8f4846e4a6456c50a7113499dbdccc7bf1f956be
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_avx_256_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
107     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
108     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
109     real             rswitch_scalar,d_scalar;
110     __m256           dummy_mask,cutoff_mask;
111     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
112     __m256           one     = _mm256_set1_ps(1.0);
113     __m256           two     = _mm256_set1_ps(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm256_set1_ps(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     krf              = _mm256_set1_ps(fr->ic->k_rf);
128     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
129     crf              = _mm256_set1_ps(fr->ic->c_rf);
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133
134     /* Setup water-specific parameters */
135     inr              = nlist->iinr[0];
136     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
137     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
138     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
139     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
140
141     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
142     rcutoff_scalar   = fr->rcoulomb;
143     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
144     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
145
146     rswitch_scalar   = fr->rvdw_switch;
147     rswitch          = _mm256_set1_ps(rswitch_scalar);
148     /* Setup switch parameters */
149     d_scalar         = rcutoff_scalar-rswitch_scalar;
150     d                = _mm256_set1_ps(d_scalar);
151     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
152     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
153     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
154     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
155     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
156     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
157
158     /* Avoid stupid compiler warnings */
159     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
160     j_coord_offsetA = 0;
161     j_coord_offsetB = 0;
162     j_coord_offsetC = 0;
163     j_coord_offsetD = 0;
164     j_coord_offsetE = 0;
165     j_coord_offsetF = 0;
166     j_coord_offsetG = 0;
167     j_coord_offsetH = 0;
168
169     outeriter        = 0;
170     inneriter        = 0;
171
172     for(iidx=0;iidx<4*DIM;iidx++)
173     {
174         scratch[iidx] = 0.0;
175     }
176
177     /* Start outer loop over neighborlists */
178     for(iidx=0; iidx<nri; iidx++)
179     {
180         /* Load shift vector for this list */
181         i_shift_offset   = DIM*shiftidx[iidx];
182
183         /* Load limits for loop over neighbors */
184         j_index_start    = jindex[iidx];
185         j_index_end      = jindex[iidx+1];
186
187         /* Get outer coordinate index */
188         inr              = iinr[iidx];
189         i_coord_offset   = DIM*inr;
190
191         /* Load i particle coords and add shift vector */
192         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
193                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
194
195         fix0             = _mm256_setzero_ps();
196         fiy0             = _mm256_setzero_ps();
197         fiz0             = _mm256_setzero_ps();
198         fix1             = _mm256_setzero_ps();
199         fiy1             = _mm256_setzero_ps();
200         fiz1             = _mm256_setzero_ps();
201         fix2             = _mm256_setzero_ps();
202         fiy2             = _mm256_setzero_ps();
203         fiz2             = _mm256_setzero_ps();
204         fix3             = _mm256_setzero_ps();
205         fiy3             = _mm256_setzero_ps();
206         fiz3             = _mm256_setzero_ps();
207
208         /* Reset potential sums */
209         velecsum         = _mm256_setzero_ps();
210         vvdwsum          = _mm256_setzero_ps();
211
212         /* Start inner kernel loop */
213         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
214         {
215
216             /* Get j neighbor index, and coordinate index */
217             jnrA             = jjnr[jidx];
218             jnrB             = jjnr[jidx+1];
219             jnrC             = jjnr[jidx+2];
220             jnrD             = jjnr[jidx+3];
221             jnrE             = jjnr[jidx+4];
222             jnrF             = jjnr[jidx+5];
223             jnrG             = jjnr[jidx+6];
224             jnrH             = jjnr[jidx+7];
225             j_coord_offsetA  = DIM*jnrA;
226             j_coord_offsetB  = DIM*jnrB;
227             j_coord_offsetC  = DIM*jnrC;
228             j_coord_offsetD  = DIM*jnrD;
229             j_coord_offsetE  = DIM*jnrE;
230             j_coord_offsetF  = DIM*jnrF;
231             j_coord_offsetG  = DIM*jnrG;
232             j_coord_offsetH  = DIM*jnrH;
233
234             /* load j atom coordinates */
235             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
236                                                  x+j_coord_offsetC,x+j_coord_offsetD,
237                                                  x+j_coord_offsetE,x+j_coord_offsetF,
238                                                  x+j_coord_offsetG,x+j_coord_offsetH,
239                                                  &jx0,&jy0,&jz0);
240
241             /* Calculate displacement vector */
242             dx00             = _mm256_sub_ps(ix0,jx0);
243             dy00             = _mm256_sub_ps(iy0,jy0);
244             dz00             = _mm256_sub_ps(iz0,jz0);
245             dx10             = _mm256_sub_ps(ix1,jx0);
246             dy10             = _mm256_sub_ps(iy1,jy0);
247             dz10             = _mm256_sub_ps(iz1,jz0);
248             dx20             = _mm256_sub_ps(ix2,jx0);
249             dy20             = _mm256_sub_ps(iy2,jy0);
250             dz20             = _mm256_sub_ps(iz2,jz0);
251             dx30             = _mm256_sub_ps(ix3,jx0);
252             dy30             = _mm256_sub_ps(iy3,jy0);
253             dz30             = _mm256_sub_ps(iz3,jz0);
254
255             /* Calculate squared distance and things based on it */
256             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
257             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
258             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
259             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
260
261             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
262             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
263             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
264             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
265
266             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
267             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
268             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
269             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
270
271             /* Load parameters for j particles */
272             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
273                                                                  charge+jnrC+0,charge+jnrD+0,
274                                                                  charge+jnrE+0,charge+jnrF+0,
275                                                                  charge+jnrG+0,charge+jnrH+0);
276             vdwjidx0A        = 2*vdwtype[jnrA+0];
277             vdwjidx0B        = 2*vdwtype[jnrB+0];
278             vdwjidx0C        = 2*vdwtype[jnrC+0];
279             vdwjidx0D        = 2*vdwtype[jnrD+0];
280             vdwjidx0E        = 2*vdwtype[jnrE+0];
281             vdwjidx0F        = 2*vdwtype[jnrF+0];
282             vdwjidx0G        = 2*vdwtype[jnrG+0];
283             vdwjidx0H        = 2*vdwtype[jnrH+0];
284
285             fjx0             = _mm256_setzero_ps();
286             fjy0             = _mm256_setzero_ps();
287             fjz0             = _mm256_setzero_ps();
288
289             /**************************
290              * CALCULATE INTERACTIONS *
