Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwNone_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW3P1_VF_avx_256_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            None
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwNone_GeomW3P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
93     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     __m256           dummy_mask,cutoff_mask;
100     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
101     __m256           one     = _mm256_set1_ps(1.0);
102     __m256           two     = _mm256_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm256_set1_ps(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     krf              = _mm256_set1_ps(fr->ic->k_rf);
117     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
118     crf              = _mm256_set1_ps(fr->ic->c_rf);
119
120     /* Setup water-specific parameters */
121     inr              = nlist->iinr[0];
122     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
123     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
124     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->rcoulomb;
128     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
129     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137     j_coord_offsetE = 0;
138     j_coord_offsetF = 0;
139     j_coord_offsetG = 0;
140     j_coord_offsetH = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     for(iidx=0;iidx<4*DIM;iidx++)
146     {
147         scratch[iidx] = 0.0;
148     }
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
166                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
167
168         fix0             = _mm256_setzero_ps();
169         fiy0             = _mm256_setzero_ps();
170         fiz0             = _mm256_setzero_ps();
171         fix1             = _mm256_setzero_ps();
172         fiy1             = _mm256_setzero_ps();
173         fiz1             = _mm256_setzero_ps();
174         fix2             = _mm256_setzero_ps();
175         fiy2             = _mm256_setzero_ps();
176         fiz2             = _mm256_setzero_ps();
177
178         /* Reset potential sums */
179         velecsum         = _mm256_setzero_ps();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             jnrC             = jjnr[jidx+2];
189             jnrD             = jjnr[jidx+3];
190             jnrE             = jjnr[jidx+4];
191             jnrF             = jjnr[jidx+5];
192             jnrG             = jjnr[jidx+6];
193             jnrH             = jjnr[jidx+7];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196             j_coord_offsetC  = DIM*jnrC;
197             j_coord_offsetD  = DIM*jnrD;
198             j_coord_offsetE  = DIM*jnrE;
199             j_coord_offsetF  = DIM*jnrF;
200             j_coord_offsetG  = DIM*jnrG;
201             j_coord_offsetH  = DIM*jnrH;
202
203             /* load j atom coordinates */
204             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
205                                                  x+j_coord_offsetC,x+j_coord_offsetD,
206                                                  x+j_coord_offsetE,x+j_coord_offsetF,
207                                                  x+j_coord_offsetG,x+j_coord_offsetH,
208                                                  &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _mm256_sub_ps(ix0,jx0);
212             dy00             = _mm256_sub_ps(iy0,jy0);
213             dz00             = _mm256_sub_ps(iz0,jz0);
214             dx10             = _mm256_sub_ps(ix1,jx0);
215             dy10             = _mm256_sub_ps(iy1,jy0);
216             dz10             = _mm256_sub_ps(iz1,jz0);
217             dx20             = _mm256_sub_ps(ix2,jx0);
218             dy20             = _mm256_sub_ps(iy2,jy0);
219             dz20             = _mm256_sub_ps(iz2,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
223             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
224             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
225
226             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
227             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
228             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
229
230             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
231             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
232             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
236                                                                  charge+jnrC+0,charge+jnrD+0,
237                                                                  charge+jnrE+0,charge+jnrF+0,
238                                                                  charge+jnrG+0,charge+jnrH+0);
239
240             fjx0             = _mm256_setzero_ps();
241             fjy0             = _mm256_setzero_ps();
242             fjz0             = _mm256_setzero_ps();
243
244             /**************************
245              * CALCULATE INTERACTIONS *
246              **************************/
247
248             if (gmx_mm256_any_lt(rsq00,rcutoff2))
249             {
250
251             /* Compute parameters for interactions between i and j atoms */
252             qq00             = _mm256_mul_ps(iq0,jq0);
253
254             /* REACTION-FIELD ELECTROSTATICS */
