrC+0];
395             vdwjidx0D        = 2*vdwtype[jnrD+0];
396             vdwjidx0E        = 2*vdwtype[jnrE+0];
397             vdwjidx0F        = 2*vdwtype[jnrF+0];
398             vdwjidx0G        = 2*vdwtype[jnrG+0];
399             vdwjidx0H        = 2*vdwtype[jnrH+0];
400
401             /**************************
402              * CALCULATE INTERACTIONS *
403              **************************/
404
405             r00              = _mm256_mul_ps(rsq00,rinv00);
406             r00              = _mm256_andnot_ps(dummy_mask,r00);
407
408             /* Compute parameters for interactions between i and j atoms */
409             qq00             = _mm256_mul_ps(iq0,jq0);
410             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
411                                             vdwioffsetptr0+vdwjidx0B,
412                                             vdwioffsetptr0+vdwjidx0C,
413                                             vdwioffsetptr0+vdwjidx0D,
414                                             vdwioffsetptr0+vdwjidx0E,
415                                             vdwioffsetptr0+vdwjidx0F,
416                                             vdwioffsetptr0+vdwjidx0G,
417                                             vdwioffsetptr0+vdwjidx0H,
418                                             &c6_00,&c12_00);
419
420             /* Calculate table index by multiplying r with table scale and truncate to integer */
421             rt               = _mm256_mul_ps(r00,vftabscale);
422             vfitab           = _mm256_cvttps_epi32(rt);
423             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
424             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
425             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
426             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
427             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
428             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
429
430             /* REACTION-FIELD ELECTROSTATICS */
431             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
432             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
433
434             /* CUBIC SPLINE TABLE DISPERSION */
435             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
436                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
437             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
438                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
439             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
440                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
441             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
442                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
443             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
444             Heps             = _mm256_mul_ps(vfeps,H);
445             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
446             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
447             vvdw6            = _mm256_mul_ps(c6_00,VV);
448             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
449             fvdw6            = _mm256_mul_ps(c6_00,FF);
450
451             /* CUBIC SPLINE TABLE REPULSION */
452             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
453             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
454             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
455                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
456             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
457                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
458             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
459                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
460             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
461                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
462             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
463             Heps             = _mm256_mul_ps(vfeps,H);
464             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
465             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
466             vvdw12           = _mm256_mul_ps(c12_00,VV);
467             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
468             fvdw12           = _mm256_mul_ps(c12_00,FF);
469             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
470             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
471
472             /* Update potential sum for this i atom from the interaction with this j atom. */
473             velec            = _mm256_andnot_ps(dummy_mask,velec);
474             velecsum         = _mm256_add_ps(velecsum,velec);
475             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
476             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
477
478             fscal            = _mm256_add_ps(felec,fvdw);
479
480             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
481
482             /* Calculate temporary vectorial force */
483             tx               = _mm256_mul_ps(fscal,dx00);
484             ty               = _mm256_mul_ps(fscal,dy00);
485             tz               = _mm256_mul_ps(fscal,dz00);
486
487             /* Update vectorial force */
488             fix0             = _mm256_add_ps(fix0,tx);
489             fiy0             = _mm256_add_ps(fiy0,ty);
490             fiz0             = _mm256_add_ps(fiz0,tz);
491
492             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
493             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
494             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
495             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
496             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
497             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
498             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
499             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
500             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
501
502             /* Inner loop uses 68 flops */
503         }
504
505         /* End of innermost loop */
506
507         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
508                                                  f+i_coord_offset,fshift+i_shift_offset);
509
510         ggid                        = gid[iidx];
511         /* Update potential energies */
512         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
513         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
514
515         /* Increment number of inner iterations */
516         inneriter                  += j_index_end - j_index_start;
517
518         /* Outer loop uses 9 flops */
519     }
520
521     /* Increment number of outer iterations */
522     outeriter        += nri;
523
524     /* Update outer/inner flops */
525
526     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*68);
527 }
528 /*
529  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_256_single
530  * Electrostatics interaction: ReactionField
531  * VdW interaction:            CubicSplineTable
532  * Geometry:                   Particle-Particle
533  * Calculate force/pot:        Force
534  */
535 void
536 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_256_single
537                     (t_nblist                    * gmx_restrict       nlist,
538                      rvec                        * gmx_restrict          xx,
539                      rvec                        * gmx_restrict          ff,
540                      struct t_forcerec           * gmx_restrict          fr,
541                      t_mdatoms                   * gmx_restrict     mdatoms,
542                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
543                      t_nrnb                      * gmx_restrict        nrnb)
544 {
545     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
546      * just 0 for non-waters.
547      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
548      * jnr indices corresponding to data put in the four positions in the SIMD register.