291              **************************/
292
293             if (gmx_mm256_any_lt(rsq00,rcutoff2))
294             {
295
296             r00              = _mm256_mul_ps(rsq00,rinv00);
297
298             /* Compute parameters for interactions between i and j atoms */
299             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
300                                             vdwioffsetptr0+vdwjidx0B,
301                                             vdwioffsetptr0+vdwjidx0C,
302                                             vdwioffsetptr0+vdwjidx0D,
303                                             vdwioffsetptr0+vdwjidx0E,
304                                             vdwioffsetptr0+vdwjidx0F,
305                                             vdwioffsetptr0+vdwjidx0G,
306                                             vdwioffsetptr0+vdwjidx0H,
307                                             &c6_00,&c12_00);
308
309             /* LENNARD-JONES DISPERSION/REPULSION */
310
311             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
312             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
313             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
314             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
315             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
316
317             d                = _mm256_sub_ps(r00,rswitch);
318             d                = _mm256_max_ps(d,_mm256_setzero_ps());
319             d2               = _mm256_mul_ps(d,d);
320             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
321
322             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
323
324             /* Evaluate switch function */
325             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
326             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
327             vvdw             = _mm256_mul_ps(vvdw,sw);
328             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
329
330             /* Update potential sum for this i atom from the interaction with this j atom. */
331             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
332             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
333
334             fscal            = fvdw;
335
336             fscal            = _mm256_and_ps(fscal,cutoff_mask);
337
338             /* Calculate temporary vectorial force */
339             tx               = _mm256_mul_ps(fscal,dx00);
340             ty               = _mm256_mul_ps(fscal,dy00);
341             tz               = _mm256_mul_ps(fscal,dz00);
342
343             /* Update vectorial force */
344             fix0             = _mm256_add_ps(fix0,tx);
345             fiy0             = _mm256_add_ps(fiy0,ty);
346             fiz0             = _mm256_add_ps(fiz0,tz);
347
348             fjx0             = _mm256_add_ps(fjx0,tx);
349             fjy0             = _mm256_add_ps(fjy0,ty);
350             fjz0             = _mm256_add_ps(fjz0,tz);
351
352             }
353
354             /**************************
355              * CALCULATE INTERACTIONS *
356              **************************/
357
358             if (gmx_mm256_any_lt(rsq10,rcutoff2))
359             {
360
361             /* Compute parameters for interactions between i and j atoms */
362             qq10             = _mm256_mul_ps(iq1,jq0);
363
364             /* REACTION-FIELD ELECTROSTATICS */
365             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
366             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
367
368             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
369
370             /* Update potential sum for this i atom from the interaction with this j atom. */
371             velec            = _mm256_and_ps(velec,cutoff_mask);
372             velecsum         = _mm256_add_ps(velecsum,velec);
373
374             fscal            = felec;
375
376             fscal            = _mm256_and_ps(fscal,cutoff_mask);
377
378             /* Calculate temporary vectorial force */
379             tx               = _mm256_mul_ps(fscal,dx10);
380             ty               = _mm256_mul_ps(fscal,dy10);
381             tz               = _mm256_mul_ps(fscal,dz10);
382
383             /* Update vectorial force */
384             fix1             = _mm256_add_ps(fix1,tx);
385             fiy1             = _mm256_add_ps(fiy1,ty);
386             fiz1             = _mm256_add_ps(fiz1,tz);
387
388             fjx0             = _mm256_add_ps(fjx0,tx);
389             fjy0             = _mm256_add_ps(fjy0,ty);
390             fjz0             = _mm256_add_ps(fjz0,tz);
391
392             }
393
394             /**************************
395              * CALCULATE INTERACTIONS *
396              **************************/
397
398             if (gmx_mm256_any_lt(rsq20,rcutoff2))
399             {
400
401             /* Compute parameters for interactions between i and j atoms */
402             qq20             = _mm256_mul_ps(iq2,jq0);
403
404             /* REACTION-FIELD ELECTROSTATICS */
405             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
406             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
407
408             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
409
410             /* Update potential sum for this i atom from the interaction with this j atom. */
411             velec            = _mm256_and_ps(velec,cutoff_mask);
412             velecsum         = _mm256_add_ps(velecsum,velec);
413
414             fscal            = felec;
415
416             fscal            = _mm256_and_ps(fscal,cutoff_mask);
417
418             /* Calculate temporary vectorial force */
419             tx               = _mm256_mul_ps(fscal,dx20);
420             ty               = _mm256_mul_ps(fscal,dy20);
421             tz               = _mm256_mul_ps(fscal,dz20);
422
423             /* Update vectorial force */
424             fix2             = _mm256_add_ps(fix2,tx);
425             fiy2             = _mm256_add_ps(fiy2,ty);
426             fiz2             = _mm256_add_ps(fiz2,tz);
427
428             fjx0             = _mm256_add_ps(fjx0,tx);
429             fjy0             = _mm256_add_ps(fjy0,ty);
430             fjz0             = _mm256_add_ps(fjz0,tz);
431
432             }
433
434             /**************************
435              * CALCULATE INTERACTIONS *
436              **************************/
437
438             if (gmx_mm256_any_lt(rsq30,rcutoff2))
439             {
440
441             /* Compute parameters for interactions between i and j atoms */
442             qq30             = _mm256_mul_ps(iq3,jq0);
443
444             /* REACTION-FIELD ELECTROSTATICS */
445             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
446             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
447
448             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
449
450             /* Update potential sum for this i atom from the interaction with this j atom. */
451             velec            = _mm256_and_ps(velec,cutoff_mask);
452             velecsum         = _mm256_add_ps(velecsum,velec);
453
454             fscal            = felec;
455
456             fscal            = _mm256_and_ps(fscal,cutoff_mask);
457
458             /* Calculate temporary vectorial force */
459             tx               = _mm256_mul_ps(fscal,dx30);
460             ty               = _mm256_mul_ps(fscal,dy30);
461             tz               = _mm256_mul_ps(fscal,dz30);
462
463             /* Update vectorial force */
464             fix3             = _mm256_add_ps(fix3,tx);
465             fiy3             = _mm256_add_ps(fiy3,ty);
466             fiz3             = _mm256_add_ps(fiz3,tz);
467
468             fjx0             = _mm256_add_ps(fjx0,tx);
469             fjy0             = _mm256_add_ps(fjy0,ty);
470             fjz0             = _mm256_add_ps(fjz0,tz);
471
472             }
473
474             fjptrA             = f+j_coord_offsetA;
475             fjptrB             = f+j_coord_offsetB;
476             fjptrC             = f+j_coord_offsetC;
477             fjptrD             = f+j_coord_offsetD;
478             fjptrE             = f+j_coord_offsetE;