255             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
256             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
257
258             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
259
260             /* Update potential sum for this i atom from the interaction with this j atom. */
261             velec            = _mm256_and_ps(velec,cutoff_mask);
262             velecsum         = _mm256_add_ps(velecsum,velec);
263
264             fscal            = felec;
265
266             fscal            = _mm256_and_ps(fscal,cutoff_mask);
267
268             /* Calculate temporary vectorial force */
269             tx               = _mm256_mul_ps(fscal,dx00);
270             ty               = _mm256_mul_ps(fscal,dy00);
271             tz               = _mm256_mul_ps(fscal,dz00);
272
273             /* Update vectorial force */
274             fix0             = _mm256_add_ps(fix0,tx);
275             fiy0             = _mm256_add_ps(fiy0,ty);
276             fiz0             = _mm256_add_ps(fiz0,tz);
277
278             fjx0             = _mm256_add_ps(fjx0,tx);
279             fjy0             = _mm256_add_ps(fjy0,ty);
280             fjz0             = _mm256_add_ps(fjz0,tz);
281
282             }
283
284             /**************************
285              * CALCULATE INTERACTIONS *
286              **************************/
287
288             if (gmx_mm256_any_lt(rsq10,rcutoff2))
289             {
290
291             /* Compute parameters for interactions between i and j atoms */
292             qq10             = _mm256_mul_ps(iq1,jq0);
293
294             /* REACTION-FIELD ELECTROSTATICS */
295             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
296             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
297
298             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             velec            = _mm256_and_ps(velec,cutoff_mask);
302             velecsum         = _mm256_add_ps(velecsum,velec);
303
304             fscal            = felec;
305
306             fscal            = _mm256_and_ps(fscal,cutoff_mask);
307
308             /* Calculate temporary vectorial force */
309             tx               = _mm256_mul_ps(fscal,dx10);
310             ty               = _mm256_mul_ps(fscal,dy10);
311             tz               = _mm256_mul_ps(fscal,dz10);
312
313             /* Update vectorial force */
314             fix1             = _mm256_add_ps(fix1,tx);
315             fiy1             = _mm256_add_ps(fiy1,ty);
316             fiz1             = _mm256_add_ps(fiz1,tz);
317
318             fjx0             = _mm256_add_ps(fjx0,tx);
319             fjy0             = _mm256_add_ps(fjy0,ty);
320             fjz0             = _mm256_add_ps(fjz0,tz);
321
322             }
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             if (gmx_mm256_any_lt(rsq20,rcutoff2))
329             {
330
331             /* Compute parameters for interactions between i and j atoms */
332             qq20             = _mm256_mul_ps(iq2,jq0);
333
334             /* REACTION-FIELD ELECTROSTATICS */
335             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
336             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
337
338             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
339
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velec            = _mm256_and_ps(velec,cutoff_mask);
342             velecsum         = _mm256_add_ps(velecsum,velec);
343
344             fscal            = felec;
345
346             fscal            = _mm256_and_ps(fscal,cutoff_mask);
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm256_mul_ps(fscal,dx20);
350             ty               = _mm256_mul_ps(fscal,dy20);
351             tz               = _mm256_mul_ps(fscal,dz20);
352
353             /* Update vectorial force */
354             fix2             = _mm256_add_ps(fix2,tx);
355             fiy2             = _mm256_add_ps(fiy2,ty);
356             fiz2             = _mm256_add_ps(fiz2,tz);
357
358             fjx0             = _mm256_add_ps(fjx0,tx);
359             fjy0             = _mm256_add_ps(fjy0,ty);
360             fjz0             = _mm256_add_ps(fjz0,tz);
361
362             }
363
364             fjptrA             = f+j_coord_offsetA;
365             fjptrB             = f+j_coord_offsetB;
366             fjptrC             = f+j_coord_offsetC;
367             fjptrD             = f+j_coord_offsetD;
368             fjptrE             = f+j_coord_offsetE;
369             fjptrF             = f+j_coord_offsetF;
370             fjptrG             = f+j_coord_offsetG;
371             fjptrH             = f+j_coord_offsetH;
372
373             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
374
375             /* Inner loop uses 111 flops */
376         }
377
378         if(jidx<j_index_end)
379         {
380
381             /* Get j neighbor index, and coordinate index */
382             jnrlistA         = jjnr[jidx];
383             jnrlistB         = jjnr[jidx+1];
384             jnrlistC         = jjnr[jidx+2];
385             jnrlistD         = jjnr[jidx+3];
386             jnrlistE         = jjnr[jidx+4];
387             jnrlistF         = jjnr[jidx+5];
388             jnrlistG         = jjnr[jidx+6];
389             jnrlistH         = jjnr[jidx+7];
390             /* Sign of each element will be negative for non-real atoms.
