dda6664227bdbae461960f3e8f7f6d326bc53d89
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwNone_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m256           dummy_mask,cutoff_mask;
94     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
95     __m256           one     = _mm256_set1_ps(1.0);
96     __m256           two     = _mm256_set1_ps(2.0);
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = _mm256_set1_ps(fr->epsfac);
109     charge           = mdatoms->chargeA;
110     krf              = _mm256_set1_ps(fr->ic->k_rf);
111     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
112     crf              = _mm256_set1_ps(fr->ic->c_rf);
113
114     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
115     rcutoff_scalar   = fr->rcoulomb;
116     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
117     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123     j_coord_offsetC = 0;
124     j_coord_offsetD = 0;
125     j_coord_offsetE = 0;
126     j_coord_offsetF = 0;
127     j_coord_offsetG = 0;
128     j_coord_offsetH = 0;
129
130     outeriter        = 0;
131     inneriter        = 0;
132
133     for(iidx=0;iidx<4*DIM;iidx++)
134     {
135         scratch[iidx] = 0.0;
136     }
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
154
155         fix0             = _mm256_setzero_ps();
156         fiy0             = _mm256_setzero_ps();
157         fiz0             = _mm256_setzero_ps();
158
159         /* Load parameters for i particles */
160         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
161
162         /* Reset potential sums */
163         velecsum         = _mm256_setzero_ps();
164
165         /* Start inner kernel loop */
166         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
167         {
168
169             /* Get j neighbor index, and coordinate index */
170             jnrA             = jjnr[jidx];
171             jnrB             = jjnr[jidx+1];
172             jnrC             = jjnr[jidx+2];
173             jnrD             = jjnr[jidx+3];
174             jnrE             = jjnr[jidx+4];
175             jnrF             = jjnr[jidx+5];
176             jnrG             = jjnr[jidx+6];
177             jnrH             = jjnr[jidx+7];
178             j_coord_offsetA  = DIM*jnrA;
179             j_coord_offsetB  = DIM*jnrB;
180             j_coord_offsetC  = DIM*jnrC;
181             j_coord_offsetD  = DIM*jnrD;
182             j_coord_offsetE  = DIM*jnrE;
183             j_coord_offsetF  = DIM*jnrF;
184             j_coord_offsetG  = DIM*jnrG;
185             j_coord_offsetH  = DIM*jnrH;
186
187             /* load j atom coordinates */
188             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
189                                                  x+j_coord_offsetC,x+j_coord_offsetD,
190                                                  x+j_coord_offsetE,x+j_coord_offsetF,
191                                                  x+j_coord_offsetG,x+j_coord_offsetH,
192                                                  &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm256_sub_ps(ix0,jx0);
196             dy00             = _mm256_sub_ps(iy0,jy0);
197             dz00             = _mm256_sub_ps(iz0,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
201
202             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
203
204             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
205
206             /* Load parameters for j particles */
207             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
208                                                                  charge+jnrC+0,charge+jnrD+0,
209                                                                  charge+jnrE+0,charge+jnrF+0,
210                                                                  charge+jnrG+0,charge+jnrH+0);
211
212             /**************************
213              * CALCULATE INTERACTIONS *
214              **************************/
215
216             if (gmx_mm256_any_lt(rsq00,rcutoff2))
217             {
218
219             /* Compute parameters for interactions between i and j atoms */
220             qq00             = _mm256_mul_ps(iq0,jq0);
221
222             /* REACTION-FIELD ELECTROSTATICS */
223             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
224             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
225
226             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
227
228             /* Update potential sum for this i atom from the interaction with this j atom. */
229             velec            = _mm256_and_ps(velec,cutoff_mask);
230             velecsum         = _mm256_add_ps(velecsum,velec);
231
232             fscal            = felec;
233
234             fscal            = _mm256_and_ps(fscal,cutoff_mask);
235
236             /* Calculate temporary vectorial force */
237             tx               = _mm256_mul_ps(fscal,dx00);
238             ty               = _mm256_mul_ps(fscal,dy00);
239             tz               = _mm256_mul_ps(fscal,dz00);
240
241             /* Update vectorial force */
242             fix0             = _mm256_add_ps(fix0,tx);
243             fiy0             = _mm256_add_ps(fiy0,ty);
244             fiz0             = _mm256_add_ps(fiz0,tz);
245
246             fjptrA             = f+j_coord_offsetA;