479             fjptrF             = f+j_coord_offsetF;
480             fjptrG             = f+j_coord_offsetG;
481             fjptrH             = f+j_coord_offsetH;
482
483             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
484
485             /* Inner loop uses 170 flops */
486         }
487
488         if(jidx<j_index_end)
489         {
490
491             /* Get j neighbor index, and coordinate index */
492             jnrlistA         = jjnr[jidx];
493             jnrlistB         = jjnr[jidx+1];
494             jnrlistC         = jjnr[jidx+2];
495             jnrlistD         = jjnr[jidx+3];
496             jnrlistE         = jjnr[jidx+4];
497             jnrlistF         = jjnr[jidx+5];
498             jnrlistG         = jjnr[jidx+6];
499             jnrlistH         = jjnr[jidx+7];
500             /* Sign of each element will be negative for non-real atoms.
501              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
502              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
503              */
504             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
505                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
506                                             
507             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
508             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
509             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
510             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
511             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
512             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
513             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
514             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
515             j_coord_offsetA  = DIM*jnrA;
516             j_coord_offsetB  = DIM*jnrB;
517             j_coord_offsetC  = DIM*jnrC;
518             j_coord_offsetD  = DIM*jnrD;
519             j_coord_offsetE  = DIM*jnrE;
520             j_coord_offsetF  = DIM*jnrF;
521             j_coord_offsetG  = DIM*jnrG;
522             j_coord_offsetH  = DIM*jnrH;
523
524             /* load j atom coordinates */
525             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
526                                                  x+j_coord_offsetC,x+j_coord_offsetD,
527                                                  x+j_coord_offsetE,x+j_coord_offsetF,
528                                                  x+j_coord_offsetG,x+j_coord_offsetH,
529                                                  &jx0,&jy0,&jz0);
530
531             /* Calculate displacement vector */
532             dx00             = _mm256_sub_ps(ix0,jx0);
533             dy00             = _mm256_sub_ps(iy0,jy0);
534             dz00             = _mm256_sub_ps(iz0,jz0);
535             dx10             = _mm256_sub_ps(ix1,jx0);
536             dy10             = _mm256_sub_ps(iy1,jy0);
537             dz10             = _mm256_sub_ps(iz1,jz0);
538             dx20             = _mm256_sub_ps(ix2,jx0);
539             dy20             = _mm256_sub_ps(iy2,jy0);
540             dz20             = _mm256_sub_ps(iz2,jz0);
541             dx30             = _mm256_sub_ps(ix3,jx0);
542             dy30             = _mm256_sub_ps(iy3,jy0);
543             dz30             = _mm256_sub_ps(iz3,jz0);
544
545             /* Calculate squared distance and things based on it */
546             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
547             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
548             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
549             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
550
551             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
552             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
553             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
554             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
555
556             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
557             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
558             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
559             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
560
561             /* Load parameters for j particles */
562             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
563                                                                  charge+jnrC+0,charge+jnrD+0,
564                                                                  charge+jnrE+0,charge+jnrF+0,
565                                                                  charge+jnrG+0,charge+jnrH+0);
566             vdwjidx0A        = 2*vdwtype[jnrA+0];
567             vdwjidx0B        = 2*vdwtype[jnrB+0];
568             vdwjidx0C        = 2*vdwtype[jnrC+0];
569             vdwjidx0D        = 2*vdwtype[jnrD+0];
570             vdwjidx0E        = 2*vdwtype[jnrE+0];
571             vdwjidx0F        = 2*vdwtype[jnrF+0];
572             vdwjidx0G        = 2*vdwtype[jnrG+0];
573             vdwjidx0H        = 2*vdwtype[jnrH+0];
574
575             fjx0             = _mm256_setzero_ps();
576             fjy0             = _mm256_setzero_ps();
577             fjz0             = _mm256_setzero_ps();
578
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             if (gmx_mm256_any_lt(rsq00,rcutoff2))
584             {
585
586             r00              = _mm256_mul_ps(rsq00,rinv00);
587             r00              = _mm256_andnot_ps(dummy_mask,r00);
588
589             /* Compute parameters for interactions between i and j atoms */
590             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
591                                             vdwioffsetptr0+vdwjidx0B,
592                                             vdwioffsetptr0+vdwjidx0C,
593                                             vdwioffsetptr0+vdwjidx0D,
594                                             vdwioffsetptr0+vdwjidx0E,
595                                             vdwioffsetptr0+vdwjidx0F,
596                                             vdwioffsetptr0+vdwjidx0G,
597                                             vdwioffsetptr0+vdwjidx0H,
598                                             &c6_00,&c12_00);
599
600             /* LENNARD-JONES DISPERSION/REPULSION */
601
602             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
603             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
604             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
605             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
606             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
607
608             d                = _mm256_sub_ps(r00,rswitch);
609             d                = _mm256_max_ps(d,_mm256_setzero_ps());
610             d2               = _mm256_mul_ps(d,d);
611             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
612
613             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
614
615             /* Evaluate switch function */
616             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
617             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
618             vvdw             = _mm256_mul_ps(vvdw,sw);
619             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
620
621             /* Update potential sum for this i atom from the interaction with this j atom. */
622             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
623             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
624             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
625
626             fscal            = fvdw;
627
628             fscal            = _mm256_and_ps(fscal,cutoff_mask);
629
630             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
631
632             /* Calculate temporary vectorial force */
633             tx               = _mm256_mul_ps(fscal,dx00);
634             ty               = _mm256_mul_ps(fscal,dy00);
635             tz               = _mm256_mul_ps(fscal,dz00);
636
637             /* Update vectorial force */
638             fix0             = _mm256_add_ps(fix0,tx);
