7a917a97f93f88634d3e21f9358b652bccd0beb6
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwNone_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW4P1_VF_avx_256_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            None
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwNone_GeomW4P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     __m256           dummy_mask,cutoff_mask;
102     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
103     __m256           one     = _mm256_set1_ps(1.0);
104     __m256           two     = _mm256_set1_ps(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm256_set1_ps(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     krf              = _mm256_set1_ps(fr->ic->k_rf);
119     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
120     crf              = _mm256_set1_ps(fr->ic->c_rf);
121
122     /* Setup water-specific parameters */
123     inr              = nlist->iinr[0];
124     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
125     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
126     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
127
128     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
129     rcutoff_scalar   = fr->rcoulomb;
130     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
131     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139     j_coord_offsetE = 0;
140     j_coord_offsetF = 0;
141     j_coord_offsetG = 0;
142     j_coord_offsetH = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
168                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
169
170         fix1             = _mm256_setzero_ps();
171         fiy1             = _mm256_setzero_ps();
172         fiz1             = _mm256_setzero_ps();
173         fix2             = _mm256_setzero_ps();
174         fiy2             = _mm256_setzero_ps();
175         fiz2             = _mm256_setzero_ps();
176         fix3             = _mm256_setzero_ps();
177         fiy3             = _mm256_setzero_ps();
178         fiz3             = _mm256_setzero_ps();
179
180         /* Reset potential sums */
181         velecsum         = _mm256_setzero_ps();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             jnrC             = jjnr[jidx+2];
191             jnrD             = jjnr[jidx+3];
192             jnrE             = jjnr[jidx+4];
193             jnrF             = jjnr[jidx+5];
194             jnrG             = jjnr[jidx+6];
195             jnrH             = jjnr[jidx+7];
196             j_coord_offsetA  = DIM*jnrA;
197             j_coord_offsetB  = DIM*jnrB;
198             j_coord_offsetC  = DIM*jnrC;
199             j_coord_offsetD  = DIM*jnrD;
200             j_coord_offsetE  = DIM*jnrE;
201             j_coord_offsetF  = DIM*jnrF;
202             j_coord_offsetG  = DIM*jnrG;
203             j_coord_offsetH  = DIM*jnrH;
204
205             /* load j atom coordinates */
206             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
207                                                  x+j_coord_offsetC,x+j_coord_offsetD,
208                                                  x+j_coord_offsetE,x+j_coord_offsetF,
209                                                  x+j_coord_offsetG,x+j_coord_offsetH,
210                                                  &jx0,&jy0,&jz0);
211
212             /* Calculate displacement vector */
213             dx10             = _mm256_sub_ps(ix1,jx0);
214             dy10             = _mm256_sub_ps(iy1,jy0);
215             dz10             = _mm256_sub_ps(iz1,jz0);
216             dx20             = _mm256_sub_ps(ix2,jx0);
217             dy20             = _mm256_sub_ps(iy2,jy0);
218             dz20             = _mm256_sub_ps(iz2,jz0);
219             dx30             = _mm256_sub_ps(ix3,jx0);
220             dy30             = _mm256_sub_ps(iy3,jy0);
221             dz30             = _mm256_sub_ps(iz3,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
225             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
226             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
227
228             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
229             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
230             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
231
232             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
233             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
234             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
235
236             /* Load parameters for j particles */
237             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
238                                                                  charge+jnrC+0,charge+jnrD+0,
239                                                                  charge+jnrE+0,charge+jnrF+0,
240                                                                  charge+jnrG+0,charge+jnrH+0);
241
242             fjx0             = _mm256_setzero_ps();
243             fjy0             = _mm256_setzero_ps();
244             fjz0             = _mm256_setzero_ps();
245
246             /**************************
247              * CALCULATE INTERACTIONS *
248              **************************/
249
250             if (gmx_mm256_any_lt(rsq10,rcutoff2))
251             {
252
253             /* Compute parameters for interactions between i and j atoms */
254             qq10             = _mm256_mul_ps(iq1,jq0);
255
256             /* REACTION-FIELD ELECTROSTATICS */