549      */
550     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
551     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
552     int              jnrA,jnrB,jnrC,jnrD;
553     int              jnrE,jnrF,jnrG,jnrH;
554     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
555     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
556     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
557     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
558     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
559     real             rcutoff_scalar;
560     real             *shiftvec,*fshift,*x,*f;
561     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
562     real             scratch[4*DIM];
563     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
564     real *           vdwioffsetptr0;
565     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
566     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
567     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
568     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
569     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
570     real             *charge;
571     int              nvdwtype;
572     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
573     int              *vdwtype;
574     real             *vdwparam;
575     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
576     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
577     __m256i          vfitab;
578     __m128i          vfitab_lo,vfitab_hi;
579     __m128i          ifour       = _mm_set1_epi32(4);
580     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
581     real             *vftab;
582     __m256           dummy_mask,cutoff_mask;
583     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
584     __m256           one     = _mm256_set1_ps(1.0);
585     __m256           two     = _mm256_set1_ps(2.0);
586     x                = xx[0];
587     f                = ff[0];
588
589     nri              = nlist->nri;
590     iinr             = nlist->iinr;
591     jindex           = nlist->jindex;
592     jjnr             = nlist->jjnr;
593     shiftidx         = nlist->shift;
594     gid              = nlist->gid;
595     shiftvec         = fr->shift_vec[0];
596     fshift           = fr->fshift[0];
597     facel            = _mm256_set1_ps(fr->ic->epsfac);
598     charge           = mdatoms->chargeA;
599     krf              = _mm256_set1_ps(fr->ic->k_rf);
600     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
601     crf              = _mm256_set1_ps(fr->ic->c_rf);
602     nvdwtype         = fr->ntype;
603     vdwparam         = fr->nbfp;
604     vdwtype          = mdatoms->typeA;
605
606     vftab            = kernel_data->table_vdw->data;
607     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
608
609     /* Avoid stupid compiler warnings */
610     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
611     j_coord_offsetA = 0;
612     j_coord_offsetB = 0;
613     j_coord_offsetC = 0;
614     j_coord_offsetD = 0;
615     j_coord_offsetE = 0;
616     j_coord_offsetF = 0;
617     j_coord_offsetG = 0;
618     j_coord_offsetH = 0;
619
620     outeriter        = 0;
621     inneriter        = 0;
622
623     for(iidx=0;iidx<4*DIM;iidx++)
624     {
625         scratch[iidx] = 0.0;
626     }
627
628     /* Start outer loop over neighborlists */
629     for(iidx=0; iidx<nri; iidx++)
630     {
631         /* Load shift vector for this list */
632         i_shift_offset   = DIM*shiftidx[iidx];
633
634         /* Load limits for loop over neighbors */
635         j_index_start    = jindex[iidx];
636         j_index_end      = jindex[iidx+1];
637
638         /* Get outer coordinate index */
639         inr              = iinr[iidx];
640         i_coord_offset   = DIM*inr;
641
642         /* Load i particle coords and add shift vector */
643         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
644
645         fix0             = _mm256_setzero_ps();
646         fiy0             = _mm256_setzero_ps();
647         fiz0             = _mm256_setzero_ps();
648
649         /* Load parameters for i particles */
650         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
651         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
652
653         /* Start inner kernel loop */
654         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
655         {
656
657             /* Get j neighbor index, and coordinate index */
658             jnrA             = jjnr[jidx];
659             jnrB             = jjnr[jidx+1];
660             jnrC             = jjnr[jidx+2];
661             jnrD             = jjnr[jidx+3];
662             jnrE             = jjnr[jidx+4];
663             jnrF             = jjnr[jidx+5];
664             jnrG             = jjnr[jidx+6];
665             jnrH             = jjnr[jidx+7];
666             j_coord_offsetA  = DIM*jnrA;
667             j_coord_offsetB  = DIM*jnrB;
668             j_coord_offsetC  = DIM*jnrC;
669             j_coord_offsetD  = DIM*jnrD;
670             j_coord_offsetE  = DIM*jnrE;
671             j_coord_offsetF  = DIM*jnrF;
672             j_coord_offsetG  = DIM*jnrG;
673             j_coord_offsetH  = DIM*jnrH;
674
675             /* load j atom coordinates */
676             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
677                                                  x+j_coord_offsetC,x+j_coord_offsetD,
678                                                  x+j_coord_offsetE,x+j_coord_offsetF,
679                                                  x+j_coord_offsetG,x+j_coord_offsetH,
680                                                  &jx0,&jy0,&jz0);
681
682             /* Calculate displacement vector */
683             dx00             = _mm256_sub_ps(ix0,jx0);
684             dy00             = _mm256_sub_ps(iy0,jy0);
685             dz00             = _mm256_sub_ps(iz0,jz0);
686
687             /* Calculate squared distance and things based on it */
688             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
689
690             rinv00           = avx256_invsqrt_f(rsq00);
691
692             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
693
694             /* Load parameters for j particles */
695             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