391              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
392              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
393              */
394             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
395                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
396                                             
397             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
398             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
399             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
400             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
401             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
402             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
403             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
404             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
405             j_coord_offsetA  = DIM*jnrA;
406             j_coord_offsetB  = DIM*jnrB;
407             j_coord_offsetC  = DIM*jnrC;
408             j_coord_offsetD  = DIM*jnrD;
409             j_coord_offsetE  = DIM*jnrE;
410             j_coord_offsetF  = DIM*jnrF;
411             j_coord_offsetG  = DIM*jnrG;
412             j_coord_offsetH  = DIM*jnrH;
413
414             /* load j atom coordinates */
415             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
416                                                  x+j_coord_offsetC,x+j_coord_offsetD,
417                                                  x+j_coord_offsetE,x+j_coord_offsetF,
418                                                  x+j_coord_offsetG,x+j_coord_offsetH,
419                                                  &jx0,&jy0,&jz0);
420
421             /* Calculate displacement vector */
422             dx00             = _mm256_sub_ps(ix0,jx0);
423             dy00             = _mm256_sub_ps(iy0,jy0);
424             dz00             = _mm256_sub_ps(iz0,jz0);
425             dx10             = _mm256_sub_ps(ix1,jx0);
426             dy10             = _mm256_sub_ps(iy1,jy0);
427             dz10             = _mm256_sub_ps(iz1,jz0);
428             dx20             = _mm256_sub_ps(ix2,jx0);
429             dy20             = _mm256_sub_ps(iy2,jy0);
430             dz20             = _mm256_sub_ps(iz2,jz0);
431
432             /* Calculate squared distance and things based on it */
433             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
434             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
435             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
436
437             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
438             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
439             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
440
441             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
442             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
443             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
444
445             /* Load parameters for j particles */
446             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
447                                                                  charge+jnrC+0,charge+jnrD+0,
448                                                                  charge+jnrE+0,charge+jnrF+0,
449                                                                  charge+jnrG+0,charge+jnrH+0);
450
451             fjx0             = _mm256_setzero_ps();
452             fjy0             = _mm256_setzero_ps();
453             fjz0             = _mm256_setzero_ps();
454
455             /**************************
456              * CALCULATE INTERACTIONS *
457              **************************/
458
459             if (gmx_mm256_any_lt(rsq00,rcutoff2))
460             {
461
462             /* Compute parameters for interactions between i and j atoms */
463             qq00             = _mm256_mul_ps(iq0,jq0);
464
465             /* REACTION-FIELD ELECTROSTATICS */
466             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
467             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
468
469             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
470
471             /* Update potential sum for this i atom from the interaction with this j atom. */
472             velec            = _mm256_and_ps(velec,cutoff_mask);
473             velec            = _mm256_andnot_ps(dummy_mask,velec);
474             velecsum         = _mm256_add_ps(velecsum,velec);
475
476             fscal            = felec;
477
478             fscal            = _mm256_and_ps(fscal,cutoff_mask);
479
480             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
481
482             /* Calculate temporary vectorial force */
483             tx               = _mm256_mul_ps(fscal,dx00);
484             ty               = _mm256_mul_ps(fscal,dy00);
485             tz               = _mm256_mul_ps(fscal,dz00);
486
487             /* Update vectorial force */
488             fix0             = _mm256_add_ps(fix0,tx);
489             fiy0             = _mm256_add_ps(fiy0,ty);
490             fiz0             = _mm256_add_ps(fiz0,tz);
491
492             fjx0             = _mm256_add_ps(fjx0,tx);
493             fjy0             = _mm256_add_ps(fjy0,ty);
494             fjz0             = _mm256_add_ps(fjz0,tz);
495
496             }
497
498             /**************************
499              * CALCULATE INTERACTIONS *
500              **************************/
501
502             if (gmx_mm256_any_lt(rsq10,rcutoff2))
503             {
504
505             /* Compute parameters for interactions between i and j atoms */
506             qq10             = _mm256_mul_ps(iq1,jq0);
507
508             /* REACTION-FIELD ELECTROSTATICS */
