Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_256_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
91     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
100     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
101     __m256i          vfitab;
102     __m128i          vfitab_lo,vfitab_hi;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105     real             *vftab;
106     __m256           dummy_mask,cutoff_mask;
107     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
108     __m256           one     = _mm256_set1_ps(1.0);
109     __m256           two     = _mm256_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     krf              = _mm256_set1_ps(fr->ic->k_rf);
124     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
125     crf              = _mm256_set1_ps(fr->ic->c_rf);
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139     j_coord_offsetE = 0;
140     j_coord_offsetF = 0;
141     j_coord_offsetG = 0;
142     j_coord_offsetH = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
168
169         fix0             = _mm256_setzero_ps();
170         fiy0             = _mm256_setzero_ps();
171         fiz0             = _mm256_setzero_ps();
172
173         /* Load parameters for i particles */
174         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
175         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
176
177         /* Reset potential sums */
178         velecsum         = _mm256_setzero_ps();
179         vvdwsum          = _mm256_setzero_ps();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             jnrC             = jjnr[jidx+2];
189             jnrD             = jjnr[jidx+3];
190             jnrE             = jjnr[jidx+4];
191             jnrF             = jjnr[jidx+5];
192             jnrG             = jjnr[jidx+6];
193             jnrH             = jjnr[jidx+7];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196             j_coord_offsetC  = DIM*jnrC;
197             j_coord_offsetD  = DIM*jnrD;
198             j_coord_offsetE  = DIM*jnrE;
199             j_coord_offsetF  = DIM*jnrF;
200             j_coord_offsetG  = DIM*jnrG;
201             j_coord_offsetH  = DIM*jnrH;
202
203             /* load j atom coordinates */
204             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
205                                                  x+j_coord_offsetC,x+j_coord_offsetD,
206                                                  x+j_coord_offsetE,x+j_coord_offsetF,
207                                                  x+j_coord_offsetG,x+j_coord_offsetH,
208                                                  &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _mm256_sub_ps(ix0,jx0);
212             dy00             = _mm256_sub_ps(iy0,jy0);
213             dz00             = _mm256_sub_ps(iz0,jz0);
214
215             /* Calculate squared distance and things based on it */
216             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
217
218             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
219
220             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
221
222             /* Load parameters for j particles */
223             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
224                                                                  charge+jnrC+0,charge+jnrD+0,
225                                                                  charge+jnrE+0,charge+jnrF+0,
226                                                                  charge+jnrG+0,charge+jnrH+0);
227             vdwjidx0A        = 2*vdwtype[jnrA+0];
228             vdwjidx0B        = 2*vdwtype[jnrB+0];
229             vdwjidx0C        = 2*vdwtype[jnrC+0];
230             vdwjidx0D        = 2*vdwtype[jnrD+0];
231             vdwjidx0E        = 2*vdwtype[jnrE+0];
232             vdwjidx0F        = 2*vdwtype[jnrF+0];
233             vdwjidx0G        = 2*vdwtype[jnrG+0];
234             vdwjidx0H        = 2*vdwtype[jnrH+0];
235
236             /**************************
237              * CALCULATE INTERACTIONS *
238              **************************/
239
240             r00              = _mm256_mul_ps(rsq00,rinv00);
241
242             /* Compute parameters for interactions between i and j atoms */
243             qq00             = _mm256_mul_ps(iq0,jq0);
244             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
245                                             vdwioffsetptr0+vdwjidx0B,
246                                             vdwioffsetptr0+vdwjidx0C,
247                                             vdwioffsetptr0+vdwjidx0D,
248                                             vdwioffsetptr0+vdwjidx0E,
249                                             vdwioffsetptr0+vdwjidx0F,
250                                             vdwioffsetptr0+vdwjidx0G,
251                                             vdwioffsetptr0+vdwjidx0H,
252                                             &c6_00,&c12_00);
253
254             /* Calculate table index by multiplying r with table scale and truncate to integer */
