Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwNone_GeomP1P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_avx_256_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
88     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m256           dummy_mask,cutoff_mask;
93     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
94     __m256           one     = _mm256_set1_ps(1.0);
95     __m256           two     = _mm256_set1_ps(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm256_set1_ps(fr->ic->epsfac);
108     charge           = mdatoms->chargeA;
109     krf              = _mm256_set1_ps(fr->ic->k_rf);
110     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
111     crf              = _mm256_set1_ps(fr->ic->c_rf);
112
113     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
114     rcutoff_scalar   = fr->ic->rcoulomb;
115     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
116     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
117
118     /* Avoid stupid compiler warnings */
119     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
120     j_coord_offsetA = 0;
121     j_coord_offsetB = 0;
122     j_coord_offsetC = 0;
123     j_coord_offsetD = 0;
124     j_coord_offsetE = 0;
125     j_coord_offsetF = 0;
126     j_coord_offsetG = 0;
127     j_coord_offsetH = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     for(iidx=0;iidx<4*DIM;iidx++)
133     {
134         scratch[iidx] = 0.0;
135     }
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm256_setzero_ps();
155         fiy0             = _mm256_setzero_ps();
156         fiz0             = _mm256_setzero_ps();
157
158         /* Load parameters for i particles */
159         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
160
161         /* Reset potential sums */
162         velecsum         = _mm256_setzero_ps();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             jnrC             = jjnr[jidx+2];
172             jnrD             = jjnr[jidx+3];
173             jnrE             = jjnr[jidx+4];
174             jnrF             = jjnr[jidx+5];
175             jnrG             = jjnr[jidx+6];
176             jnrH             = jjnr[jidx+7];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179             j_coord_offsetC  = DIM*jnrC;
180             j_coord_offsetD  = DIM*jnrD;
181             j_coord_offsetE  = DIM*jnrE;
182             j_coord_offsetF  = DIM*jnrF;
183             j_coord_offsetG  = DIM*jnrG;
184             j_coord_offsetH  = DIM*jnrH;
185
186             /* load j atom coordinates */
187             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
188                                                  x+j_coord_offsetC,x+j_coord_offsetD,
189                                                  x+j_coord_offsetE,x+j_coord_offsetF,
190                                                  x+j_coord_offsetG,x+j_coord_offsetH,
191                                                  &jx0,&jy0,&jz0);
192
193             /* Calculate displacement vector */
194             dx00             = _mm256_sub_ps(ix0,jx0);
195             dy00             = _mm256_sub_ps(iy0,jy0);
196             dz00             = _mm256_sub_ps(iz0,jz0);
197
198             /* Calculate squared distance and things based on it */
199             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
200
201             rinv00           = avx256_invsqrt_f(rsq00);
202
203             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
204
205             /* Load parameters for j particles */
206             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
207                                                                  charge+jnrC+0,charge+jnrD+0,
208                                                                  charge+jnrE+0,charge+jnrF+0,
209                                                                  charge+jnrG+0,charge+jnrH+0);
210
211             /**************************
212              * CALCULATE INTERACTIONS *
213              **************************/
214
215             if (gmx_mm256_any_lt(rsq00,rcutoff2))
216             {
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _mm256_mul_ps(iq0,jq0);
220
221             /* REACTION-FIELD ELECTROSTATICS */
222             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
223             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
224
225             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
226
227             /* Update potential sum for this i atom from the interaction with this j atom. */
228             velec            = _mm256_and_ps(velec,cutoff_mask);
229             velecsum         = _mm256_add_ps(velecsum,velec);
230
231             fscal            = felec;
232
233             fscal            = _mm256_and_ps(fscal,cutoff_mask);
234
235             /* Calculate temporary vectorial force */
236             tx               = _mm256_mul_ps(fscal,dx00);
237             ty               = _mm256_mul_ps(fscal,dy00);
238             tz               = _mm256_mul_ps(fscal,dz00);
239
240             /* Update vectorial force */
241             fix0             = _mm256_add_ps(fix0,tx);
242             fiy0             = _mm256_add_ps(fiy0,ty);
243             fiz0             = _mm256_add_ps(fiz0,tz);
244
245             fjptrA             = f+j_coord_offsetA;
246             fjptrB             = f+j_coord_offsetB;