509             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
510             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
511
512             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
513
514             /* Update potential sum for this i atom from the interaction with this j atom. */
515             velec            = _mm256_and_ps(velec,cutoff_mask);
516             velec            = _mm256_andnot_ps(dummy_mask,velec);
517             velecsum         = _mm256_add_ps(velecsum,velec);
518
519             fscal            = felec;
520
521             fscal            = _mm256_and_ps(fscal,cutoff_mask);
522
523             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
524
525             /* Calculate temporary vectorial force */
526             tx               = _mm256_mul_ps(fscal,dx10);
527             ty               = _mm256_mul_ps(fscal,dy10);
528             tz               = _mm256_mul_ps(fscal,dz10);
529
530             /* Update vectorial force */
531             fix1             = _mm256_add_ps(fix1,tx);
532             fiy1             = _mm256_add_ps(fiy1,ty);
533             fiz1             = _mm256_add_ps(fiz1,tz);
534
535             fjx0             = _mm256_add_ps(fjx0,tx);
536             fjy0             = _mm256_add_ps(fjy0,ty);
537             fjz0             = _mm256_add_ps(fjz0,tz);
538
539             }
540
541             /**************************
542              * CALCULATE INTERACTIONS *
543              **************************/
544
545             if (gmx_mm256_any_lt(rsq20,rcutoff2))
546             {
547
548             /* Compute parameters for interactions between i and j atoms */
549             qq20             = _mm256_mul_ps(iq2,jq0);
550
551             /* REACTION-FIELD ELECTROSTATICS */
552             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
553             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
554
555             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
556
557             /* Update potential sum for this i atom from the interaction with this j atom. */
558             velec            = _mm256_and_ps(velec,cutoff_mask);
559             velec            = _mm256_andnot_ps(dummy_mask,velec);
560             velecsum         = _mm256_add_ps(velecsum,velec);
561
562             fscal            = felec;
563
564             fscal            = _mm256_and_ps(fscal,cutoff_mask);
565
566             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
567
568             /* Calculate temporary vectorial force */
569             tx               = _mm256_mul_ps(fscal,dx20);
570             ty               = _mm256_mul_ps(fscal,dy20);
571             tz               = _mm256_mul_ps(fscal,dz20);
572
573             /* Update vectorial force */
574             fix2             = _mm256_add_ps(fix2,tx);
575             fiy2             = _mm256_add_ps(fiy2,ty);
576             fiz2             = _mm256_add_ps(fiz2,tz);
577
578             fjx0             = _mm256_add_ps(fjx0,tx);
579             fjy0             = _mm256_add_ps(fjy0,ty);
580             fjz0             = _mm256_add_ps(fjz0,tz);
581
582             }
583
584             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
585             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
586             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
587             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
588             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
589             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
590             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
591             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
592
593             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
594
595             /* Inner loop uses 111 flops */
596         }
597
598         /* End of innermost loop */
599
600         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
601                                                  f+i_coord_offset,fshift+i_shift_offset);
602
603         ggid                        = gid[iidx];
604         /* Update potential energies */
605         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
606
607         /* Increment number of inner iterations */
608         inneriter                  += j_index_end - j_index_start;
609
610         /* Outer loop uses 19 flops */
611     }
612
613     /* Increment number of outer iterations */
614     outeriter        += nri;
615
616     /* Update outer/inner flops */
617
618     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*111);
619 }
620 /*
621  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW3P1_F_avx_256_single
622  * Electrostatics interaction: ReactionField
623  * VdW interaction:            None
624  * Geometry:                   Water3-Particle
625  * Calculate force/pot:        Force
626  */
627 void
628 nb_kernel_ElecRFCut_VdwNone_GeomW3P1_F_avx_256_single
629                     (t_nblist                    * gmx_restrict       nlist,
630                      rvec                        * gmx_restrict          xx,
631                      rvec                        * gmx_restrict          ff,
632                      t_forcerec                  * gmx_restrict          fr,
633                      t_mdatoms                   * gmx_restrict     mdatoms,
634                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
635                      t_nrnb                      * gmx_restrict        nrnb)
636 {
637     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
638      * just 0 for non-waters.
639      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
640      * jnr indices corresponding to data put in the four positions in the SIMD register.