696                                                                  charge+jnrC+0,charge+jnrD+0,
697                                                                  charge+jnrE+0,charge+jnrF+0,
698                                                                  charge+jnrG+0,charge+jnrH+0);
699             vdwjidx0A        = 2*vdwtype[jnrA+0];
700             vdwjidx0B        = 2*vdwtype[jnrB+0];
701             vdwjidx0C        = 2*vdwtype[jnrC+0];
702             vdwjidx0D        = 2*vdwtype[jnrD+0];
703             vdwjidx0E        = 2*vdwtype[jnrE+0];
704             vdwjidx0F        = 2*vdwtype[jnrF+0];
705             vdwjidx0G        = 2*vdwtype[jnrG+0];
706             vdwjidx0H        = 2*vdwtype[jnrH+0];
707
708             /**************************
709              * CALCULATE INTERACTIONS *
710              **************************/
711
712             r00              = _mm256_mul_ps(rsq00,rinv00);
713
714             /* Compute parameters for interactions between i and j atoms */
715             qq00             = _mm256_mul_ps(iq0,jq0);
716             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
717                                             vdwioffsetptr0+vdwjidx0B,
718                                             vdwioffsetptr0+vdwjidx0C,
719                                             vdwioffsetptr0+vdwjidx0D,
720                                             vdwioffsetptr0+vdwjidx0E,
721                                             vdwioffsetptr0+vdwjidx0F,
722                                             vdwioffsetptr0+vdwjidx0G,
723                                             vdwioffsetptr0+vdwjidx0H,
724                                             &c6_00,&c12_00);
725
726             /* Calculate table index by multiplying r with table scale and truncate to integer */
727             rt               = _mm256_mul_ps(r00,vftabscale);
728             vfitab           = _mm256_cvttps_epi32(rt);
729             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
730             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
731             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
732             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
733             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
734             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
735
736             /* REACTION-FIELD ELECTROSTATICS */
737             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
738
739             /* CUBIC SPLINE TABLE DISPERSION */
740             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
741                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
742             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
743                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
744             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
745                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
746             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
747                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
748             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
749             Heps             = _mm256_mul_ps(vfeps,H);
750             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
751             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
752             fvdw6            = _mm256_mul_ps(c6_00,FF);
753
754             /* CUBIC SPLINE TABLE REPULSION */
755             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
756             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
757             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
758                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
759             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
760                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
761             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
762                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
763             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
764                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
765             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
766             Heps             = _mm256_mul_ps(vfeps,H);
767             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
768             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
769             fvdw12           = _mm256_mul_ps(c12_00,FF);
770             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
771
772             fscal            = _mm256_add_ps(felec,fvdw);
773
774             /* Calculate temporary vectorial force */
775             tx               = _mm256_mul_ps(fscal,dx00);
776             ty               = _mm256_mul_ps(fscal,dy00);
777             tz               = _mm256_mul_ps(fscal,dz00);
778
779             /* Update vectorial force */
780             fix0             = _mm256_add_ps(fix0,tx);
781             fiy0             = _mm256_add_ps(fiy0,ty);
782             fiz0             = _mm256_add_ps(fiz0,tz);
783
784             fjptrA             = f+j_coord_offsetA;
785             fjptrB             = f+j_coord_offsetB;
786             fjptrC             = f+j_coord_offsetC;
787             fjptrD             = f+j_coord_offsetD;
788             fjptrE             = f+j_coord_offsetE;
789             fjptrF             = f+j_coord_offsetF;
790             fjptrG             = f+j_coord_offsetG;
791             fjptrH             = f+j_coord_offsetH;
792             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
793
794             /* Inner loop uses 54 flops */
795         }
796
797         if(jidx<j_index_end)
798         {
799
800             /* Get j neighbor index, and coordinate index */
801             jnrlistA         = jjnr[jidx];
802             jnrlistB         = jjnr[jidx+1];
803             jnrlistC         = jjnr[jidx+2];
804             jnrlistD         = jjnr[jidx+3];
805             jnrlistE         = jjnr[jidx+4];
806             jnrlistF         = jjnr[jidx+5];
807             jnrlistG         = jjnr[jidx+6];
808             jnrlistH         = jjnr[jidx+7];
809             /* Sign of each element will be negative for non-real atoms.