639             fiy0             = _mm256_add_ps(fiy0,ty);
640             fiz0             = _mm256_add_ps(fiz0,tz);
641
642             fjx0             = _mm256_add_ps(fjx0,tx);
643             fjy0             = _mm256_add_ps(fjy0,ty);
644             fjz0             = _mm256_add_ps(fjz0,tz);
645
646             }
647
648             /**************************
649              * CALCULATE INTERACTIONS *
650              **************************/
651
652             if (gmx_mm256_any_lt(rsq10,rcutoff2))
653             {
654
655             /* Compute parameters for interactions between i and j atoms */
656             qq10             = _mm256_mul_ps(iq1,jq0);
657
658             /* REACTION-FIELD ELECTROSTATICS */
659             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
660             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
661
662             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
663
664             /* Update potential sum for this i atom from the interaction with this j atom. */
665             velec            = _mm256_and_ps(velec,cutoff_mask);
666             velec            = _mm256_andnot_ps(dummy_mask,velec);
667             velecsum         = _mm256_add_ps(velecsum,velec);
668
669             fscal            = felec;
670
671             fscal            = _mm256_and_ps(fscal,cutoff_mask);
672
673             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
674
675             /* Calculate temporary vectorial force */
676             tx               = _mm256_mul_ps(fscal,dx10);
677             ty               = _mm256_mul_ps(fscal,dy10);
678             tz               = _mm256_mul_ps(fscal,dz10);
679
680             /* Update vectorial force */
681             fix1             = _mm256_add_ps(fix1,tx);
682             fiy1             = _mm256_add_ps(fiy1,ty);
683             fiz1             = _mm256_add_ps(fiz1,tz);
684
685             fjx0             = _mm256_add_ps(fjx0,tx);
686             fjy0             = _mm256_add_ps(fjy0,ty);
687             fjz0             = _mm256_add_ps(fjz0,tz);
688
689             }
690
691             /**************************
692              * CALCULATE INTERACTIONS *
693              **************************/
694
695             if (gmx_mm256_any_lt(rsq20,rcutoff2))
696             {
697
698             /* Compute parameters for interactions between i and j atoms */
699             qq20             = _mm256_mul_ps(iq2,jq0);
700
701             /* REACTION-FIELD ELECTROSTATICS */
702             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
703             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
704
705             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
706
707             /* Update potential sum for this i atom from the interaction with this j atom. */
708             velec            = _mm256_and_ps(velec,cutoff_mask);
709             velec            = _mm256_andnot_ps(dummy_mask,velec);
710             velecsum         = _mm256_add_ps(velecsum,velec);
711
712             fscal            = felec;
713
714             fscal            = _mm256_and_ps(fscal,cutoff_mask);
715
716             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
717
718             /* Calculate temporary vectorial force */
719             tx               = _mm256_mul_ps(fscal,dx20);
720             ty               = _mm256_mul_ps(fscal,dy20);
721             tz               = _mm256_mul_ps(fscal,dz20);
722
723             /* Update vectorial force */
724             fix2             = _mm256_add_ps(fix2,tx);
725             fiy2             = _mm256_add_ps(fiy2,ty);
726             fiz2             = _mm256_add_ps(fiz2,tz);
727
728             fjx0             = _mm256_add_ps(fjx0,tx);
729             fjy0             = _mm256_add_ps(fjy0,ty);
730             fjz0             = _mm256_add_ps(fjz0,tz);
731
732             }
733
734             /**************************
735              * CALCULATE INTERACTIONS *
736              **************************/
737
738             if (gmx_mm256_any_lt(rsq30,rcutoff2))
739             {
740
741             /* Compute parameters for interactions between i and j atoms */
742             qq30             = _mm256_mul_ps(iq3,jq0);
743
744             /* REACTION-FIELD ELECTROSTATICS */
745             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
746             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
747
748             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
749
750             /* Update potential sum for this i atom from the interaction with this j atom. */
751             velec            = _mm256_and_ps(velec,cutoff_mask);
752             velec            = _mm256_andnot_ps(dummy_mask,velec);
753             velecsum         = _mm256_add_ps(velecsum,velec);
754
755             fscal            = felec;
756
757             fscal            = _mm256_and_ps(fscal,cutoff_mask);
758
759             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
760
761             /* Calculate temporary vectorial force */
762             tx               = _mm256_mul_ps(fscal,dx30);
763             ty               = _mm256_mul_ps(fscal,dy30);
764             tz               = _mm256_mul_ps(fscal,dz30);
765
766             /* Update vectorial force */
767             fix3             = _mm256_add_ps(fix3,tx);
768             fiy3             = _mm256_add_ps(fiy3,ty);
769             fiz3             = _mm256_add_ps(fiz3,tz);
770
771             fjx0             = _mm256_add_ps(fjx0,tx);
772             fjy0             = _mm256_add_ps(fjy0,ty);
773             fjz0             = _mm256_add_ps(fjz0,tz);
774
775             }
776
777             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
778             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
779             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
780             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
781             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
782             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
783             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
784             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
785
786             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
787
788             /* Inner loop uses 171 flops */
789         }
790
791         /* End of innermost loop */
792
793         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
794                                                  f+i_coord_offset,fshift+i_shift_offset);
795
796         ggid                        = gid[iidx];
797         /* Update potential energies */
798         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
799         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
800
801         /* Increment number of inner iterations */
802         inneriter                  += j_index_end - j_index_start;
803
804         /* Outer loop uses 26 flops */
805     }
806
807     /* Increment number of outer iterations */
808     outeriter        += nri;
809
810     /* Update outer/inner flops */
811
812     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*171);
813 }
814 /*
815  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_avx_256_single
816  * Electrostatics interaction: ReactionField
817  * VdW interaction:            LennardJones
818  * Geometry:                   Water4-Particle
819  * Calculate force/pot:        Force
820  */
821 void
822 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_avx_256_single
823                     (t_nblist                    * gmx_restrict       nlist,
824                      rvec                        * gmx_restrict          xx,
825                      rvec                        * gmx_restrict          ff,
826                      t_forcerec                  * gmx_restrict          fr,
827                      t_mdatoms                   * gmx_restrict     mdatoms,
828                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
829                      t_nrnb                      * gmx_restrict        nrnb)
830 {
831     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
832      * just 0 for non-waters.