247             fjptrB             = f+j_coord_offsetB;
248             fjptrC             = f+j_coord_offsetC;
249             fjptrD             = f+j_coord_offsetD;
250             fjptrE             = f+j_coord_offsetE;
251             fjptrF             = f+j_coord_offsetF;
252             fjptrG             = f+j_coord_offsetG;
253             fjptrH             = f+j_coord_offsetH;
254             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
255
256             }
257
258             /* Inner loop uses 36 flops */
259         }
260
261         if(jidx<j_index_end)
262         {
263
264             /* Get j neighbor index, and coordinate index */
265             jnrlistA         = jjnr[jidx];
266             jnrlistB         = jjnr[jidx+1];
267             jnrlistC         = jjnr[jidx+2];
268             jnrlistD         = jjnr[jidx+3];
269             jnrlistE         = jjnr[jidx+4];
270             jnrlistF         = jjnr[jidx+5];
271             jnrlistG         = jjnr[jidx+6];
272             jnrlistH         = jjnr[jidx+7];
273             /* Sign of each element will be negative for non-real atoms.
274              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
275              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
276              */
277             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
278                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
279                                             
280             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
281             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
282             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
283             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
284             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
285             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
286             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
287             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
288             j_coord_offsetA  = DIM*jnrA;
289             j_coord_offsetB  = DIM*jnrB;
290             j_coord_offsetC  = DIM*jnrC;
291             j_coord_offsetD  = DIM*jnrD;
292             j_coord_offsetE  = DIM*jnrE;
293             j_coord_offsetF  = DIM*jnrF;
294             j_coord_offsetG  = DIM*jnrG;
295             j_coord_offsetH  = DIM*jnrH;
296
297             /* load j atom coordinates */
298             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
299                                                  x+j_coord_offsetC,x+j_coord_offsetD,
300                                                  x+j_coord_offsetE,x+j_coord_offsetF,
301                                                  x+j_coord_offsetG,x+j_coord_offsetH,
302                                                  &jx0,&jy0,&jz0);
303
304             /* Calculate displacement vector */
305             dx00             = _mm256_sub_ps(ix0,jx0);
306             dy00             = _mm256_sub_ps(iy0,jy0);
307             dz00             = _mm256_sub_ps(iz0,jz0);
308
309             /* Calculate squared distance and things based on it */
310             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
311
312             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
313
314             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
315
316             /* Load parameters for j particles */
317             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
318                                                                  charge+jnrC+0,charge+jnrD+0,
319                                                                  charge+jnrE+0,charge+jnrF+0,
320                                                                  charge+jnrG+0,charge+jnrH+0);
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             if (gmx_mm256_any_lt(rsq00,rcutoff2))
327             {
328
329             /* Compute parameters for interactions between i and j atoms */
330             qq00             = _mm256_mul_ps(iq0,jq0);
331
332             /* REACTION-FIELD ELECTROSTATICS */
333             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
334             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
335
336             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velec            = _mm256_and_ps(velec,cutoff_mask);
340             velec            = _mm256_andnot_ps(dummy_mask,velec);
341             velecsum         = _mm256_add_ps(velecsum,velec);
342
343             fscal            = felec;
344
345             fscal            = _mm256_and_ps(fscal,cutoff_mask);
346
347             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm256_mul_ps(fscal,dx00);
351             ty               = _mm256_mul_ps(fscal,dy00);
352             tz               = _mm256_mul_ps(fscal,dz00);
353
354             /* Update vectorial force */
355             fix0             = _mm256_add_ps(fix0,tx);
356             fiy0             = _mm256_add_ps(fiy0,ty);
357             fiz0             = _mm256_add_ps(fiz0,tz);
358
359             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
360             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
361             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