257             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
258             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
259
260             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             velec            = _mm256_and_ps(velec,cutoff_mask);
264             velecsum         = _mm256_add_ps(velecsum,velec);
265
266             fscal            = felec;
267
268             fscal            = _mm256_and_ps(fscal,cutoff_mask);
269
270             /* Calculate temporary vectorial force */
271             tx               = _mm256_mul_ps(fscal,dx10);
272             ty               = _mm256_mul_ps(fscal,dy10);
273             tz               = _mm256_mul_ps(fscal,dz10);
274
275             /* Update vectorial force */
276             fix1             = _mm256_add_ps(fix1,tx);
277             fiy1             = _mm256_add_ps(fiy1,ty);
278             fiz1             = _mm256_add_ps(fiz1,tz);
279
280             fjx0             = _mm256_add_ps(fjx0,tx);
281             fjy0             = _mm256_add_ps(fjy0,ty);
282             fjz0             = _mm256_add_ps(fjz0,tz);
283
284             }
285
286             /**************************
287              * CALCULATE INTERACTIONS *
288              **************************/
289
290             if (gmx_mm256_any_lt(rsq20,rcutoff2))
291             {
292
293             /* Compute parameters for interactions between i and j atoms */
294             qq20             = _mm256_mul_ps(iq2,jq0);
295
296             /* REACTION-FIELD ELECTROSTATICS */
297             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
298             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
299
300             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
301
302             /* Update potential sum for this i atom from the interaction with this j atom. */
303             velec            = _mm256_and_ps(velec,cutoff_mask);
304             velecsum         = _mm256_add_ps(velecsum,velec);
305
306             fscal            = felec;
307
308             fscal            = _mm256_and_ps(fscal,cutoff_mask);
309
310             /* Calculate temporary vectorial force */
311             tx               = _mm256_mul_ps(fscal,dx20);
312             ty               = _mm256_mul_ps(fscal,dy20);
313             tz               = _mm256_mul_ps(fscal,dz20);
314
315             /* Update vectorial force */
316             fix2             = _mm256_add_ps(fix2,tx);
317             fiy2             = _mm256_add_ps(fiy2,ty);
318             fiz2             = _mm256_add_ps(fiz2,tz);
319
320             fjx0             = _mm256_add_ps(fjx0,tx);
321             fjy0             = _mm256_add_ps(fjy0,ty);
322             fjz0             = _mm256_add_ps(fjz0,tz);
323
324             }
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             if (gmx_mm256_any_lt(rsq30,rcutoff2))
331             {
332
333             /* Compute parameters for interactions between i and j atoms */
334             qq30             = _mm256_mul_ps(iq3,jq0);
335
336             /* REACTION-FIELD ELECTROSTATICS */
337             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
338             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
339
340             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
341
342             /* Update potential sum for this i atom from the interaction with this j atom. */
343             velec            = _mm256_and_ps(velec,cutoff_mask);
344             velecsum         = _mm256_add_ps(velecsum,velec);
345
346             fscal            = felec;
347
348             fscal            = _mm256_and_ps(fscal,cutoff_mask);
349
350             /* Calculate temporary vectorial force */
351             tx               = _mm256_mul_ps(fscal,dx30);
352             ty               = _mm256_mul_ps(fscal,dy30);
353             tz               = _mm256_mul_ps(fscal,dz30);
354
355             /* Update vectorial force */
356             fix3             = _mm256_add_ps(fix3,tx);
357             fiy3             = _mm256_add_ps(fiy3,ty);
358             fiz3             = _mm256_add_ps(fiz3,tz);
359
360             fjx0             = _mm256_add_ps(fjx0,tx);
361             fjy0             = _mm256_add_ps(fjy0,ty);
362             fjz0             = _mm256_add_ps(fjz0,tz);
363
364             }
365
366             fjptrA             = f+j_coord_offsetA;
367             fjptrB             = f+j_coord_offsetB;
368             fjptrC             = f+j_coord_offsetC;
369             fjptrD             = f+j_coord_offsetD;
370             fjptrE             = f+j_coord_offsetE;
371             fjptrF             = f+j_coord_offsetF;
372             fjptrG             = f+j_coord_offsetG;
373             fjptrH             = f+j_coord_offsetH;
374
375             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
376
377             /* Inner loop uses 111 flops */
378         }
379
380         if(jidx<j_index_end)
381         {
382
383             /* Get j neighbor index, and coordinate index */
384             jnrlistA         = jjnr[jidx];
385             jnrlistB         = jjnr[jidx+1];
386             jnrlistC         = jjnr[jidx+2];
387             jnrlistD         = jjnr[jidx+3];
388             jnrlistE         = jjnr[jidx+4];
389             jnrlistF         = jjnr[jidx+5];
390             jnrlistG         = jjnr[jidx+6];
391             jnrlistH         = jjnr[jidx+7];
392             /* Sign of each element will be negative for non-real atoms.