641      */
642     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
643     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
644     int              jnrA,jnrB,jnrC,jnrD;
645     int              jnrE,jnrF,jnrG,jnrH;
646     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
647     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
648     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
649     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
650     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
651     real             rcutoff_scalar;
652     real             *shiftvec,*fshift,*x,*f;
653     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
654     real             scratch[4*DIM];
655     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
656     real *           vdwioffsetptr0;
657     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
658     real *           vdwioffsetptr1;
659     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
660     real *           vdwioffsetptr2;
661     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
662     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
663     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
664     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
665     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
666     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
667     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
668     real             *charge;
669     __m256           dummy_mask,cutoff_mask;
670     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
671     __m256           one     = _mm256_set1_ps(1.0);
672     __m256           two     = _mm256_set1_ps(2.0);
673     x                = xx[0];
674     f                = ff[0];
675
676     nri              = nlist->nri;
677     iinr             = nlist->iinr;
678     jindex           = nlist->jindex;
679     jjnr             = nlist->jjnr;
680     shiftidx         = nlist->shift;
681     gid              = nlist->gid;
682     shiftvec         = fr->shift_vec[0];
683     fshift           = fr->fshift[0];
684     facel            = _mm256_set1_ps(fr->epsfac);
685     charge           = mdatoms->chargeA;
686     krf              = _mm256_set1_ps(fr->ic->k_rf);
687     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
688     crf              = _mm256_set1_ps(fr->ic->c_rf);
689
690     /* Setup water-specific parameters */
691     inr              = nlist->iinr[0];
692     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
693     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
694     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
695
696     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
697     rcutoff_scalar   = fr->rcoulomb;
698     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
699     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
700
701     /* Avoid stupid compiler warnings */
702     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
703     j_coord_offsetA = 0;
704     j_coord_offsetB = 0;
705     j_coord_offsetC = 0;
706     j_coord_offsetD = 0;
707     j_coord_offsetE = 0;
708     j_coord_offsetF = 0;
709     j_coord_offsetG = 0;
710     j_coord_offsetH = 0;
711
712     outeriter        = 0;
713     inneriter        = 0;
714
715     for(iidx=0;iidx<4*DIM;iidx++)
716     {
717         scratch[iidx] = 0.0;
718     }
719
720     /* Start outer loop over neighborlists */
721     for(iidx=0; iidx<nri; iidx++)
722     {
723         /* Load shift vector for this list */
724         i_shift_offset   = DIM*shiftidx[iidx];
725
726         /* Load limits for loop over neighbors */
727         j_index_start    = jindex[iidx];
728         j_index_end      = jindex[iidx+1];
729
730         /* Get outer coordinate index */
731         inr              = iinr[iidx];
732         i_coord_offset   = DIM*inr;
733
734         /* Load i particle coords and add shift vector */
735         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
736                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
737
738         fix0             = _mm256_setzero_ps();
739         fiy0             = _mm256_setzero_ps();
740         fiz0             = _mm256_setzero_ps();
741         fix1             = _mm256_setzero_ps();
742         fiy1             = _mm256_setzero_ps();
743         fiz1             = _mm256_setzero_ps();
744         fix2             = _mm256_setzero_ps();
745         fiy2             = _mm256_setzero_ps();
746         fiz2             = _mm256_setzero_ps();
747
748         /* Start inner kernel loop */
749         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
750         {
751
752             /* Get j neighbor index, and coordinate index */
753             jnrA             = jjnr[jidx];
754             jnrB             = jjnr[jidx+1];
755             jnrC             = jjnr[jidx+2];
756             jnrD             = jjnr[jidx+3];
757             jnrE             = jjnr[jidx+4];
758             jnrF             = jjnr[jidx+5];
759             jnrG             = jjnr[jidx+6];
760             jnrH             = jjnr[jidx+7];
761             j_coord_offsetA  = DIM*jnrA;
762             j_coord_offsetB  = DIM*jnrB;
763             j_coord_offsetC  = DIM*jnrC;
764             j_coord_offsetD  = DIM*jnrD;
765             j_coord_offsetE  = DIM*jnrE;
766             j_coord_offsetF  = DIM*jnrF;
767             j_coord_offsetG  = DIM*jnrG;
768             j_coord_offsetH  = DIM*jnrH;
769
770             /* load j atom coordinates */
771             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