247             fjptrC             = f+j_coord_offsetC;
248             fjptrD             = f+j_coord_offsetD;
249             fjptrE             = f+j_coord_offsetE;
250             fjptrF             = f+j_coord_offsetF;
251             fjptrG             = f+j_coord_offsetG;
252             fjptrH             = f+j_coord_offsetH;
253             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
254
255             }
256
257             /* Inner loop uses 36 flops */
258         }
259
260         if(jidx<j_index_end)
261         {
262
263             /* Get j neighbor index, and coordinate index */
264             jnrlistA         = jjnr[jidx];
265             jnrlistB         = jjnr[jidx+1];
266             jnrlistC         = jjnr[jidx+2];
267             jnrlistD         = jjnr[jidx+3];
268             jnrlistE         = jjnr[jidx+4];
269             jnrlistF         = jjnr[jidx+5];
270             jnrlistG         = jjnr[jidx+6];
271             jnrlistH         = jjnr[jidx+7];
272             /* Sign of each element will be negative for non-real atoms.
273              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
274              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
275              */
276             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
277                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
278                                             
279             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
280             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
281             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
282             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
283             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
284             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
285             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
286             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
287             j_coord_offsetA  = DIM*jnrA;
288             j_coord_offsetB  = DIM*jnrB;
289             j_coord_offsetC  = DIM*jnrC;
290             j_coord_offsetD  = DIM*jnrD;
291             j_coord_offsetE  = DIM*jnrE;
292             j_coord_offsetF  = DIM*jnrF;
293             j_coord_offsetG  = DIM*jnrG;
294             j_coord_offsetH  = DIM*jnrH;
295
296             /* load j atom coordinates */
297             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
298                                                  x+j_coord_offsetC,x+j_coord_offsetD,
299                                                  x+j_coord_offsetE,x+j_coord_offsetF,
300                                                  x+j_coord_offsetG,x+j_coord_offsetH,
301                                                  &jx0,&jy0,&jz0);
302
303             /* Calculate displacement vector */
304             dx00             = _mm256_sub_ps(ix0,jx0);
305             dy00             = _mm256_sub_ps(iy0,jy0);
306             dz00             = _mm256_sub_ps(iz0,jz0);
307
308             /* Calculate squared distance and things based on it */
309             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
310
311             rinv00           = avx256_invsqrt_f(rsq00);
312
313             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
314
315             /* Load parameters for j particles */
316             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
317                                                                  charge+jnrC+0,charge+jnrD+0,
318                                                                  charge+jnrE+0,charge+jnrF+0,
319                                                                  charge+jnrG+0,charge+jnrH+0);
320
321             /**************************
322              * CALCULATE INTERACTIONS *
323              **************************/
324
325             if (gmx_mm256_any_lt(rsq00,rcutoff2))
326             {
327
328             /* Compute parameters for interactions between i and j atoms */
329             qq00             = _mm256_mul_ps(iq0,jq0);
330
331             /* REACTION-FIELD ELECTROSTATICS */
332             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
333             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
334
335             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
336
337             /* Update potential sum for this i atom from the interaction with this j atom. */
338             velec            = _mm256_and_ps(velec,cutoff_mask);
339             velec            = _mm256_andnot_ps(dummy_mask,velec);
340             velecsum         = _mm256_add_ps(velecsum,velec);
341
342             fscal            = felec;
343
344             fscal            = _mm256_and_ps(fscal,cutoff_mask);
345
346             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm256_mul_ps(fscal,dx00);
350             ty               = _mm256_mul_ps(fscal,dy00);
351             tz               = _mm256_mul_ps(fscal,dz00);
352
353             /* Update vectorial force */
354             fix0             = _mm256_add_ps(fix0,tx);
355             fiy0             = _mm256_add_ps(fiy0,ty);
356             fiz0             = _mm256_add_ps(fiz0,tz);
357
358             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
359             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
360             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