393              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
394              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
395              */
396             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
397                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
398                                             
399             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
400             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
401             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
402             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
403             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
404             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
405             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
406             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
407             j_coord_offsetA  = DIM*jnrA;
408             j_coord_offsetB  = DIM*jnrB;
409             j_coord_offsetC  = DIM*jnrC;
410             j_coord_offsetD  = DIM*jnrD;
411             j_coord_offsetE  = DIM*jnrE;
412             j_coord_offsetF  = DIM*jnrF;
413             j_coord_offsetG  = DIM*jnrG;
414             j_coord_offsetH  = DIM*jnrH;
415
416             /* load j atom coordinates */
417             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
418                                                  x+j_coord_offsetC,x+j_coord_offsetD,
419                                                  x+j_coord_offsetE,x+j_coord_offsetF,
420                                                  x+j_coord_offsetG,x+j_coord_offsetH,
421                                                  &jx0,&jy0,&jz0);
422
423             /* Calculate displacement vector */
424             dx10             = _mm256_sub_ps(ix1,jx0);
425             dy10             = _mm256_sub_ps(iy1,jy0);
426             dz10             = _mm256_sub_ps(iz1,jz0);
427             dx20             = _mm256_sub_ps(ix2,jx0);
428             dy20             = _mm256_sub_ps(iy2,jy0);
429             dz20             = _mm256_sub_ps(iz2,jz0);
430             dx30             = _mm256_sub_ps(ix3,jx0);
431             dy30             = _mm256_sub_ps(iy3,jy0);
432             dz30             = _mm256_sub_ps(iz3,jz0);
433
434             /* Calculate squared distance and things based on it */
435             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
436             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
437             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
438
439             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
440             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
441             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
442
443             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
444             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
445             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
446
447             /* Load parameters for j particles */
448             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
449                                                                  charge+jnrC+0,charge+jnrD+0,
450                                                                  charge+jnrE+0,charge+jnrF+0,
451                                                                  charge+jnrG+0,charge+jnrH+0);
452
453             fjx0             = _mm256_setzero_ps();
454             fjy0             = _mm256_setzero_ps();
455             fjz0             = _mm256_setzero_ps();
456
457             /**************************
458              * CALCULATE INTERACTIONS *
459              **************************/
460
461             if (gmx_mm256_any_lt(rsq10,rcutoff2))
462             {
463
464             /* Compute parameters for interactions between i and j atoms */
465             qq10             = _mm256_mul_ps(iq1,jq0);
466
467             /* REACTION-FIELD ELECTROSTATICS */
468             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
469             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
470
471             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
472
473             /* Update potential sum for this i atom from the interaction with this j atom. */
474             velec            = _mm256_and_ps(velec,cutoff_mask);
475             velec            = _mm256_andnot_ps(dummy_mask,velec);
476             velecsum         = _mm256_add_ps(velecsum,velec);
477
478             fscal            = felec;
479
480             fscal            = _mm256_and_ps(fscal,cutoff_mask);
481
482             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
483
484             /* Calculate temporary vectorial force */
485             tx               = _mm256_mul_ps(fscal,dx10);
486             ty               = _mm256_mul_ps(fscal,dy10);
487             tz               = _mm256_mul_ps(fscal,dz10);
488
489             /* Update vectorial force */
490             fix1             = _mm256_add_ps(fix1,tx);
491             fiy1             = _mm256_add_ps(fiy1,ty);
492             fiz1             = _mm256_add_ps(fiz1,tz);
493
494             fjx0             = _mm256_add_ps(fjx0,tx);
495             fjy0             = _mm256_add_ps(fjy0,ty);
496             fjz0             = _mm256_add_ps(fjz0,tz);
497
498             }
499
500             /**************************
501              * CALCULATE INTERACTIONS *
502              **************************/
503
504             if (gmx_mm256_any_lt(rsq20,rcutoff2))
505             {
506
507             /* Compute parameters for interactions between i and j atoms */