772                                                  x+j_coord_offsetC,x+j_coord_offsetD,
773                                                  x+j_coord_offsetE,x+j_coord_offsetF,
774                                                  x+j_coord_offsetG,x+j_coord_offsetH,
775                                                  &jx0,&jy0,&jz0);
776
777             /* Calculate displacement vector */
778             dx00             = _mm256_sub_ps(ix0,jx0);
779             dy00             = _mm256_sub_ps(iy0,jy0);
780             dz00             = _mm256_sub_ps(iz0,jz0);
781             dx10             = _mm256_sub_ps(ix1,jx0);
782             dy10             = _mm256_sub_ps(iy1,jy0);
783             dz10             = _mm256_sub_ps(iz1,jz0);
784             dx20             = _mm256_sub_ps(ix2,jx0);
785             dy20             = _mm256_sub_ps(iy2,jy0);
786             dz20             = _mm256_sub_ps(iz2,jz0);
787
788             /* Calculate squared distance and things based on it */
789             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
790             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
791             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
792
793             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
794             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
795             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
796
797             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
798             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
799             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
800
801             /* Load parameters for j particles */
802             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
803                                                                  charge+jnrC+0,charge+jnrD+0,
804                                                                  charge+jnrE+0,charge+jnrF+0,
805                                                                  charge+jnrG+0,charge+jnrH+0);
806
807             fjx0             = _mm256_setzero_ps();
808             fjy0             = _mm256_setzero_ps();
809             fjz0             = _mm256_setzero_ps();
810
811             /**************************
812              * CALCULATE INTERACTIONS *
813              **************************/
814
815             if (gmx_mm256_any_lt(rsq00,rcutoff2))
816             {
817
818             /* Compute parameters for interactions between i and j atoms */
819             qq00             = _mm256_mul_ps(iq0,jq0);
820
821             /* REACTION-FIELD ELECTROSTATICS */
822             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
823
824             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
825
826             fscal            = felec;
827
828             fscal            = _mm256_and_ps(fscal,cutoff_mask);
829
830             /* Calculate temporary vectorial force */
831             tx               = _mm256_mul_ps(fscal,dx00);
832             ty               = _mm256_mul_ps(fscal,dy00);
833             tz               = _mm256_mul_ps(fscal,dz00);
834
835             /* Update vectorial force */
836             fix0             = _mm256_add_ps(fix0,tx);
837             fiy0             = _mm256_add_ps(fiy0,ty);
838             fiz0             = _mm256_add_ps(fiz0,tz);
839
840             fjx0             = _mm256_add_ps(fjx0,tx);
841             fjy0             = _mm256_add_ps(fjy0,ty);
842             fjz0             = _mm256_add_ps(fjz0,tz);
843
844             }
845
846             /**************************
847              * CALCULATE INTERACTIONS *
848              **************************/
849
850             if (gmx_mm256_any_lt(rsq10,rcutoff2))
851             {
852
853             /* Compute parameters for interactions between i and j atoms */
854             qq10             = _mm256_mul_ps(iq1,jq0);
855
856             /* REACTION-FIELD ELECTROSTATICS */
857             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
858
859             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
860
861             fscal            = felec;
862
863             fscal            = _mm256_and_ps(fscal,cutoff_mask);
864
865             /* Calculate temporary vectorial force */
866             tx               = _mm256_mul_ps(fscal,dx10);
867             ty               = _mm256_mul_ps(fscal,dy10);
868             tz               = _mm256_mul_ps(fscal,dz10);
869
870             /* Update vectorial force */
871             fix1             = _mm256_add_ps(fix1,tx);
872             fiy1             = _mm256_add_ps(fiy1,ty);
873             fiz1             = _mm256_add_ps(fiz1,tz);
874
875             fjx0             = _mm256_add_ps(fjx0,tx);
876             fjy0             = _mm256_add_ps(fjy0,ty);
877             fjz0             = _mm256_add_ps(fjz0,tz);
878
879             }
880
881             /**************************
882              * CALCULATE INTERACTIONS *
883              **************************/
884
885             if (gmx_mm256_any_lt(rsq20,rcutoff2))
886             {
887
888             /* Compute parameters for interactions between i and j atoms */
889             qq20             = _mm256_mul_ps(iq2,jq0);
890
891             /* REACTION-FIELD ELECTROSTATICS */
892             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
893
894             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
895
896             fscal            = felec;
897
898             fscal            = _mm256_and_ps(fscal,cutoff_mask);