255             rt               = _mm256_mul_ps(r00,vftabscale);
256             vfitab           = _mm256_cvttps_epi32(rt);
257             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
258             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
259             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
260             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
261             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
262             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
263
264             /* REACTION-FIELD ELECTROSTATICS */
265             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
266             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
267
268             /* CUBIC SPLINE TABLE DISPERSION */
269             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
270                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
271             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
272                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
273             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
274                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
275             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
276                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
277             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
278             Heps             = _mm256_mul_ps(vfeps,H);
279             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
280             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
281             vvdw6            = _mm256_mul_ps(c6_00,VV);
282             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
283             fvdw6            = _mm256_mul_ps(c6_00,FF);
284
285             /* CUBIC SPLINE TABLE REPULSION */
286             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
287             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
288             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
289                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
290             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
291                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
292             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
293                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
294             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
295                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
296             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
297             Heps             = _mm256_mul_ps(vfeps,H);
298             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
299             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
300             vvdw12           = _mm256_mul_ps(c12_00,VV);
301             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
302             fvdw12           = _mm256_mul_ps(c12_00,FF);
303             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
304             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
305
306             /* Update potential sum for this i atom from the interaction with this j atom. */
307             velecsum         = _mm256_add_ps(velecsum,velec);
308             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
309
310             fscal            = _mm256_add_ps(felec,fvdw);
311
312             /* Calculate temporary vectorial force */
313             tx               = _mm256_mul_ps(fscal,dx00);
314             ty               = _mm256_mul_ps(fscal,dy00);
315             tz               = _mm256_mul_ps(fscal,dz00);
316
317             /* Update vectorial force */
318             fix0             = _mm256_add_ps(fix0,tx);
319             fiy0             = _mm256_add_ps(fiy0,ty);
320             fiz0             = _mm256_add_ps(fiz0,tz);
321
322             fjptrA             = f+j_coord_offsetA;
323             fjptrB             = f+j_coord_offsetB;
324             fjptrC             = f+j_coord_offsetC;
325             fjptrD             = f+j_coord_offsetD;
326             fjptrE             = f+j_coord_offsetE;
327             fjptrF             = f+j_coord_offsetF;
328             fjptrG             = f+j_coord_offsetG;
329             fjptrH             = f+j_coord_offsetH;
330             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
331
332             /* Inner loop uses 67 flops */
333         }
334
335         if(jidx<j_index_end)
336         {
337
338             /* Get j neighbor index, and coordinate index */
339             jnrlistA         = jjnr[jidx];
340             jnrlistB         = jjnr[jidx+1];
341             jnrlistC         = jjnr[jidx+2];
342             jnrlistD         = jjnr[jidx+3];
343             jnrlistE         = jjnr[jidx+4];
344             jnrlistF         = jjnr[jidx+5];
345             jnrlistG         = jjnr[jidx+6];
346             jnrlistH         = jjnr[jidx+7];
347             /* Sign of each element will be negative for non-real atoms.