833      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
834      * jnr indices corresponding to data put in the four positions in the SIMD register.
835      */
836     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
837     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
838     int              jnrA,jnrB,jnrC,jnrD;
839     int              jnrE,jnrF,jnrG,jnrH;
840     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
841     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
842     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
843     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
844     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
845     real             rcutoff_scalar;
846     real             *shiftvec,*fshift,*x,*f;
847     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
848     real             scratch[4*DIM];
849     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
850     real *           vdwioffsetptr0;
851     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
852     real *           vdwioffsetptr1;
853     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
854     real *           vdwioffsetptr2;
855     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
856     real *           vdwioffsetptr3;
857     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
858     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
859     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
860     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
861     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
862     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
863     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
864     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
865     real             *charge;
866     int              nvdwtype;
867     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
868     int              *vdwtype;
869     real             *vdwparam;
870     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
871     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
872     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
873     real             rswitch_scalar,d_scalar;
874     __m256           dummy_mask,cutoff_mask;
875     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
876     __m256           one     = _mm256_set1_ps(1.0);
877     __m256           two     = _mm256_set1_ps(2.0);
878     x                = xx[0];
879     f                = ff[0];
880
881     nri              = nlist->nri;
882     iinr             = nlist->iinr;
883     jindex           = nlist->jindex;
884     jjnr             = nlist->jjnr;
885     shiftidx         = nlist->shift;
886     gid              = nlist->gid;
887     shiftvec         = fr->shift_vec[0];
888     fshift           = fr->fshift[0];
889     facel            = _mm256_set1_ps(fr->epsfac);
890     charge           = mdatoms->chargeA;
891     krf              = _mm256_set1_ps(fr->ic->k_rf);
892     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
893     crf              = _mm256_set1_ps(fr->ic->c_rf);
894     nvdwtype         = fr->ntype;
895     vdwparam         = fr->nbfp;
896     vdwtype          = mdatoms->typeA;
897
898     /* Setup water-specific parameters */
899     inr              = nlist->iinr[0];
900     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
901     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
902     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
903     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
904
905     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
906     rcutoff_scalar   = fr->rcoulomb;
907     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
908     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
909
910     rswitch_scalar   = fr->rvdw_switch;
911     rswitch          = _mm256_set1_ps(rswitch_scalar);
912     /* Setup switch parameters */
913     d_scalar         = rcutoff_scalar-rswitch_scalar;
914     d                = _mm256_set1_ps(d_scalar);
915     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
916     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
917     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
918     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
919     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
920     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
921
922     /* Avoid stupid compiler warnings */
923     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
924     j_coord_offsetA = 0;
925     j_coord_offsetB = 0;
926     j_coord_offsetC = 0;
927     j_coord_offsetD = 0;
928     j_coord_offsetE = 0;
929     j_coord_offsetF = 0;
930     j_coord_offsetG = 0;
931     j_coord_offsetH = 0;
932
933     outeriter        = 0;
934     inneriter        = 0;
935
936     for(iidx=0;iidx<4*DIM;iidx++)
937     {
938         scratch[iidx] = 0.0;
939     }
940
941     /* Start outer loop over neighborlists */
942     for(iidx=0; iidx<nri; iidx++)
943     {
944         /* Load shift vector for this list */
945         i_shift_offset   = DIM*shiftidx[iidx];
946
947         /* Load limits for loop over neighbors */
948         j_index_start    = jindex[iidx];
949         j_index_end      = jindex[iidx+1];
950
951         /* Get outer coordinate index */
952         inr              = iinr[iidx];
953         i_coord_offset   = DIM*inr;
954
955         /* Load i particle coords and add shift vector */
956         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
957                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
958
959         fix0             = _mm256_setzero_ps();
960         fiy0             = _mm256_setzero_ps();
961         fiz0             = _mm256_setzero_ps();
962         fix1             = _mm256_setzero_ps();
963         fiy1             = _mm256_setzero_ps();
964         fiz1             = _mm256_setzero_ps();
965         fix2             = _mm256_setzero_ps();
966         fiy2             = _mm256_setzero_ps();
967         fiz2             = _mm256_setzero_ps();
968         fix3             = _mm256_setzero_ps();
969         fiy3             = _mm256_setzero_ps();
970         fiz3             = _mm256_setzero_ps();
971
972         /* Start inner kernel loop */
973         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
974         {
975
976             /* Get j neighbor index, and coordinate index */
977             jnrA             = jjnr[jidx];
978             jnrB             = jjnr[jidx+1];
979             jnrC             = jjnr[jidx+2];
980             jnrD             = jjnr[jidx+3];
981             jnrE             = jjnr[jidx+4];
982             jnrF             = jjnr[jidx+5];
983             jnrG             = jjnr[jidx+6];
984             jnrH             = jjnr[jidx+7];
985             j_coord_offsetA  = DIM*jnrA;
986             j_coord_offsetB  = DIM*jnrB;
987             j_coord_offsetC  = DIM*jnrC;
988             j_coord_offsetD  = DIM*jnrD;
989             j_coord_offsetE  = DIM*jnrE;
990             j_coord_offsetF  = DIM*jnrF;
991             j_coord_offsetG  = DIM*jnrG;
992             j_coord_offsetH  = DIM*jnrH;
993
994             /* load j atom coordinates */
995             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
996                                                  x+j_coord_offsetC,x+j_coord_offsetD,
997                                                  x+j_coord_offsetE,x+j_coord_offsetF,
998                                                  x+j_coord_offsetG,x+j_coord_offsetH,
999                                                  &jx0,&jy0,&jz0);
1000
1001             /* Calculate displacement vector */
1002             dx00             = _mm256_sub_ps(ix0,jx0);
1003             dy00             = _mm256_sub_ps(iy0,jy0);
1004             dz00             = _mm256_sub_ps(iz0,jz0);
1005             dx10             = _mm256_sub_ps(ix1,jx0);