508             qq20             = _mm256_mul_ps(iq2,jq0);
509
510             /* REACTION-FIELD ELECTROSTATICS */
511             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
512             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
513
514             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
515
516             /* Update potential sum for this i atom from the interaction with this j atom. */
517             velec            = _mm256_and_ps(velec,cutoff_mask);
518             velec            = _mm256_andnot_ps(dummy_mask,velec);
519             velecsum         = _mm256_add_ps(velecsum,velec);
520
521             fscal            = felec;
522
523             fscal            = _mm256_and_ps(fscal,cutoff_mask);
524
525             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
526
527             /* Calculate temporary vectorial force */
528             tx               = _mm256_mul_ps(fscal,dx20);
529             ty               = _mm256_mul_ps(fscal,dy20);
530             tz               = _mm256_mul_ps(fscal,dz20);
531
532             /* Update vectorial force */
533             fix2             = _mm256_add_ps(fix2,tx);
534             fiy2             = _mm256_add_ps(fiy2,ty);
535             fiz2             = _mm256_add_ps(fiz2,tz);
536
537             fjx0             = _mm256_add_ps(fjx0,tx);
538             fjy0             = _mm256_add_ps(fjy0,ty);
539             fjz0             = _mm256_add_ps(fjz0,tz);
540
541             }
542
543             /**************************
544              * CALCULATE INTERACTIONS *
545              **************************/
546
547             if (gmx_mm256_any_lt(rsq30,rcutoff2))
548             {
549
550             /* Compute parameters for interactions between i and j atoms */
551             qq30             = _mm256_mul_ps(iq3,jq0);
552
553             /* REACTION-FIELD ELECTROSTATICS */
554             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
555             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
556
557             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
558
559             /* Update potential sum for this i atom from the interaction with this j atom. */
560             velec            = _mm256_and_ps(velec,cutoff_mask);
561             velec            = _mm256_andnot_ps(dummy_mask,velec);
562             velecsum         = _mm256_add_ps(velecsum,velec);
563
564             fscal            = felec;
565
566             fscal            = _mm256_and_ps(fscal,cutoff_mask);
567
568             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
569
570             /* Calculate temporary vectorial force */
571             tx               = _mm256_mul_ps(fscal,dx30);
572             ty               = _mm256_mul_ps(fscal,dy30);
573             tz               = _mm256_mul_ps(fscal,dz30);
574
575             /* Update vectorial force */
576             fix3             = _mm256_add_ps(fix3,tx);
577             fiy3             = _mm256_add_ps(fiy3,ty);
578             fiz3             = _mm256_add_ps(fiz3,tz);
579
580             fjx0             = _mm256_add_ps(fjx0,tx);
581             fjy0             = _mm256_add_ps(fjy0,ty);
582             fjz0             = _mm256_add_ps(fjz0,tz);
583
584             }
585
586             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
587             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
588             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
589             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
590             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
591             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
592             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
593             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
594
595             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
596
597             /* Inner loop uses 111 flops */
598         }
599
600         /* End of innermost loop */
601
602         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
603                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
604
605         ggid                        = gid[iidx];
606         /* Update potential energies */
607         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
608
609         /* Increment number of inner iterations */
610         inneriter                  += j_index_end - j_index_start;
611
612         /* Outer loop uses 19 flops */
613     }
614
615     /* Increment number of outer iterations */
616     outeriter        += nri;
617
618     /* Update outer/inner flops */
619
620     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*111);
621 }
622 /*
623  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW4P1_F_avx_256_single
624  * Electrostatics interaction: ReactionField
625  * VdW interaction:            None
626  * Geometry:                   Water4-Particle
627  * Calculate force/pot:        Force
628  */
629 void
630 nb_kernel_ElecRFCut_VdwNone_GeomW4P1_F_avx_256_single
631                     (t_nblist                    * gmx_restrict       nlist,
632                      rvec                        * gmx_restrict          xx,
633                      rvec                        * gmx_restrict          ff,
634                      t_forcerec                  * gmx_restrict          fr,
635                      t_mdatoms                   * gmx_restrict     mdatoms,
636                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
637                      t_nrnb                      * gmx_restrict        nrnb)
638 {
639     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
640      * just 0 for non-waters.