361             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
362             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
363             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
364             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
365             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
366             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
367
368             }
369
370             /* Inner loop uses 36 flops */
371         }
372
373         /* End of innermost loop */
374
375         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
376                                                  f+i_coord_offset,fshift+i_shift_offset);
377
378         ggid                        = gid[iidx];
379         /* Update potential energies */
380         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
381
382         /* Increment number of inner iterations */
383         inneriter                  += j_index_end - j_index_start;
384
385         /* Outer loop uses 8 flops */
386     }
387
388     /* Increment number of outer iterations */
389     outeriter        += nri;
390
391     /* Update outer/inner flops */
392
393     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*36);
394 }
395 /*
396  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_avx_256_single
397  * Electrostatics interaction: ReactionField
398  * VdW interaction:            None
399  * Geometry:                   Particle-Particle
400  * Calculate force/pot:        Force
401  */
402 void
403 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_avx_256_single
404                     (t_nblist                    * gmx_restrict       nlist,
405                      rvec                        * gmx_restrict          xx,
406                      rvec                        * gmx_restrict          ff,
407                      struct t_forcerec           * gmx_restrict          fr,
408                      t_mdatoms                   * gmx_restrict     mdatoms,
409                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
410                      t_nrnb                      * gmx_restrict        nrnb)
411 {
412     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
413      * just 0 for non-waters.
414      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
415      * jnr indices corresponding to data put in the four positions in the SIMD register.
416      */
417     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
418     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
419     int              jnrA,jnrB,jnrC,jnrD;
420     int              jnrE,jnrF,jnrG,jnrH;
421     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
422     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
423     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
424     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
425     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
426     real             rcutoff_scalar;
427     real             *shiftvec,*fshift,*x,*f;
428     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
429     real             scratch[4*DIM];
430     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
431     real *           vdwioffsetptr0;
432     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
433     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
434     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
435     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
436     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
437     real             *charge;
438     __m256           dummy_mask,cutoff_mask;
439     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
440     __m256           one     = _mm256_set1_ps(1.0);
441     __m256           two     = _mm256_set1_ps(2.0);
442     x                = xx[0];
443     f                = ff[0];
444
445     nri              = nlist->nri;
446     iinr             = nlist->iinr;
447     jindex           = nlist->jindex;
448     jjnr             = nlist->jjnr;
449     shiftidx         = nlist->shift;
450     gid              = nlist->gid;
451     shiftvec         = fr->shift_vec[0];
452     fshift           = fr->fshift[0];
453     facel            = _mm256_set1_ps(fr->ic->epsfac);
454     charge           = mdatoms->chargeA;
455     krf              = _mm256_set1_ps(fr->ic->k_rf);
456     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
457     crf              = _mm256_set1_ps(fr->ic->c_rf);
458
459     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
460     rcutoff_scalar   = fr->ic->rcoulomb;
461     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
462     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
463
464     /* Avoid stupid compiler warnings */
465     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
466     j_coord_offsetA = 0;
467     j_coord_offsetB = 0;
468     j_coord_offsetC = 0;
469     j_coord_offsetD = 0;
470     j_coord_offsetE = 0;
471     j_coord_offsetF = 0;
472     j_coord_offsetG = 0;
473     j_coord_offsetH = 0;
474
475     outeriter        = 0;
476     inneriter        = 0;
477
478     for(iidx=0;iidx<4*DIM;iidx++)
479     {
480         scratch[iidx] = 0.0;
481     }
482
483     /* Start outer loop over neighborlists */
484     for(iidx=0; iidx<nri; iidx++)
485     {
486         /* Load shift vector for this list */