1006             dy10             = _mm256_sub_ps(iy1,jy0);
1007             dz10             = _mm256_sub_ps(iz1,jz0);
1008             dx20             = _mm256_sub_ps(ix2,jx0);
1009             dy20             = _mm256_sub_ps(iy2,jy0);
1010             dz20             = _mm256_sub_ps(iz2,jz0);
1011             dx30             = _mm256_sub_ps(ix3,jx0);
1012             dy30             = _mm256_sub_ps(iy3,jy0);
1013             dz30             = _mm256_sub_ps(iz3,jz0);
1014
1015             /* Calculate squared distance and things based on it */
1016             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1017             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1018             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1019             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1020
1021             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1022             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1023             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1024             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1025
1026             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1027             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1028             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1029             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1030
1031             /* Load parameters for j particles */
1032             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1033                                                                  charge+jnrC+0,charge+jnrD+0,
1034                                                                  charge+jnrE+0,charge+jnrF+0,
1035                                                                  charge+jnrG+0,charge+jnrH+0);
1036             vdwjidx0A        = 2*vdwtype[jnrA+0];
1037             vdwjidx0B        = 2*vdwtype[jnrB+0];
1038             vdwjidx0C        = 2*vdwtype[jnrC+0];
1039             vdwjidx0D        = 2*vdwtype[jnrD+0];
1040             vdwjidx0E        = 2*vdwtype[jnrE+0];
1041             vdwjidx0F        = 2*vdwtype[jnrF+0];
1042             vdwjidx0G        = 2*vdwtype[jnrG+0];
1043             vdwjidx0H        = 2*vdwtype[jnrH+0];
1044
1045             fjx0             = _mm256_setzero_ps();
1046             fjy0             = _mm256_setzero_ps();
1047             fjz0             = _mm256_setzero_ps();
1048
1049             /**************************
1050              * CALCULATE INTERACTIONS *
1051              **************************/
1052
1053             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1054             {
1055
1056             r00              = _mm256_mul_ps(rsq00,rinv00);
1057
1058             /* Compute parameters for interactions between i and j atoms */
1059             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1060                                             vdwioffsetptr0+vdwjidx0B,
1061                                             vdwioffsetptr0+vdwjidx0C,
1062                                             vdwioffsetptr0+vdwjidx0D,
1063                                             vdwioffsetptr0+vdwjidx0E,
1064                                             vdwioffsetptr0+vdwjidx0F,
1065                                             vdwioffsetptr0+vdwjidx0G,
1066                                             vdwioffsetptr0+vdwjidx0H,
1067                                             &c6_00,&c12_00);
1068
1069             /* LENNARD-JONES DISPERSION/REPULSION */
1070
1071             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1072             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
1073             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
1074             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
1075             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
1076
1077             d                = _mm256_sub_ps(r00,rswitch);
1078             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1079             d2               = _mm256_mul_ps(d,d);
1080             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1081
1082             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1083
1084             /* Evaluate switch function */
1085             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1086             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
1087             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1088
1089             fscal            = fvdw;
1090
1091             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1092
1093             /* Calculate temporary vectorial force */
1094             tx               = _mm256_mul_ps(fscal,dx00);
1095             ty               = _mm256_mul_ps(fscal,dy00);
1096             tz               = _mm256_mul_ps(fscal,dz00);
1097
1098             /* Update vectorial force */
1099             fix0             = _mm256_add_ps(fix0,tx);
1100             fiy0             = _mm256_add_ps(fiy0,ty);
1101             fiz0             = _mm256_add_ps(fiz0,tz);
1102
1103             fjx0             = _mm256_add_ps(fjx0,tx);
1104             fjy0             = _mm256_add_ps(fjy0,ty);
1105             fjz0             = _mm256_add_ps(fjz0,tz);
1106
1107             }
1108
1109             /**************************
1110              * CALCULATE INTERACTIONS *
1111              **************************/
1112
1113             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1114             {
1115
1116             /* Compute parameters for interactions between i and j atoms */
1117             qq10             = _mm256_mul_ps(iq1,jq0);
1118
1119             /* REACTION-FIELD ELECTROSTATICS */
1120             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1121
1122             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1123
1124             fscal            = felec;
1125
1126             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1127
1128             /* Calculate temporary vectorial force */
1129             tx               = _mm256_mul_ps(fscal,dx10);
1130             ty               = _mm256_mul_ps(fscal,dy10);
1131             tz               = _mm256_mul_ps(fscal,dz10);
1132
1133             /* Update vectorial force */
1134             fix1             = _mm256_add_ps(fix1,tx);
1135             fiy1             = _mm256_add_ps(fiy1,ty);
1136             fiz1             = _mm256_add_ps(fiz1,tz);
1137
1138             fjx0             = _mm256_add_ps(fjx0,tx);
1139             fjy0             = _mm256_add_ps(fjy0,ty);
1140             fjz0             = _mm256_add_ps(fjz0,tz);
1141
1142             }
1143
1144             /**************************
1145              * CALCULATE INTERACTIONS *
1146              **************************/
1147
1148             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1149             {
1150
1151             /* Compute parameters for interactions between i and j atoms */
1152             qq20             = _mm256_mul_ps(iq2,jq0);
1153
1154             /* REACTION-FIELD ELECTROSTATICS */
1155             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1156
1157             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1158
1159             fscal            = felec;
1160
1161             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1162
1163             /* Calculate temporary vectorial force */
1164             tx               = _mm256_mul_ps(fscal,dx20);
1165             ty               = _mm256_mul_ps(fscal,dy20);
1166             tz               = _mm256_mul_ps(fscal,dz20);
1167
1168             /* Update vectorial force */
1169             fix2             = _mm256_add_ps(fix2,tx);
1170             fiy2             = _mm256_add_ps(fiy2,ty);
1171             fiz2             = _mm256_add_ps(fiz2,tz);
1172
1173             fjx0             = _mm256_add_ps(fjx0,tx);