810              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
811              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
812              */
813             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
814                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
815                                             
816             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
817             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
818             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
819             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
820             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
821             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
822             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
823             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
824             j_coord_offsetA  = DIM*jnrA;
825             j_coord_offsetB  = DIM*jnrB;
826             j_coord_offsetC  = DIM*jnrC;
827             j_coord_offsetD  = DIM*jnrD;
828             j_coord_offsetE  = DIM*jnrE;
829             j_coord_offsetF  = DIM*jnrF;
830             j_coord_offsetG  = DIM*jnrG;
831             j_coord_offsetH  = DIM*jnrH;
832
833             /* load j atom coordinates */
834             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
835                                                  x+j_coord_offsetC,x+j_coord_offsetD,
836                                                  x+j_coord_offsetE,x+j_coord_offsetF,
837                                                  x+j_coord_offsetG,x+j_coord_offsetH,
838                                                  &jx0,&jy0,&jz0);
839
840             /* Calculate displacement vector */
841             dx00             = _mm256_sub_ps(ix0,jx0);
842             dy00             = _mm256_sub_ps(iy0,jy0);
843             dz00             = _mm256_sub_ps(iz0,jz0);
844
845             /* Calculate squared distance and things based on it */
846             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
847
848             rinv00           = avx256_invsqrt_f(rsq00);
849
850             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
851
852             /* Load parameters for j particles */
853             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
854                                                                  charge+jnrC+0,charge+jnrD+0,
855                                                                  charge+jnrE+0,charge+jnrF+0,
856                                                                  charge+jnrG+0,charge+jnrH+0);
857             vdwjidx0A        = 2*vdwtype[jnrA+0];
858             vdwjidx0B        = 2*vdwtype[jnrB+0];
859             vdwjidx0C        = 2*vdwtype[jnrC+0];
860             vdwjidx0D        = 2*vdwtype[jnrD+0];
861             vdwjidx0E        = 2*vdwtype[jnrE+0];
862             vdwjidx0F        = 2*vdwtype[jnrF+0];
863             vdwjidx0G        = 2*vdwtype[jnrG+0];
864             vdwjidx0H        = 2*vdwtype[jnrH+0];
865
866             /**************************
867              * CALCULATE INTERACTIONS *
868              **************************/
869
870             r00              = _mm256_mul_ps(rsq00,rinv00);
871             r00              = _mm256_andnot_ps(dummy_mask,r00);
872
873             /* Compute parameters for interactions between i and j atoms */
874             qq00             = _mm256_mul_ps(iq0,jq0);
875             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
876                                             vdwioffsetptr0+vdwjidx0B,
877                                             vdwioffsetptr0+vdwjidx0C,
878                                             vdwioffsetptr0+vdwjidx0D,
879                                             vdwioffsetptr0+vdwjidx0E,
880                                             vdwioffsetptr0+vdwjidx0F,
881                                             vdwioffsetptr0+vdwjidx0G,
882                                             vdwioffsetptr0+vdwjidx0H,
883                                             &c6_00,&c12_00);
884
885             /* Calculate table index by multiplying r with table scale and truncate to integer */
886             rt               = _mm256_mul_ps(r00,vftabscale);
887             vfitab           = _mm256_cvttps_epi32(rt);
888             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
889             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
890             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
891             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
892             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
893             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
894
895             /* REACTION-FIELD ELECTROSTATICS */
896             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
897
898             /* CUBIC SPLINE TABLE DISPERSION */
899             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
900                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
901             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
902                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
903             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
904                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
905             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
906                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
907             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
908             Heps             = _mm256_mul_ps(vfeps,H);
909             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
910             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
911             fvdw6            = _mm256_mul_ps(c6_00,FF);
912
913             /* CUBIC SPLINE TABLE REPULSION */
914             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
915             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
916             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
917                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
918             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
919                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
920             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
921                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
922             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
923                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
924             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
925             Heps             = _mm256_mul_ps(vfeps,H);
926             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
927             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
928             fvdw12           = _mm256_mul_ps(c12_00,FF);
929             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
930
931             fscal            = _mm256_add_ps(felec,fvdw);
932
933             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
934
935             /* Calculate temporary vectorial force */
936             tx               = _mm256_mul_ps(fscal,dx00);
937             ty               = _mm256_mul_ps(fscal,dy00);
938             tz               = _mm256_mul_ps(fscal,dz00);
939
940             /* Update vectorial force */
941             fix0             = _mm256_add_ps(fix0,tx);
942             fiy0             = _mm256_add_ps(fiy0,ty);
943             fiz0             = _mm256_add_ps(fiz0,tz);
944
945             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
946             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
947             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
948             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
949             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
950             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
951             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
952             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
953             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
954
955             /* Inner loop uses 55 flops */
956         }
957
958         /* End of innermost loop */
959
960         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
961                                                  f+i_coord_offset,fshift+i_shift_offset);
962
963         /* Increment number of inner iterations */
964         inneriter                  += j_index_end - j_index_start;
965
966         /* Outer loop uses 7 flops */
967     }
968
969     /* Increment number of outer iterations */
970     outeriter        += nri;
971
972     /* Update outer/inner flops */
973
974     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*55);
975 }