641      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
642      * jnr indices corresponding to data put in the four positions in the SIMD register.
643      */
644     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
645     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
646     int              jnrA,jnrB,jnrC,jnrD;
647     int              jnrE,jnrF,jnrG,jnrH;
648     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
649     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
650     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
651     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
652     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
653     real             rcutoff_scalar;
654     real             *shiftvec,*fshift,*x,*f;
655     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
656     real             scratch[4*DIM];
657     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
658     real *           vdwioffsetptr1;
659     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
660     real *           vdwioffsetptr2;
661     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
662     real *           vdwioffsetptr3;
663     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
664     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
665     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
666     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
667     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
668     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
669     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
670     real             *charge;
671     __m256           dummy_mask,cutoff_mask;
672     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
673     __m256           one     = _mm256_set1_ps(1.0);
674     __m256           two     = _mm256_set1_ps(2.0);
675     x                = xx[0];
676     f                = ff[0];
677
678     nri              = nlist->nri;
679     iinr             = nlist->iinr;
680     jindex           = nlist->jindex;
681     jjnr             = nlist->jjnr;
682     shiftidx         = nlist->shift;
683     gid              = nlist->gid;
684     shiftvec         = fr->shift_vec[0];
685     fshift           = fr->fshift[0];
686     facel            = _mm256_set1_ps(fr->epsfac);
687     charge           = mdatoms->chargeA;
688     krf              = _mm256_set1_ps(fr->ic->k_rf);
689     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
690     crf              = _mm256_set1_ps(fr->ic->c_rf);
691
692     /* Setup water-specific parameters */
693     inr              = nlist->iinr[0];
694     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
695     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
696     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
697
698     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
699     rcutoff_scalar   = fr->rcoulomb;
700     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
701     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
702
703     /* Avoid stupid compiler warnings */
704     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
705     j_coord_offsetA = 0;
706     j_coord_offsetB = 0;
707     j_coord_offsetC = 0;
708     j_coord_offsetD = 0;
709     j_coord_offsetE = 0;
710     j_coord_offsetF = 0;
711     j_coord_offsetG = 0;
712     j_coord_offsetH = 0;
713
714     outeriter        = 0;
715     inneriter        = 0;
716
717     for(iidx=0;iidx<4*DIM;iidx++)
718     {
719         scratch[iidx] = 0.0;
720     }
721
722     /* Start outer loop over neighborlists */
723     for(iidx=0; iidx<nri; iidx++)
724     {
725         /* Load shift vector for this list */
726         i_shift_offset   = DIM*shiftidx[iidx];
727
728         /* Load limits for loop over neighbors */
729         j_index_start    = jindex[iidx];
730         j_index_end      = jindex[iidx+1];
731
732         /* Get outer coordinate index */
733         inr              = iinr[iidx];
734         i_coord_offset   = DIM*inr;
735
736         /* Load i particle coords and add shift vector */
737         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
738                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
739
740         fix1             = _mm256_setzero_ps();
741         fiy1             = _mm256_setzero_ps();
742         fiz1             = _mm256_setzero_ps();
743         fix2             = _mm256_setzero_ps();
744         fiy2             = _mm256_setzero_ps();
745         fiz2             = _mm256_setzero_ps();
746         fix3             = _mm256_setzero_ps();
747         fiy3             = _mm256_setzero_ps();
748         fiz3             = _mm256_setzero_ps();
749
750         /* Start inner kernel loop */
751         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
752         {
753
754             /* Get j neighbor index, and coordinate index */
755             jnrA             = jjnr[jidx];
756             jnrB             = jjnr[jidx+1];
757             jnrC             = jjnr[jidx+2];
758             jnrD             = jjnr[jidx+3];
759             jnrE             = jjnr[jidx+4];
760             jnrF             = jjnr[jidx+5];
761             jnrG             = jjnr[jidx+6];
762             jnrH             = jjnr[jidx+7];
763             j_coord_offsetA  = DIM*jnrA;
764             j_coord_offsetB  = DIM*jnrB;
765             j_coord_offsetC  = DIM*jnrC;
766             j_coord_offsetD  = DIM*jnrD;
767             j_coord_offsetE  = DIM*jnrE;
768             j_coord_offsetF  = DIM*jnrF;
769             j_coord_offsetG  = DIM*jnrG;
770             j_coord_offsetH  = DIM*jnrH;