348              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
349              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
350              */
351             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
352                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
353                                             
354             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
355             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
356             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
357             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
358             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
359             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
360             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
361             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
362             j_coord_offsetA  = DIM*jnrA;
363             j_coord_offsetB  = DIM*jnrB;
364             j_coord_offsetC  = DIM*jnrC;
365             j_coord_offsetD  = DIM*jnrD;
366             j_coord_offsetE  = DIM*jnrE;
367             j_coord_offsetF  = DIM*jnrF;
368             j_coord_offsetG  = DIM*jnrG;
369             j_coord_offsetH  = DIM*jnrH;
370
371             /* load j atom coordinates */
372             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
373                                                  x+j_coord_offsetC,x+j_coord_offsetD,
374                                                  x+j_coord_offsetE,x+j_coord_offsetF,
375                                                  x+j_coord_offsetG,x+j_coord_offsetH,
376                                                  &jx0,&jy0,&jz0);
377
378             /* Calculate displacement vector */
379             dx00             = _mm256_sub_ps(ix0,jx0);
380             dy00             = _mm256_sub_ps(iy0,jy0);
381             dz00             = _mm256_sub_ps(iz0,jz0);
382
383             /* Calculate squared distance and things based on it */
384             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
385
386             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
387
388             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
389
390             /* Load parameters for j particles */
391             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
392                                                                  charge+jnrC+0,charge+jnrD+0,
393                                                                  charge+jnrE+0,charge+jnrF+0,
394                                                                  charge+jnrG+0,charge+jnrH+0);
395             vdwjidx0A        = 2*vdwtype[jnrA+0];
396             vdwjidx0B        = 2*vdwtype[jnrB+0];
397             vdwjidx0C        = 2*vdwtype[jnrC+0];
398             vdwjidx0D        = 2*vdwtype[jnrD+0];
399             vdwjidx0E        = 2*vdwtype[jnrE+0];
400             vdwjidx0F        = 2*vdwtype[jnrF+0];
401             vdwjidx0G        = 2*vdwtype[jnrG+0];
402             vdwjidx0H        = 2*vdwtype[jnrH+0];
403
404             /**************************
405              * CALCULATE INTERACTIONS *
406              **************************/
407
408             r00              = _mm256_mul_ps(rsq00,rinv00);
409             r00              = _mm256_andnot_ps(dummy_mask,r00);
410
411             /* Compute parameters for interactions between i and j atoms */
412             qq00             = _mm256_mul_ps(iq0,jq0);
413             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
414                                             vdwioffsetptr0+vdwjidx0B,
415                                             vdwioffsetptr0+vdwjidx0C,
416                                             vdwioffsetptr0+vdwjidx0D,
417                                             vdwioffsetptr0+vdwjidx0E,
418                                             vdwioffsetptr0+vdwjidx0F,
419                                             vdwioffsetptr0+vdwjidx0G,
420                                             vdwioffsetptr0+vdwjidx0H,
421                                             &c6_00,&c12_00);
422
423             /* Calculate table index by multiplying r with table scale and truncate to integer */
424             rt               = _mm256_mul_ps(r00,vftabscale);
425             vfitab           = _mm256_cvttps_epi32(rt);
426             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
427             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
428             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
429             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
430             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
431             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
432
433             /* REACTION-FIELD ELECTROSTATICS */
434             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
435             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
436
437             /* CUBIC SPLINE TABLE DISPERSION */
438             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
439                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
440             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
441                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
442             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
443                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
444             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
445                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
446             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
447             Heps             = _mm256_mul_ps(vfeps,H);
448             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
449             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
450             vvdw6            = _mm256_mul_ps(c6_00,VV);
451             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
452             fvdw6            = _mm256_mul_ps(c6_00,FF);
453
454             /* CUBIC SPLINE TABLE REPULSION */
455             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
456             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
457             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
458                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
459             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
460                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