899
900             /* Calculate temporary vectorial force */
901             tx               = _mm256_mul_ps(fscal,dx20);
902             ty               = _mm256_mul_ps(fscal,dy20);
903             tz               = _mm256_mul_ps(fscal,dz20);
904
905             /* Update vectorial force */
906             fix2             = _mm256_add_ps(fix2,tx);
907             fiy2             = _mm256_add_ps(fiy2,ty);
908             fiz2             = _mm256_add_ps(fiz2,tz);
909
910             fjx0             = _mm256_add_ps(fjx0,tx);
911             fjy0             = _mm256_add_ps(fjy0,ty);
912             fjz0             = _mm256_add_ps(fjz0,tz);
913
914             }
915
916             fjptrA             = f+j_coord_offsetA;
917             fjptrB             = f+j_coord_offsetB;
918             fjptrC             = f+j_coord_offsetC;
919             fjptrD             = f+j_coord_offsetD;
920             fjptrE             = f+j_coord_offsetE;
921             fjptrF             = f+j_coord_offsetF;
922             fjptrG             = f+j_coord_offsetG;
923             fjptrH             = f+j_coord_offsetH;
924
925             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
926
927             /* Inner loop uses 93 flops */
928         }
929
930         if(jidx<j_index_end)
931         {
932
933             /* Get j neighbor index, and coordinate index */
934             jnrlistA         = jjnr[jidx];
935             jnrlistB         = jjnr[jidx+1];
936             jnrlistC         = jjnr[jidx+2];
937             jnrlistD         = jjnr[jidx+3];
938             jnrlistE         = jjnr[jidx+4];
939             jnrlistF         = jjnr[jidx+5];
940             jnrlistG         = jjnr[jidx+6];
941             jnrlistH         = jjnr[jidx+7];
942             /* Sign of each element will be negative for non-real atoms.
943              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
944              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
945              */
946             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
947                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
948                                             
949             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
950             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
951             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
952             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
953             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
954             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
955             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
956             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
957             j_coord_offsetA  = DIM*jnrA;
958             j_coord_offsetB  = DIM*jnrB;
959             j_coord_offsetC  = DIM*jnrC;
960             j_coord_offsetD  = DIM*jnrD;
961             j_coord_offsetE  = DIM*jnrE;
962             j_coord_offsetF  = DIM*jnrF;
963             j_coord_offsetG  = DIM*jnrG;
964             j_coord_offsetH  = DIM*jnrH;
965
966             /* load j atom coordinates */
967             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
968                                                  x+j_coord_offsetC,x+j_coord_offsetD,
969                                                  x+j_coord_offsetE,x+j_coord_offsetF,
970                                                  x+j_coord_offsetG,x+j_coord_offsetH,
971                                                  &jx0,&jy0,&jz0);
972
973             /* Calculate displacement vector */
974             dx00             = _mm256_sub_ps(ix0,jx0);
975             dy00             = _mm256_sub_ps(iy0,jy0);
976             dz00             = _mm256_sub_ps(iz0,jz0);
977             dx10             = _mm256_sub_ps(ix1,jx0);
978             dy10             = _mm256_sub_ps(iy1,jy0);
979             dz10             = _mm256_sub_ps(iz1,jz0);
980             dx20             = _mm256_sub_ps(ix2,jx0);
981             dy20             = _mm256_sub_ps(iy2,jy0);
982             dz20             = _mm256_sub_ps(iz2,jz0);
983
984             /* Calculate squared distance and things based on it */
985             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
986             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
987             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
988
989             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
990             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
991             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
992
993             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
994             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
995             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
996
997             /* Load parameters for j particles */
998             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
999                                                                  charge+jnrC+0,charge+jnrD+0,
1000                                                                  charge+jnrE+0,charge+jnrF+0,
1001                                                                  charge+jnrG+0,charge+jnrH+0);
1002
1003             fjx0             = _mm256_setzero_ps();
1004             fjy0             = _mm256_setzero_ps();
1005             fjz0             = _mm256_setzero_ps();
1006
1007             /**************************
1008              * CALCULATE INTERACTIONS *
1009              **************************/