771
772             /* load j atom coordinates */
773             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
774                                                  x+j_coord_offsetC,x+j_coord_offsetD,
775                                                  x+j_coord_offsetE,x+j_coord_offsetF,
776                                                  x+j_coord_offsetG,x+j_coord_offsetH,
777                                                  &jx0,&jy0,&jz0);
778
779             /* Calculate displacement vector */
780             dx10             = _mm256_sub_ps(ix1,jx0);
781             dy10             = _mm256_sub_ps(iy1,jy0);
782             dz10             = _mm256_sub_ps(iz1,jz0);
783             dx20             = _mm256_sub_ps(ix2,jx0);
784             dy20             = _mm256_sub_ps(iy2,jy0);
785             dz20             = _mm256_sub_ps(iz2,jz0);
786             dx30             = _mm256_sub_ps(ix3,jx0);
787             dy30             = _mm256_sub_ps(iy3,jy0);
788             dz30             = _mm256_sub_ps(iz3,jz0);
789
790             /* Calculate squared distance and things based on it */
791             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
792             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
793             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
794
795             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
796             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
797             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
798
799             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
800             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
801             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
802
803             /* Load parameters for j particles */
804             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
805                                                                  charge+jnrC+0,charge+jnrD+0,
806                                                                  charge+jnrE+0,charge+jnrF+0,
807                                                                  charge+jnrG+0,charge+jnrH+0);
808
809             fjx0             = _mm256_setzero_ps();
810             fjy0             = _mm256_setzero_ps();
811             fjz0             = _mm256_setzero_ps();
812
813             /**************************
814              * CALCULATE INTERACTIONS *
815              **************************/
816
817             if (gmx_mm256_any_lt(rsq10,rcutoff2))
818             {
819
820             /* Compute parameters for interactions between i and j atoms */
821             qq10             = _mm256_mul_ps(iq1,jq0);
822
823             /* REACTION-FIELD ELECTROSTATICS */
824             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
825
826             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
827
828             fscal            = felec;
829
830             fscal            = _mm256_and_ps(fscal,cutoff_mask);
831
832             /* Calculate temporary vectorial force */
833             tx               = _mm256_mul_ps(fscal,dx10);
834             ty               = _mm256_mul_ps(fscal,dy10);
835             tz               = _mm256_mul_ps(fscal,dz10);
836
837             /* Update vectorial force */
838             fix1             = _mm256_add_ps(fix1,tx);
839             fiy1             = _mm256_add_ps(fiy1,ty);
840             fiz1             = _mm256_add_ps(fiz1,tz);
841
842             fjx0             = _mm256_add_ps(fjx0,tx);
843             fjy0             = _mm256_add_ps(fjy0,ty);
844             fjz0             = _mm256_add_ps(fjz0,tz);
845
846             }
847
848             /**************************
849              * CALCULATE INTERACTIONS *
850              **************************/
851
852             if (gmx_mm256_any_lt(rsq20,rcutoff2))
853             {
854
855             /* Compute parameters for interactions between i and j atoms */
856             qq20             = _mm256_mul_ps(iq2,jq0);
857
858             /* REACTION-FIELD ELECTROSTATICS */
859             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
860
861             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
862
863             fscal            = felec;
864
865             fscal            = _mm256_and_ps(fscal,cutoff_mask);
866
867             /* Calculate temporary vectorial force */
868             tx               = _mm256_mul_ps(fscal,dx20);
869             ty               = _mm256_mul_ps(fscal,dy20);
870             tz               = _mm256_mul_ps(fscal,dz20);
871
872             /* Update vectorial force */
873             fix2             = _mm256_add_ps(fix2,tx);
874             fiy2             = _mm256_add_ps(fiy2,ty);
875             fiz2             = _mm256_add_ps(fiz2,tz);
876
877             fjx0             = _mm256_add_ps(fjx0,tx);
878             fjy0             = _mm256_add_ps(fjy0,ty);
879             fjz0             = _mm256_add_ps(fjz0,tz);
880
881             }
882
883             /**************************
884              * CALCULATE INTERACTIONS *
885              **************************/
886
887             if (gmx_mm256_any_lt(rsq30,rcutoff2))
888             {
889
890             /* Compute parameters for interactions between i and j atoms */
891             qq30             = _mm256_mul_ps(iq3,jq0);
892
893             /* REACTION-FIELD ELECTROSTATICS */
894             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
895
896             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
897
898             fscal            = felec;