1174             fjy0             = _mm256_add_ps(fjy0,ty);
1175             fjz0             = _mm256_add_ps(fjz0,tz);
1176
1177             }
1178
1179             /**************************
1180              * CALCULATE INTERACTIONS *
1181              **************************/
1182
1183             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1184             {
1185
1186             /* Compute parameters for interactions between i and j atoms */
1187             qq30             = _mm256_mul_ps(iq3,jq0);
1188
1189             /* REACTION-FIELD ELECTROSTATICS */
1190             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1191
1192             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1193
1194             fscal            = felec;
1195
1196             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1197
1198             /* Calculate temporary vectorial force */
1199             tx               = _mm256_mul_ps(fscal,dx30);
1200             ty               = _mm256_mul_ps(fscal,dy30);
1201             tz               = _mm256_mul_ps(fscal,dz30);
1202
1203             /* Update vectorial force */
1204             fix3             = _mm256_add_ps(fix3,tx);
1205             fiy3             = _mm256_add_ps(fiy3,ty);
1206             fiz3             = _mm256_add_ps(fiz3,tz);
1207
1208             fjx0             = _mm256_add_ps(fjx0,tx);
1209             fjy0             = _mm256_add_ps(fjy0,ty);
1210             fjz0             = _mm256_add_ps(fjz0,tz);
1211
1212             }
1213
1214             fjptrA             = f+j_coord_offsetA;
1215             fjptrB             = f+j_coord_offsetB;
1216             fjptrC             = f+j_coord_offsetC;
1217             fjptrD             = f+j_coord_offsetD;
1218             fjptrE             = f+j_coord_offsetE;
1219             fjptrF             = f+j_coord_offsetF;
1220             fjptrG             = f+j_coord_offsetG;
1221             fjptrH             = f+j_coord_offsetH;
1222
1223             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1224
1225             /* Inner loop uses 149 flops */
1226         }
1227
1228         if(jidx<j_index_end)
1229         {
1230
1231             /* Get j neighbor index, and coordinate index */
1232             jnrlistA         = jjnr[jidx];
1233             jnrlistB         = jjnr[jidx+1];
1234             jnrlistC         = jjnr[jidx+2];
1235             jnrlistD         = jjnr[jidx+3];
1236             jnrlistE         = jjnr[jidx+4];
1237             jnrlistF         = jjnr[jidx+5];
1238             jnrlistG         = jjnr[jidx+6];
1239             jnrlistH         = jjnr[jidx+7];
1240             /* Sign of each element will be negative for non-real atoms.
1241              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1242              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1243              */
1244             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1245                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1246                                             
1247             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1248             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1249             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1250             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1251             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1252             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1253             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1254             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1255             j_coord_offsetA  = DIM*jnrA;
1256             j_coord_offsetB  = DIM*jnrB;
1257             j_coord_offsetC  = DIM*jnrC;
1258             j_coord_offsetD  = DIM*jnrD;
1259             j_coord_offsetE  = DIM*jnrE;
1260             j_coord_offsetF  = DIM*jnrF;
1261             j_coord_offsetG  = DIM*jnrG;
1262             j_coord_offsetH  = DIM*jnrH;
1263
1264             /* load j atom coordinates */
1265             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1266                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1267                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1268                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1269                                                  &jx0,&jy0,&jz0);
1270
1271             /* Calculate displacement vector */
1272             dx00             = _mm256_sub_ps(ix0,jx0);
1273             dy00             = _mm256_sub_ps(iy0,jy0);
1274             dz00             = _mm256_sub_ps(iz0,jz0);
1275             dx10             = _mm256_sub_ps(ix1,jx0);
1276             dy10             = _mm256_sub_ps(iy1,jy0);
1277             dz10             = _mm256_sub_ps(iz1,jz0);
1278             dx20             = _mm256_sub_ps(ix2,jx0);
1279             dy20             = _mm256_sub_ps(iy2,jy0);
1280             dz20             = _mm256_sub_ps(iz2,jz0);
1281             dx30             = _mm256_sub_ps(ix3,jx0);
1282             dy30             = _mm256_sub_ps(iy3,jy0);
1283             dz30             = _mm256_sub_ps(iz3,jz0);
1284
1285             /* Calculate squared distance and things based on it */
1286             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1287             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1288             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1289             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1290
1291             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1292             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1293             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1294             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1295
1296             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1297             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1298             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1299             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1300
1301             /* Load parameters for j particles */
1302             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1303                                                                  charge+jnrC+0,charge+jnrD+0,
1304                                                                  charge+jnrE+0,charge+jnrF+0,
1305                                                                  charge+jnrG+0,charge+jnrH+0);
1306             vdwjidx0A        = 2*vdwtype[jnrA+0];
1307             vdwjidx0B        = 2*vdwtype[jnrB+0];
1308             vdwjidx0C        = 2*vdwtype[jnrC+0];
1309             vdwjidx0D        = 2*vdwtype[jnrD+0];
1310             vdwjidx0E        = 2*vdwtype[jnrE+0];
1311             vdwjidx0F        = 2*vdwtype[jnrF+0];
1312             vdwjidx0G        = 2*vdwtype[jnrG+0];
1313             vdwjidx0H        = 2*vdwtype[jnrH+0];
1314
1315             fjx0             = _mm256_setzero_ps();
1316             fjy0             = _mm256_setzero_ps();
1317             fjz0             = _mm256_setzero_ps();
1318
1319             /**************************
1320              * CALCULATE INTERACTIONS *
1321              **************************/
1322
1323             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1324             {
1325
1326             r00              = _mm256_mul_ps(rsq00,rinv00);
1327             r00              = _mm256_andnot_ps(dummy_mask,r00);
1328
1329             /* Compute parameters for interactions between i and j atoms */
1330             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1331                                             vdwioffsetptr0+vdwjidx0B,
1332                                             vdwioffsetptr0+vdwjidx0C,
1333                                             vdwioffsetptr0+vdwjidx0D,
1334                                             vdwioffsetptr0+vdwjidx0E,