461             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
462                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
463             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
464                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
465             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
466             Heps             = _mm256_mul_ps(vfeps,H);
467             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
468             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
469             vvdw12           = _mm256_mul_ps(c12_00,VV);
470             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
471             fvdw12           = _mm256_mul_ps(c12_00,FF);
472             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
473             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
474
475             /* Update potential sum for this i atom from the interaction with this j atom. */
476             velec            = _mm256_andnot_ps(dummy_mask,velec);
477             velecsum         = _mm256_add_ps(velecsum,velec);
478             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
479             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
480
481             fscal            = _mm256_add_ps(felec,fvdw);
482
483             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
484
485             /* Calculate temporary vectorial force */
486             tx               = _mm256_mul_ps(fscal,dx00);
487             ty               = _mm256_mul_ps(fscal,dy00);
488             tz               = _mm256_mul_ps(fscal,dz00);
489
490             /* Update vectorial force */
491             fix0             = _mm256_add_ps(fix0,tx);
492             fiy0             = _mm256_add_ps(fiy0,ty);
493             fiz0             = _mm256_add_ps(fiz0,tz);
494
495             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
496             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
497             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
498             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
499             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
500             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
501             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
502             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
503             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
504
505             /* Inner loop uses 68 flops */
506         }
507
508         /* End of innermost loop */
509
510         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
511                                                  f+i_coord_offset,fshift+i_shift_offset);
512
513         ggid                        = gid[iidx];
514         /* Update potential energies */
515         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
516         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
517
518         /* Increment number of inner iterations */
519         inneriter                  += j_index_end - j_index_start;
520
521         /* Outer loop uses 9 flops */
522     }
523
524     /* Increment number of outer iterations */
525     outeriter        += nri;
526
527     /* Update outer/inner flops */
528
529     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*68);
530 }
531 /*
532  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_256_single
533  * Electrostatics interaction: ReactionField
534  * VdW interaction:            CubicSplineTable
535  * Geometry:                   Particle-Particle
536  * Calculate force/pot:        Force
537  */
538 void
539 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_256_single
540                     (t_nblist                    * gmx_restrict       nlist,
541                      rvec                        * gmx_restrict          xx,
542                      rvec                        * gmx_restrict          ff,
543                      t_forcerec                  * gmx_restrict          fr,
544                      t_mdatoms                   * gmx_restrict     mdatoms,
545                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
546                      t_nrnb                      * gmx_restrict        nrnb)
547 {
548     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
549      * just 0 for non-waters.
550      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
551      * jnr indices corresponding to data put in the four positions in the SIMD register.
552      */
553     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
554     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
555     int              jnrA,jnrB,jnrC,jnrD;
556     int              jnrE,jnrF,jnrG,jnrH;
557     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
558     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
559     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
560     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
561     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
562     real             rcutoff_scalar;
563     real             *shiftvec,*fshift,*x,*f;
564     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
565     real             scratch[4*DIM];
566     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
567     real *           vdwioffsetptr0;
568     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
569     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
570     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
571     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
572     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
573     real             *charge;
574     int              nvdwtype;
575     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
576     int              *vdwtype;
577     real             *vdwparam;
578     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
579     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
580     __m256i          vfitab;
581     __m128i          vfitab_lo,vfitab_hi;
582     __m128i          ifour       = _mm_set1_epi32(4);
583     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
584     real             *vftab;
585     __m256           dummy_mask,cutoff_mask;
586     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
587     __m256           one     = _mm256_set1_ps(1.0);
588     __m256           two     = _mm256_set1_ps(2.0);
589     x                = xx[0];