899
900             fscal            = _mm256_and_ps(fscal,cutoff_mask);
901
902             /* Calculate temporary vectorial force */
903             tx               = _mm256_mul_ps(fscal,dx30);
904             ty               = _mm256_mul_ps(fscal,dy30);
905             tz               = _mm256_mul_ps(fscal,dz30);
906
907             /* Update vectorial force */
908             fix3             = _mm256_add_ps(fix3,tx);
909             fiy3             = _mm256_add_ps(fiy3,ty);
910             fiz3             = _mm256_add_ps(fiz3,tz);
911
912             fjx0             = _mm256_add_ps(fjx0,tx);
913             fjy0             = _mm256_add_ps(fjy0,ty);
914             fjz0             = _mm256_add_ps(fjz0,tz);
915
916             }
917
918             fjptrA             = f+j_coord_offsetA;
919             fjptrB             = f+j_coord_offsetB;
920             fjptrC             = f+j_coord_offsetC;
921             fjptrD             = f+j_coord_offsetD;
922             fjptrE             = f+j_coord_offsetE;
923             fjptrF             = f+j_coord_offsetF;
924             fjptrG             = f+j_coord_offsetG;
925             fjptrH             = f+j_coord_offsetH;
926
927             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
928
929             /* Inner loop uses 93 flops */
930         }
931
932         if(jidx<j_index_end)
933         {
934
935             /* Get j neighbor index, and coordinate index */
936             jnrlistA         = jjnr[jidx];
937             jnrlistB         = jjnr[jidx+1];
938             jnrlistC         = jjnr[jidx+2];
939             jnrlistD         = jjnr[jidx+3];
940             jnrlistE         = jjnr[jidx+4];
941             jnrlistF         = jjnr[jidx+5];
942             jnrlistG         = jjnr[jidx+6];
943             jnrlistH         = jjnr[jidx+7];
944             /* Sign of each element will be negative for non-real atoms.
945              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
946              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
947              */
948             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
949                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
950                                             
951             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
952             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
953             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
954             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
955             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
956             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
957             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
958             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
959             j_coord_offsetA  = DIM*jnrA;
960             j_coord_offsetB  = DIM*jnrB;
961             j_coord_offsetC  = DIM*jnrC;
962             j_coord_offsetD  = DIM*jnrD;
963             j_coord_offsetE  = DIM*jnrE;
964             j_coord_offsetF  = DIM*jnrF;
965             j_coord_offsetG  = DIM*jnrG;
966             j_coord_offsetH  = DIM*jnrH;
967
968             /* load j atom coordinates */
969             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
970                                                  x+j_coord_offsetC,x+j_coord_offsetD,
971                                                  x+j_coord_offsetE,x+j_coord_offsetF,
972                                                  x+j_coord_offsetG,x+j_coord_offsetH,
973                                                  &jx0,&jy0,&jz0);
974
975             /* Calculate displacement vector */
976             dx10             = _mm256_sub_ps(ix1,jx0);
977             dy10             = _mm256_sub_ps(iy1,jy0);
978             dz10             = _mm256_sub_ps(iz1,jz0);
979             dx20             = _mm256_sub_ps(ix2,jx0);
980             dy20             = _mm256_sub_ps(iy2,jy0);
981             dz20             = _mm256_sub_ps(iz2,jz0);
982             dx30             = _mm256_sub_ps(ix3,jx0);
983             dy30             = _mm256_sub_ps(iy3,jy0);
984             dz30             = _mm256_sub_ps(iz3,jz0);
985
986             /* Calculate squared distance and things based on it */
987             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
988             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
989             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
990
991             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
992             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
993             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
994
995             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
996             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
997             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
998
999             /* Load parameters for j particles */
1000             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1001                                                                  charge+jnrC+0,charge+jnrD+0,
1002                                                                  charge+jnrE+0,charge+jnrF+0,
1003                                                                  charge+jnrG+0,charge+jnrH+0);
1004
1005             fjx0             = _mm256_setzero_ps();
1006             fjy0             = _mm256_setzero_ps();
1007             fjz0             = _mm256_setzero_ps();
1008
1009             /**************************
1010              * CALCULATE INTERACTIONS *