1010
1011             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1012             {
1013
1014             /* Compute parameters for interactions between i and j atoms */
1015             qq00             = _mm256_mul_ps(iq0,jq0);
1016
1017             /* REACTION-FIELD ELECTROSTATICS */
1018             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
1019
1020             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1021
1022             fscal            = felec;
1023
1024             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1025
1026             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1027
1028             /* Calculate temporary vectorial force */
1029             tx               = _mm256_mul_ps(fscal,dx00);
1030             ty               = _mm256_mul_ps(fscal,dy00);
1031             tz               = _mm256_mul_ps(fscal,dz00);
1032
1033             /* Update vectorial force */
1034             fix0             = _mm256_add_ps(fix0,tx);
1035             fiy0             = _mm256_add_ps(fiy0,ty);
1036             fiz0             = _mm256_add_ps(fiz0,tz);
1037
1038             fjx0             = _mm256_add_ps(fjx0,tx);
1039             fjy0             = _mm256_add_ps(fjy0,ty);
1040             fjz0             = _mm256_add_ps(fjz0,tz);
1041
1042             }
1043
1044             /**************************
1045              * CALCULATE INTERACTIONS *
1046              **************************/
1047
1048             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1049             {
1050
1051             /* Compute parameters for interactions between i and j atoms */
1052             qq10             = _mm256_mul_ps(iq1,jq0);
1053
1054             /* REACTION-FIELD ELECTROSTATICS */
1055             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1056
1057             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1058
1059             fscal            = felec;
1060
1061             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1062
1063             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1064
1065             /* Calculate temporary vectorial force */
1066             tx               = _mm256_mul_ps(fscal,dx10);
1067             ty               = _mm256_mul_ps(fscal,dy10);
1068             tz               = _mm256_mul_ps(fscal,dz10);
1069
1070             /* Update vectorial force */
1071             fix1             = _mm256_add_ps(fix1,tx);
1072             fiy1             = _mm256_add_ps(fiy1,ty);
1073             fiz1             = _mm256_add_ps(fiz1,tz);
1074
1075             fjx0             = _mm256_add_ps(fjx0,tx);
1076             fjy0             = _mm256_add_ps(fjy0,ty);
1077             fjz0             = _mm256_add_ps(fjz0,tz);
1078
1079             }
1080
1081             /**************************
1082              * CALCULATE INTERACTIONS *
1083              **************************/
1084
1085             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1086             {
1087
1088             /* Compute parameters for interactions between i and j atoms */
1089             qq20             = _mm256_mul_ps(iq2,jq0);
1090
1091             /* REACTION-FIELD ELECTROSTATICS */
1092             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1093
1094             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1095
1096             fscal            = felec;
1097
1098             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1099
1100             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1101
1102             /* Calculate temporary vectorial force */
1103             tx               = _mm256_mul_ps(fscal,dx20);
1104             ty               = _mm256_mul_ps(fscal,dy20);
1105             tz               = _mm256_mul_ps(fscal,dz20);
1106
1107             /* Update vectorial force */
1108             fix2             = _mm256_add_ps(fix2,tx);
1109             fiy2             = _mm256_add_ps(fiy2,ty);
1110             fiz2             = _mm256_add_ps(fiz2,tz);
1111
1112             fjx0             = _mm256_add_ps(fjx0,tx);
1113             fjy0             = _mm256_add_ps(fjy0,ty);
1114             fjz0             = _mm256_add_ps(fjz0,tz);
1115
1116             }
1117
1118             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1119             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1120             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1121             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1122             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1123             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1124             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1125             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1126
1127             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1128
1129             /* Inner loop uses 93 flops */
1130         }
1131
1132         /* End of innermost loop */
1133
1134         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1135                                                  f+i_coord_offset,fshift+i_shift_offset);
1136
1137         /* Increment number of inner iterations */
1138         inneriter                  += j_index_end - j_index_start;
1139
1140         /* Outer loop uses 18 flops */
1141     }
1142
1143     /* Increment number of outer iterations */
1144     outeriter        += nri;
1145
1146     /* Update outer/inner flops */
1147
1148     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*93);
1149 }