590     f                = ff[0];
591
592     nri              = nlist->nri;
593     iinr             = nlist->iinr;
594     jindex           = nlist->jindex;
595     jjnr             = nlist->jjnr;
596     shiftidx         = nlist->shift;
597     gid              = nlist->gid;
598     shiftvec         = fr->shift_vec[0];
599     fshift           = fr->fshift[0];
600     facel            = _mm256_set1_ps(fr->epsfac);
601     charge           = mdatoms->chargeA;
602     krf              = _mm256_set1_ps(fr->ic->k_rf);
603     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
604     crf              = _mm256_set1_ps(fr->ic->c_rf);
605     nvdwtype         = fr->ntype;
606     vdwparam         = fr->nbfp;
607     vdwtype          = mdatoms->typeA;
608
609     vftab            = kernel_data->table_vdw->data;
610     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
611
612     /* Avoid stupid compiler warnings */
613     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
614     j_coord_offsetA = 0;
615     j_coord_offsetB = 0;
616     j_coord_offsetC = 0;
617     j_coord_offsetD = 0;
618     j_coord_offsetE = 0;
619     j_coord_offsetF = 0;
620     j_coord_offsetG = 0;
621     j_coord_offsetH = 0;
622
623     outeriter        = 0;
624     inneriter        = 0;
625
626     for(iidx=0;iidx<4*DIM;iidx++)
627     {
628         scratch[iidx] = 0.0;
629     }
630
631     /* Start outer loop over neighborlists */
632     for(iidx=0; iidx<nri; iidx++)
633     {
634         /* Load shift vector for this list */
635         i_shift_offset   = DIM*shiftidx[iidx];
636
637         /* Load limits for loop over neighbors */
638         j_index_start    = jindex[iidx];
639         j_index_end      = jindex[iidx+1];
640
641         /* Get outer coordinate index */
642         inr              = iinr[iidx];
643         i_coord_offset   = DIM*inr;
644
645         /* Load i particle coords and add shift vector */
646         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
647
648         fix0             = _mm256_setzero_ps();
649         fiy0             = _mm256_setzero_ps();
650         fiz0             = _mm256_setzero_ps();
651
652         /* Load parameters for i particles */
653         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
654         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
655
656         /* Start inner kernel loop */
657         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
658         {
659
660             /* Get j neighbor index, and coordinate index */
661             jnrA             = jjnr[jidx];
662             jnrB             = jjnr[jidx+1];
663             jnrC             = jjnr[jidx+2];
664             jnrD             = jjnr[jidx+3];
665             jnrE             = jjnr[jidx+4];
666             jnrF             = jjnr[jidx+5];
667             jnrG             = jjnr[jidx+6];
668             jnrH             = jjnr[jidx+7];
669             j_coord_offsetA  = DIM*jnrA;
670             j_coord_offsetB  = DIM*jnrB;
671             j_coord_offsetC  = DIM*jnrC;
672             j_coord_offsetD  = DIM*jnrD;
673             j_coord_offsetE  = DIM*jnrE;
674             j_coord_offsetF  = DIM*jnrF;
675             j_coord_offsetG  = DIM*jnrG;
676             j_coord_offsetH  = DIM*jnrH;
677
678             /* load j atom coordinates */
679             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
680                                                  x+j_coord_offsetC,x+j_coord_offsetD,
681                                                  x+j_coord_offsetE,x+j_coord_offsetF,
682                                                  x+j_coord_offsetG,x+j_coord_offsetH,
683                                                  &jx0,&jy0,&jz0);
684
685             /* Calculate displacement vector */
686             dx00             = _mm256_sub_ps(ix0,jx0);
687             dy00             = _mm256_sub_ps(iy0,jy0);
688             dz00             = _mm256_sub_ps(iz0,jz0);
689
690             /* Calculate squared distance and things based on it */
691             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
692
693             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
694
695             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
696
697             /* Load parameters for j particles */
698             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
699                                                                  charge+jnrC+0,charge+jnrD+0,
700                                                                  charge+jnrE+0,charge+jnrF+0,
701                                                                  charge+jnrG+0,charge+jnrH+0);
702             vdwjidx0A        = 2*vdwtype[jnrA+0];
703             vdwjidx0B        = 2*vdwtype[jnrB+0];
704             vdwjidx0C        = 2*vdwtype[jnrC+0];
705             vdwjidx0D        = 2*vdwtype[jnrD+0];
706             vdwjidx0E        = 2*vdwtype[jnrE+0];
707             vdwjidx0F        = 2*vdwtype[jnrF+0];
708             vdwjidx0G        = 2*vdwtype[jnrG+0];
709             vdwjidx0H        = 2*vdwtype[jnrH+0];
710
711             /**************************
712              * CALCULATE INTERACTIONS *
713              **************************/
714
715             r00              = _mm256_mul_ps(rsq00,rinv00);
716
717             /* Compute parameters for interactions between i and j atoms */
718             qq00             = _mm256_mul_ps(iq0,jq0);
719             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
720                                             vdwioffsetptr0+vdwjidx0B,
721                                             vdwioffsetptr0+vdwjidx0C,
722                                             vdwioffsetptr0+vdwjidx0D,
723                                             vdwioffsetptr0+vdwjidx0E,
724                                             vdwioffsetptr0+vdwjidx0F,
725                                             vdwioffsetptr0+vdwjidx0G,
726                                             vdwioffsetptr0+vdwjidx0H,
727                                             &c6_00,&c12_00);
728
729             /* Calculate table index by multiplying r with table scale and truncate to integer */
730             rt               = _mm256_mul_ps(r00,vftabscale);
731             vfitab           = _mm256_cvttps_epi32(rt);
732             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
733             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
734             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