362             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
363             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
364             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
365             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
366             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
367             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
368
369             }
370
371             /* Inner loop uses 36 flops */
372         }
373
374         /* End of innermost loop */
375
376         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
377                                                  f+i_coord_offset,fshift+i_shift_offset);
378
379         ggid                        = gid[iidx];
380         /* Update potential energies */
381         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
382
383         /* Increment number of inner iterations */
384         inneriter                  += j_index_end - j_index_start;
385
386         /* Outer loop uses 8 flops */
387     }
388
389     /* Increment number of outer iterations */
390     outeriter        += nri;
391
392     /* Update outer/inner flops */
393
394     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*36);
395 }
396 /*
397  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_avx_256_single
398  * Electrostatics interaction: ReactionField
399  * VdW interaction:            None
400  * Geometry:                   Particle-Particle
401  * Calculate force/pot:        Force
402  */
403 void
404 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_avx_256_single
405                     (t_nblist                    * gmx_restrict       nlist,
406                      rvec                        * gmx_restrict          xx,
407                      rvec                        * gmx_restrict          ff,
408                      t_forcerec                  * gmx_restrict          fr,
409                      t_mdatoms                   * gmx_restrict     mdatoms,
410                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
411                      t_nrnb                      * gmx_restrict        nrnb)
412 {
413     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
414      * just 0 for non-waters.
415      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
416      * jnr indices corresponding to data put in the four positions in the SIMD register.
417      */
418     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
419     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
420     int              jnrA,jnrB,jnrC,jnrD;
421     int              jnrE,jnrF,jnrG,jnrH;
422     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
423     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
424     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
425     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
426     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
427     real             rcutoff_scalar;
428     real             *shiftvec,*fshift,*x,*f;
429     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
430     real             scratch[4*DIM];
431     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
432     real *           vdwioffsetptr0;
433     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
434     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
435     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
436     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
437     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
438     real             *charge;
439     __m256           dummy_mask,cutoff_mask;
440     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
441     __m256           one     = _mm256_set1_ps(1.0);
442     __m256           two     = _mm256_set1_ps(2.0);
443     x                = xx[0];
444     f                = ff[0];
445
446     nri              = nlist->nri;
447     iinr             = nlist->iinr;
448     jindex           = nlist->jindex;
449     jjnr             = nlist->jjnr;
450     shiftidx         = nlist->shift;
451     gid              = nlist->gid;
452     shiftvec         = fr->shift_vec[0];
453     fshift           = fr->fshift[0];
454     facel            = _mm256_set1_ps(fr->epsfac);
455     charge           = mdatoms->chargeA;
456     krf              = _mm256_set1_ps(fr->ic->k_rf);
457     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
458     crf              = _mm256_set1_ps(fr->ic->c_rf);
459
460     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
461     rcutoff_scalar   = fr->rcoulomb;
462     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
463     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
464
465     /* Avoid stupid compiler warnings */
466     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
467     j_coord_offsetA = 0;
468     j_coord_offsetB = 0;
469     j_coord_offsetC = 0;
470     j_coord_offsetD = 0;
471     j_coord_offsetE = 0;
472     j_coord_offsetF = 0;
473     j_coord_offsetG = 0;
474     j_coord_offsetH = 0;
475
476     outeriter        = 0;
477     inneriter        = 0;
478
479     for(iidx=0;iidx<4*DIM;iidx++)
480     {
481         scratch[iidx] = 0.0;
482     }
483
484     /* Start outer loop over neighborlists */
485     for(iidx=0; iidx<nri; iidx++)
486     {
487         /* Load shift vector for this list */