1011              **************************/
1012
1013             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1014             {
1015
1016             /* Compute parameters for interactions between i and j atoms */
1017             qq10             = _mm256_mul_ps(iq1,jq0);
1018
1019             /* REACTION-FIELD ELECTROSTATICS */
1020             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1021
1022             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1023
1024             fscal            = felec;
1025
1026             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1027
1028             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1029
1030             /* Calculate temporary vectorial force */
1031             tx               = _mm256_mul_ps(fscal,dx10);
1032             ty               = _mm256_mul_ps(fscal,dy10);
1033             tz               = _mm256_mul_ps(fscal,dz10);
1034
1035             /* Update vectorial force */
1036             fix1             = _mm256_add_ps(fix1,tx);
1037             fiy1             = _mm256_add_ps(fiy1,ty);
1038             fiz1             = _mm256_add_ps(fiz1,tz);
1039
1040             fjx0             = _mm256_add_ps(fjx0,tx);
1041             fjy0             = _mm256_add_ps(fjy0,ty);
1042             fjz0             = _mm256_add_ps(fjz0,tz);
1043
1044             }
1045
1046             /**************************
1047              * CALCULATE INTERACTIONS *
1048              **************************/
1049
1050             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1051             {
1052
1053             /* Compute parameters for interactions between i and j atoms */
1054             qq20             = _mm256_mul_ps(iq2,jq0);
1055
1056             /* REACTION-FIELD ELECTROSTATICS */
1057             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1058
1059             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1060
1061             fscal            = felec;
1062
1063             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1064
1065             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1066
1067             /* Calculate temporary vectorial force */
1068             tx               = _mm256_mul_ps(fscal,dx20);
1069             ty               = _mm256_mul_ps(fscal,dy20);
1070             tz               = _mm256_mul_ps(fscal,dz20);
1071
1072             /* Update vectorial force */
1073             fix2             = _mm256_add_ps(fix2,tx);
1074             fiy2             = _mm256_add_ps(fiy2,ty);
1075             fiz2             = _mm256_add_ps(fiz2,tz);
1076
1077             fjx0             = _mm256_add_ps(fjx0,tx);
1078             fjy0             = _mm256_add_ps(fjy0,ty);
1079             fjz0             = _mm256_add_ps(fjz0,tz);
1080
1081             }
1082
1083             /**************************
1084              * CALCULATE INTERACTIONS *
1085              **************************/
1086
1087             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1088             {
1089
1090             /* Compute parameters for interactions between i and j atoms */
1091             qq30             = _mm256_mul_ps(iq3,jq0);
1092
1093             /* REACTION-FIELD ELECTROSTATICS */
1094             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1095
1096             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1097
1098             fscal            = felec;
1099
1100             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1101
1102             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1103
1104             /* Calculate temporary vectorial force */
1105             tx               = _mm256_mul_ps(fscal,dx30);
1106             ty               = _mm256_mul_ps(fscal,dy30);
1107             tz               = _mm256_mul_ps(fscal,dz30);
1108
1109             /* Update vectorial force */
1110             fix3             = _mm256_add_ps(fix3,tx);
1111             fiy3             = _mm256_add_ps(fiy3,ty);
1112             fiz3             = _mm256_add_ps(fiz3,tz);
1113
1114             fjx0             = _mm256_add_ps(fjx0,tx);
1115             fjy0             = _mm256_add_ps(fjy0,ty);
1116             fjz0             = _mm256_add_ps(fjz0,tz);
1117
1118             }
1119
1120             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1121             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1122             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1123             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1124             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1125             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1126             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1127             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1128
1129             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1130
1131             /* Inner loop uses 93 flops */
1132         }
1133
1134         /* End of innermost loop */
1135
1136         gmx_mm256_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1137                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
1138
1139         /* Increment number of inner iterations */
1140         inneriter                  += j_index_end - j_index_start;
1141
1142         /* Outer loop uses 18 flops */
1143     }
1144
1145     /* Increment number of outer iterations */
1146     outeriter        += nri;
1147
1148     /* Update outer/inner flops */
1149
1150     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*93);
1151 }