735             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
736             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
737             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
738
739             /* REACTION-FIELD ELECTROSTATICS */
740             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
741
742             /* CUBIC SPLINE TABLE DISPERSION */
743             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
744                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
745             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
746                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
747             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
748                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
749             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
750                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
751             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
752             Heps             = _mm256_mul_ps(vfeps,H);
753             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
754             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
755             fvdw6            = _mm256_mul_ps(c6_00,FF);
756
757             /* CUBIC SPLINE TABLE REPULSION */
758             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
759             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
760             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
761                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
762             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
763                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
764             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
765                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
766             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
767                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
768             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
769             Heps             = _mm256_mul_ps(vfeps,H);
770             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
771             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
772             fvdw12           = _mm256_mul_ps(c12_00,FF);
773             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
774
775             fscal            = _mm256_add_ps(felec,fvdw);
776
777             /* Calculate temporary vectorial force */
778             tx               = _mm256_mul_ps(fscal,dx00);
779             ty               = _mm256_mul_ps(fscal,dy00);
780             tz               = _mm256_mul_ps(fscal,dz00);
781
782             /* Update vectorial force */
783             fix0             = _mm256_add_ps(fix0,tx);
784             fiy0             = _mm256_add_ps(fiy0,ty);
785             fiz0             = _mm256_add_ps(fiz0,tz);
786
787             fjptrA             = f+j_coord_offsetA;
788             fjptrB             = f+j_coord_offsetB;
789             fjptrC             = f+j_coord_offsetC;
790             fjptrD             = f+j_coord_offsetD;
791             fjptrE             = f+j_coord_offsetE;
792             fjptrF             = f+j_coord_offsetF;
793             fjptrG             = f+j_coord_offsetG;
794             fjptrH             = f+j_coord_offsetH;
795             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
796
797             /* Inner loop uses 54 flops */
798         }
799
800         if(jidx<j_index_end)
801         {
802
803             /* Get j neighbor index, and coordinate index */
804             jnrlistA         = jjnr[jidx];
805             jnrlistB         = jjnr[jidx+1];
806             jnrlistC         = jjnr[jidx+2];
807             jnrlistD         = jjnr[jidx+3];
808             jnrlistE         = jjnr[jidx+4];
809             jnrlistF         = jjnr[jidx+5];
810             jnrlistG         = jjnr[jidx+6];
811             jnrlistH         = jjnr[jidx+7];
812             /* Sign of each element will be negative for non-real atoms.
813              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
814              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
815              */
816             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
817                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
818                                             
819             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
820             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
821             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
822             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
823             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
824             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
825             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
826             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
827             j_coord_offsetA  = DIM*jnrA;
828             j_coord_offsetB  = DIM*jnrB;
829             j_coord_offsetC  = DIM*jnrC;
830             j_coord_offsetD  = DIM*jnrD;
831             j_coord_offsetE  = DIM*jnrE;
832             j_coord_offsetF  = DIM*jnrF;
833             j_coord_offsetG  = DIM*jnrG;
834             j_coord_offsetH  = DIM*jnrH;
835
836             /* load j atom coordinates */
837             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
838                                                  x+j_coord_offsetC,x+j_coord_offsetD,
839                                                  x+j_coord_offsetE,x+j_coord_offsetF,
840                                                  x+j_coord_offsetG,x+j_coord_offsetH,
841                                                  &jx0,&jy0,&jz0);
842
843             /* Calculate displacement vector */
844             dx00             = _mm256_sub_ps(ix0,jx0);
845             dy00             = _mm256_sub_ps(iy0,jy0);
846             dz00             = _mm256_sub_ps(iz0,jz0);
847
848             /* Calculate squared distance and things based on it */
849             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
850
851             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
852
853             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
854
855             /* Load parameters for j particles */
856             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