488         i_shift_offset   = DIM*shiftidx[iidx];
489
490         /* Load limits for loop over neighbors */
491         j_index_start    = jindex[iidx];
492         j_index_end      = jindex[iidx+1];
493
494         /* Get outer coordinate index */
495         inr              = iinr[iidx];
496         i_coord_offset   = DIM*inr;
497
498         /* Load i particle coords and add shift vector */
499         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
500
501         fix0             = _mm256_setzero_ps();
502         fiy0             = _mm256_setzero_ps();
503         fiz0             = _mm256_setzero_ps();
504
505         /* Load parameters for i particles */
506         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
507
508         /* Start inner kernel loop */
509         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
510         {
511
512             /* Get j neighbor index, and coordinate index */
513             jnrA             = jjnr[jidx];
514             jnrB             = jjnr[jidx+1];
515             jnrC             = jjnr[jidx+2];
516             jnrD             = jjnr[jidx+3];
517             jnrE             = jjnr[jidx+4];
518             jnrF             = jjnr[jidx+5];
519             jnrG             = jjnr[jidx+6];
520             jnrH             = jjnr[jidx+7];
521             j_coord_offsetA  = DIM*jnrA;
522             j_coord_offsetB  = DIM*jnrB;
523             j_coord_offsetC  = DIM*jnrC;
524             j_coord_offsetD  = DIM*jnrD;
525             j_coord_offsetE  = DIM*jnrE;
526             j_coord_offsetF  = DIM*jnrF;
527             j_coord_offsetG  = DIM*jnrG;
528             j_coord_offsetH  = DIM*jnrH;
529
530             /* load j atom coordinates */
531             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
532                                                  x+j_coord_offsetC,x+j_coord_offsetD,
533                                                  x+j_coord_offsetE,x+j_coord_offsetF,
534                                                  x+j_coord_offsetG,x+j_coord_offsetH,
535                                                  &jx0,&jy0,&jz0);
536
537             /* Calculate displacement vector */
538             dx00             = _mm256_sub_ps(ix0,jx0);
539             dy00             = _mm256_sub_ps(iy0,jy0);
540             dz00             = _mm256_sub_ps(iz0,jz0);
541
542             /* Calculate squared distance and things based on it */
543             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
544
545             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
546
547             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
548
549             /* Load parameters for j particles */
550             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
551                                                                  charge+jnrC+0,charge+jnrD+0,
552                                                                  charge+jnrE+0,charge+jnrF+0,
553                                                                  charge+jnrG+0,charge+jnrH+0);
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             if (gmx_mm256_any_lt(rsq00,rcutoff2))
560             {
561
562             /* Compute parameters for interactions between i and j atoms */
563             qq00             = _mm256_mul_ps(iq0,jq0);
564
565             /* REACTION-FIELD ELECTROSTATICS */
566             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
567
568             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
569
570             fscal            = felec;
571
572             fscal            = _mm256_and_ps(fscal,cutoff_mask);
573
574             /* Calculate temporary vectorial force */
575             tx               = _mm256_mul_ps(fscal,dx00);
576             ty               = _mm256_mul_ps(fscal,dy00);
577             tz               = _mm256_mul_ps(fscal,dz00);
578
579             /* Update vectorial force */
580             fix0             = _mm256_add_ps(fix0,tx);
581             fiy0             = _mm256_add_ps(fiy0,ty);
582             fiz0             = _mm256_add_ps(fiz0,tz);
583
584             fjptrA             = f+j_coord_offsetA;
585             fjptrB             = f+j_coord_offsetB;
586             fjptrC             = f+j_coord_offsetC;
587             fjptrD             = f+j_coord_offsetD;
588             fjptrE             = f+j_coord_offsetE;
589             fjptrF             = f+j_coord_offsetF;
590             fjptrG             = f+j_coord_offsetG;
591             fjptrH             = f+j_coord_offsetH;
592             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
593
594             }
595
596             /* Inner loop uses 30 flops */
597         }
598
599         if(jidx<j_index_end)
600         {
601
602             /* Get j neighbor index, and coordinate index */
603             jnrlistA         = jjnr[jidx];
604             jnrlistB         = jjnr[jidx+1];
605             jnrlistC         = jjnr[jidx+2];
606             jnrlistD         = jjnr[jidx+3];
607             jnrlistE         = jjnr[jidx+4];
608             jnrlistF         = jjnr[jidx+5];
609             jnrlistG         = jjnr[jidx+6];
610             jnrlistH         = jjnr[jidx+7];
611             /* Sign of each element will be negative for non-real atoms.