1335                                             vdwioffsetptr0+vdwjidx0F,
1336                                             vdwioffsetptr0+vdwjidx0G,
1337                                             vdwioffsetptr0+vdwjidx0H,
1338                                             &c6_00,&c12_00);
1339
1340             /* LENNARD-JONES DISPERSION/REPULSION */
1341
1342             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1343             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
1344             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
1345             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
1346             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
1347
1348             d                = _mm256_sub_ps(r00,rswitch);
1349             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1350             d2               = _mm256_mul_ps(d,d);
1351             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1352
1353             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1354
1355             /* Evaluate switch function */
1356             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1357             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
1358             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1359
1360             fscal            = fvdw;
1361
1362             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1363
1364             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1365
1366             /* Calculate temporary vectorial force */
1367             tx               = _mm256_mul_ps(fscal,dx00);
1368             ty               = _mm256_mul_ps(fscal,dy00);
1369             tz               = _mm256_mul_ps(fscal,dz00);
1370
1371             /* Update vectorial force */
1372             fix0             = _mm256_add_ps(fix0,tx);
1373             fiy0             = _mm256_add_ps(fiy0,ty);
1374             fiz0             = _mm256_add_ps(fiz0,tz);
1375
1376             fjx0             = _mm256_add_ps(fjx0,tx);
1377             fjy0             = _mm256_add_ps(fjy0,ty);
1378             fjz0             = _mm256_add_ps(fjz0,tz);
1379
1380             }
1381
1382             /**************************
1383              * CALCULATE INTERACTIONS *
1384              **************************/
1385
1386             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1387             {
1388
1389             /* Compute parameters for interactions between i and j atoms */
1390             qq10             = _mm256_mul_ps(iq1,jq0);
1391
1392             /* REACTION-FIELD ELECTROSTATICS */
1393             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1394
1395             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1396
1397             fscal            = felec;
1398
1399             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1400
1401             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1402
1403             /* Calculate temporary vectorial force */
1404             tx               = _mm256_mul_ps(fscal,dx10);
1405             ty               = _mm256_mul_ps(fscal,dy10);
1406             tz               = _mm256_mul_ps(fscal,dz10);
1407
1408             /* Update vectorial force */
1409             fix1             = _mm256_add_ps(fix1,tx);
1410             fiy1             = _mm256_add_ps(fiy1,ty);
1411             fiz1             = _mm256_add_ps(fiz1,tz);
1412
1413             fjx0             = _mm256_add_ps(fjx0,tx);
1414             fjy0             = _mm256_add_ps(fjy0,ty);
1415             fjz0             = _mm256_add_ps(fjz0,tz);
1416
1417             }
1418
1419             /**************************
1420              * CALCULATE INTERACTIONS *
1421              **************************/
1422
1423             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1424             {
1425
1426             /* Compute parameters for interactions between i and j atoms */
1427             qq20             = _mm256_mul_ps(iq2,jq0);
1428
1429             /* REACTION-FIELD ELECTROSTATICS */
1430             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1431
1432             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1433
1434             fscal            = felec;
1435
1436             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1437
1438             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1439
1440             /* Calculate temporary vectorial force */
1441             tx               = _mm256_mul_ps(fscal,dx20);
1442             ty               = _mm256_mul_ps(fscal,dy20);
1443             tz               = _mm256_mul_ps(fscal,dz20);
1444
1445             /* Update vectorial force */
1446             fix2             = _mm256_add_ps(fix2,tx);
1447             fiy2             = _mm256_add_ps(fiy2,ty);
1448             fiz2             = _mm256_add_ps(fiz2,tz);
1449
1450             fjx0             = _mm256_add_ps(fjx0,tx);
1451             fjy0             = _mm256_add_ps(fjy0,ty);
1452             fjz0             = _mm256_add_ps(fjz0,tz);
1453
1454             }
1455
1456             /**************************
1457              * CALCULATE INTERACTIONS *
1458              **************************/
1459
1460             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1461             {
1462
1463             /* Compute parameters for interactions between i and j atoms */
1464             qq30             = _mm256_mul_ps(iq3,jq0);
1465
1466             /* REACTION-FIELD ELECTROSTATICS */
1467             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1468
1469             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1470
1471             fscal            = felec;
1472
1473             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1474
1475             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1476
1477             /* Calculate temporary vectorial force */
1478             tx               = _mm256_mul_ps(fscal,dx30);
1479             ty               = _mm256_mul_ps(fscal,dy30);
1480             tz               = _mm256_mul_ps(fscal,dz30);
1481
1482             /* Update vectorial force */
1483             fix3             = _mm256_add_ps(fix3,tx);
1484             fiy3             = _mm256_add_ps(fiy3,ty);
1485             fiz3             = _mm256_add_ps(fiz3,tz);
1486
1487             fjx0             = _mm256_add_ps(fjx0,tx);
1488             fjy0             = _mm256_add_ps(fjy0,ty);
1489             fjz0             = _mm256_add_ps(fjz0,tz);
1490
1491             }
1492
1493             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1494             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1495             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1496             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1497             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1498             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1499             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1500             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1501
1502             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1503
1504             /* Inner loop uses 150 flops */
1505         }
1506
1507         /* End of innermost loop */
1508
1509         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1510                                                  f+i_coord_offset,fshift+i_shift_offset);
1511
1512         /* Increment number of inner iterations */
1513         inneriter                  += j_index_end - j_index_start;
1514
1515         /* Outer loop uses 24 flops */
1516     }
1517
1518     /* Increment number of outer iterations */
1519     outeriter        += nri;
1520
1521     /* Update outer/inner flops */
1522
1523     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*150);
1524 }