857                                                                  charge+jnrC+0,charge+jnrD+0,
858                                                                  charge+jnrE+0,charge+jnrF+0,
859                                                                  charge+jnrG+0,charge+jnrH+0);
860             vdwjidx0A        = 2*vdwtype[jnrA+0];
861             vdwjidx0B        = 2*vdwtype[jnrB+0];
862             vdwjidx0C        = 2*vdwtype[jnrC+0];
863             vdwjidx0D        = 2*vdwtype[jnrD+0];
864             vdwjidx0E        = 2*vdwtype[jnrE+0];
865             vdwjidx0F        = 2*vdwtype[jnrF+0];
866             vdwjidx0G        = 2*vdwtype[jnrG+0];
867             vdwjidx0H        = 2*vdwtype[jnrH+0];
868
869             /**************************
870              * CALCULATE INTERACTIONS *
871              **************************/
872
873             r00              = _mm256_mul_ps(rsq00,rinv00);
874             r00              = _mm256_andnot_ps(dummy_mask,r00);
875
876             /* Compute parameters for interactions between i and j atoms */
877             qq00             = _mm256_mul_ps(iq0,jq0);
878             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
879                                             vdwioffsetptr0+vdwjidx0B,
880                                             vdwioffsetptr0+vdwjidx0C,
881                                             vdwioffsetptr0+vdwjidx0D,
882                                             vdwioffsetptr0+vdwjidx0E,
883                                             vdwioffsetptr0+vdwjidx0F,
884                                             vdwioffsetptr0+vdwjidx0G,
885                                             vdwioffsetptr0+vdwjidx0H,
886                                             &c6_00,&c12_00);
887
888             /* Calculate table index by multiplying r with table scale and truncate to integer */
889             rt               = _mm256_mul_ps(r00,vftabscale);
890             vfitab           = _mm256_cvttps_epi32(rt);
891             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
892             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
893             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
894             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
895             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
896             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
897
898             /* REACTION-FIELD ELECTROSTATICS */
899             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
900
901             /* CUBIC SPLINE TABLE DISPERSION */
902             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
903                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
904             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
905                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
906             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
907                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
908             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
909                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
910             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
911             Heps             = _mm256_mul_ps(vfeps,H);
912             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
913             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
914             fvdw6            = _mm256_mul_ps(c6_00,FF);
915
916             /* CUBIC SPLINE TABLE REPULSION */
917             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
918             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
919             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
920                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
921             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
922                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
923             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
924                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
925             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
926                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
927             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
928             Heps             = _mm256_mul_ps(vfeps,H);
929             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
930             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
931             fvdw12           = _mm256_mul_ps(c12_00,FF);
932             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
933
934             fscal            = _mm256_add_ps(felec,fvdw);
935
936             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
937
938             /* Calculate temporary vectorial force */
939             tx               = _mm256_mul_ps(fscal,dx00);
940             ty               = _mm256_mul_ps(fscal,dy00);
941             tz               = _mm256_mul_ps(fscal,dz00);
942
943             /* Update vectorial force */
944             fix0             = _mm256_add_ps(fix0,tx);
945             fiy0             = _mm256_add_ps(fiy0,ty);
946             fiz0             = _mm256_add_ps(fiz0,tz);
947
948             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
949             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
950             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
951             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
952             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
953             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
954             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
955             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
956             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
957
958             /* Inner loop uses 55 flops */
959         }
960
961         /* End of innermost loop */
962
963         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
964                                                  f+i_coord_offset,fshift+i_shift_offset);
965
966         /* Increment number of inner iterations */
967         inneriter                  += j_index_end - j_index_start;
968
969         /* Outer loop uses 7 flops */
970     }
971
972     /* Increment number of outer iterations */
973     outeriter        += nri;
974
975     /* Update outer/inner flops */
976
977     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*55);
978 }