487         i_shift_offset   = DIM*shiftidx[iidx];
488
489         /* Load limits for loop over neighbors */
490         j_index_start    = jindex[iidx];
491         j_index_end      = jindex[iidx+1];
492
493         /* Get outer coordinate index */
494         inr              = iinr[iidx];
495         i_coord_offset   = DIM*inr;
496
497         /* Load i particle coords and add shift vector */
498         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
499
500         fix0             = _mm256_setzero_ps();
501         fiy0             = _mm256_setzero_ps();
502         fiz0             = _mm256_setzero_ps();
503
504         /* Load parameters for i particles */
505         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
506
507         /* Start inner kernel loop */
508         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
509         {
510
511             /* Get j neighbor index, and coordinate index */
512             jnrA             = jjnr[jidx];
513             jnrB             = jjnr[jidx+1];
514             jnrC             = jjnr[jidx+2];
515             jnrD             = jjnr[jidx+3];
516             jnrE             = jjnr[jidx+4];
517             jnrF             = jjnr[jidx+5];
518             jnrG             = jjnr[jidx+6];
519             jnrH             = jjnr[jidx+7];
520             j_coord_offsetA  = DIM*jnrA;
521             j_coord_offsetB  = DIM*jnrB;
522             j_coord_offsetC  = DIM*jnrC;
523             j_coord_offsetD  = DIM*jnrD;
524             j_coord_offsetE  = DIM*jnrE;
525             j_coord_offsetF  = DIM*jnrF;
526             j_coord_offsetG  = DIM*jnrG;
527             j_coord_offsetH  = DIM*jnrH;
528
529             /* load j atom coordinates */
530             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
531                                                  x+j_coord_offsetC,x+j_coord_offsetD,
532                                                  x+j_coord_offsetE,x+j_coord_offsetF,
533                                                  x+j_coord_offsetG,x+j_coord_offsetH,
534                                                  &jx0,&jy0,&jz0);
535
536             /* Calculate displacement vector */
537             dx00             = _mm256_sub_ps(ix0,jx0);
538             dy00             = _mm256_sub_ps(iy0,jy0);
539             dz00             = _mm256_sub_ps(iz0,jz0);
540
541             /* Calculate squared distance and things based on it */
542             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
543
544             rinv00           = avx256_invsqrt_f(rsq00);
545
546             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
547
548             /* Load parameters for j particles */
549             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
550                                                                  charge+jnrC+0,charge+jnrD+0,
551                                                                  charge+jnrE+0,charge+jnrF+0,
552                                                                  charge+jnrG+0,charge+jnrH+0);
553
554             /**************************
555              * CALCULATE INTERACTIONS *
556              **************************/
557
558             if (gmx_mm256_any_lt(rsq00,rcutoff2))
559             {
560
561             /* Compute parameters for interactions between i and j atoms */
562             qq00             = _mm256_mul_ps(iq0,jq0);
563
564             /* REACTION-FIELD ELECTROSTATICS */
565             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
566
567             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
568
569             fscal            = felec;
570
571             fscal            = _mm256_and_ps(fscal,cutoff_mask);
572
573             /* Calculate temporary vectorial force */
574             tx               = _mm256_mul_ps(fscal,dx00);
575             ty               = _mm256_mul_ps(fscal,dy00);
576             tz               = _mm256_mul_ps(fscal,dz00);
577
578             /* Update vectorial force */
579             fix0             = _mm256_add_ps(fix0,tx);
580             fiy0             = _mm256_add_ps(fiy0,ty);
581             fiz0             = _mm256_add_ps(fiz0,tz);
582
583             fjptrA             = f+j_coord_offsetA;
584             fjptrB             = f+j_coord_offsetB;
585             fjptrC             = f+j_coord_offsetC;
586             fjptrD             = f+j_coord_offsetD;
587             fjptrE             = f+j_coord_offsetE;
588             fjptrF             = f+j_coord_offsetF;
589             fjptrG             = f+j_coord_offsetG;
590             fjptrH             = f+j_coord_offsetH;
591             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
592
593             }
594
595             /* Inner loop uses 30 flops */
596         }
597
598         if(jidx<j_index_end)
599         {
600
601             /* Get j neighbor index, and coordinate index */
602             jnrlistA         = jjnr[jidx];
603             jnrlistB         = jjnr[jidx+1];
604             jnrlistC         = jjnr[jidx+2];
605             jnrlistD         = jjnr[jidx+3];
606             jnrlistE         = jjnr[jidx+4];
607             jnrlistF         = jjnr[jidx+5];
608             jnrlistG         = jjnr[jidx+6];
609             jnrlistH         = jjnr[jidx+7];
610             /* Sign of each element will be negative for non-real atoms.