612              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
613              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
614              */
615             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
616                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
617                                             
618             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
619             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
620             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
621             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
622             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
623             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
624             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
625             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
626             j_coord_offsetA  = DIM*jnrA;
627             j_coord_offsetB  = DIM*jnrB;
628             j_coord_offsetC  = DIM*jnrC;
629             j_coord_offsetD  = DIM*jnrD;
630             j_coord_offsetE  = DIM*jnrE;
631             j_coord_offsetF  = DIM*jnrF;
632             j_coord_offsetG  = DIM*jnrG;
633             j_coord_offsetH  = DIM*jnrH;
634
635             /* load j atom coordinates */
636             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
637                                                  x+j_coord_offsetC,x+j_coord_offsetD,
638                                                  x+j_coord_offsetE,x+j_coord_offsetF,
639                                                  x+j_coord_offsetG,x+j_coord_offsetH,
640                                                  &jx0,&jy0,&jz0);
641
642             /* Calculate displacement vector */
643             dx00             = _mm256_sub_ps(ix0,jx0);
644             dy00             = _mm256_sub_ps(iy0,jy0);
645             dz00             = _mm256_sub_ps(iz0,jz0);
646
647             /* Calculate squared distance and things based on it */
648             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
649
650             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
651
652             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
653
654             /* Load parameters for j particles */
655             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
656                                                                  charge+jnrC+0,charge+jnrD+0,
657                                                                  charge+jnrE+0,charge+jnrF+0,
658                                                                  charge+jnrG+0,charge+jnrH+0);
659
660             /**************************
661              * CALCULATE INTERACTIONS *
662              **************************/
663
664             if (gmx_mm256_any_lt(rsq00,rcutoff2))
665             {
666
667             /* Compute parameters for interactions between i and j atoms */
668             qq00             = _mm256_mul_ps(iq0,jq0);
669
670             /* REACTION-FIELD ELECTROSTATICS */
671             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
672
673             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
674
675             fscal            = felec;
676
677             fscal            = _mm256_and_ps(fscal,cutoff_mask);
678
679             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
680
681             /* Calculate temporary vectorial force */
682             tx               = _mm256_mul_ps(fscal,dx00);
683             ty               = _mm256_mul_ps(fscal,dy00);
684             tz               = _mm256_mul_ps(fscal,dz00);
685
686             /* Update vectorial force */
687             fix0             = _mm256_add_ps(fix0,tx);
688             fiy0             = _mm256_add_ps(fiy0,ty);
689             fiz0             = _mm256_add_ps(fiz0,tz);
690
691             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
692             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
693             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
694             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
695             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
696             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
697             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
698             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
699             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
700
701             }
702
703             /* Inner loop uses 30 flops */
704         }
705
706         /* End of innermost loop */
707
708         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
709                                                  f+i_coord_offset,fshift+i_shift_offset);
710
711         /* Increment number of inner iterations */
712         inneriter                  += j_index_end - j_index_start;
713
714         /* Outer loop uses 7 flops */
715     }
716
717     /* Increment number of outer iterations */
718     outeriter        += nri;
719
720     /* Update outer/inner flops */
721
722     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*30);
723 }