611              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
612              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
613              */
614             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
615                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
616                                             
617             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
618             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
619             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
620             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
621             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
622             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
623             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
624             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
625             j_coord_offsetA  = DIM*jnrA;
626             j_coord_offsetB  = DIM*jnrB;
627             j_coord_offsetC  = DIM*jnrC;
628             j_coord_offsetD  = DIM*jnrD;
629             j_coord_offsetE  = DIM*jnrE;
630             j_coord_offsetF  = DIM*jnrF;
631             j_coord_offsetG  = DIM*jnrG;
632             j_coord_offsetH  = DIM*jnrH;
633
634             /* load j atom coordinates */
635             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
636                                                  x+j_coord_offsetC,x+j_coord_offsetD,
637                                                  x+j_coord_offsetE,x+j_coord_offsetF,
638                                                  x+j_coord_offsetG,x+j_coord_offsetH,
639                                                  &jx0,&jy0,&jz0);
640
641             /* Calculate displacement vector */
642             dx00             = _mm256_sub_ps(ix0,jx0);
643             dy00             = _mm256_sub_ps(iy0,jy0);
644             dz00             = _mm256_sub_ps(iz0,jz0);
645
646             /* Calculate squared distance and things based on it */
647             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
648
649             rinv00           = avx256_invsqrt_f(rsq00);
650
651             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
652
653             /* Load parameters for j particles */
654             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
655                                                                  charge+jnrC+0,charge+jnrD+0,
656                                                                  charge+jnrE+0,charge+jnrF+0,
657                                                                  charge+jnrG+0,charge+jnrH+0);
658
659             /**************************
660              * CALCULATE INTERACTIONS *
661              **************************/
662
663             if (gmx_mm256_any_lt(rsq00,rcutoff2))
664             {
665
666             /* Compute parameters for interactions between i and j atoms */
667             qq00             = _mm256_mul_ps(iq0,jq0);
668
669             /* REACTION-FIELD ELECTROSTATICS */
670             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
671
672             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
673
674             fscal            = felec;
675
676             fscal            = _mm256_and_ps(fscal,cutoff_mask);
677
678             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
679
680             /* Calculate temporary vectorial force */
681             tx               = _mm256_mul_ps(fscal,dx00);
682             ty               = _mm256_mul_ps(fscal,dy00);
683             tz               = _mm256_mul_ps(fscal,dz00);
684
685             /* Update vectorial force */
686             fix0             = _mm256_add_ps(fix0,tx);
687             fiy0             = _mm256_add_ps(fiy0,ty);
688             fiz0             = _mm256_add_ps(fiz0,tz);
689
690             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
691             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
692             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
693             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
694             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
695             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
696             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
697             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
698             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
699
700             }
701
702             /* Inner loop uses 30 flops */
703         }
704
705         /* End of innermost loop */
706
707         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
708                                                  f+i_coord_offset,fshift+i_shift_offset);
709
710         /* Increment number of inner iterations */
711         inneriter                  += j_index_end - j_index_start;
712
713         /* Outer loop uses 7 flops */
714     }
715
716     /* Increment number of outer iterations */
717     outeriter        += nri;
718
719     /* Update outer/inner flops */
720
721     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*30);
722 }