4a852d5242cad7611cc55730321713cfd1345413
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_256_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
93     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
104     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
105     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
106     real             rswitch_scalar,d_scalar;
107     __m256           dummy_mask,cutoff_mask;
108     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
109     __m256           one     = _mm256_set1_ps(1.0);
110     __m256           two     = _mm256_set1_ps(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm256_set1_ps(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     krf              = _mm256_set1_ps(fr->ic->k_rf);
125     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
126     crf              = _mm256_set1_ps(fr->ic->c_rf);
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
134     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
135     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
136     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
137
138     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
139     rcutoff_scalar   = fr->rcoulomb;
140     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
141     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
142
143     rswitch_scalar   = fr->rvdw_switch;
144     rswitch          = _mm256_set1_ps(rswitch_scalar);
145     /* Setup switch parameters */
146     d_scalar         = rcutoff_scalar-rswitch_scalar;
147     d                = _mm256_set1_ps(d_scalar);
148     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
149     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
150     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
151     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
152     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
153     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
154
155     /* Avoid stupid compiler warnings */
156     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
157     j_coord_offsetA = 0;
158     j_coord_offsetB = 0;
159     j_coord_offsetC = 0;
160     j_coord_offsetD = 0;
161     j_coord_offsetE = 0;
162     j_coord_offsetF = 0;
163     j_coord_offsetG = 0;
164     j_coord_offsetH = 0;
165
166     outeriter        = 0;
167     inneriter        = 0;
168
169     for(iidx=0;iidx<4*DIM;iidx++)
170     {
171         scratch[iidx] = 0.0;
172     }
173
174     /* Start outer loop over neighborlists */
175     for(iidx=0; iidx<nri; iidx++)
176     {
177         /* Load shift vector for this list */
178         i_shift_offset   = DIM*shiftidx[iidx];
179
180         /* Load limits for loop over neighbors */
181         j_index_start    = jindex[iidx];
182         j_index_end      = jindex[iidx+1];
183
184         /* Get outer coordinate index */
185         inr              = iinr[iidx];
186         i_coord_offset   = DIM*inr;
187
188         /* Load i particle coords and add shift vector */
189         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
190                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
191
192         fix0             = _mm256_setzero_ps();
193         fiy0             = _mm256_setzero_ps();
194         fiz0             = _mm256_setzero_ps();
195         fix1             = _mm256_setzero_ps();
196         fiy1             = _mm256_setzero_ps();
197         fiz1             = _mm256_setzero_ps();
198         fix2             = _mm256_setzero_ps();
199         fiy2             = _mm256_setzero_ps();
200         fiz2             = _mm256_setzero_ps();
201
202         /* Reset potential sums */
203         velecsum         = _mm256_setzero_ps();
204         vvdwsum          = _mm256_setzero_ps();
205
206         /* Start inner kernel loop */
207         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
208         {
209
210             /* Get j neighbor index, and coordinate index */
211             jnrA             = jjnr[jidx];
212             jnrB             = jjnr[jidx+1];
213             jnrC             = jjnr[jidx+2];
214             jnrD             = jjnr[jidx+3];
215             jnrE             = jjnr[jidx+4];
216             jnrF             = jjnr[jidx+5];
217             jnrG             = jjnr[jidx+6];
218             jnrH             = jjnr[jidx+7];
219             j_coord_offsetA  = DIM*jnrA;
220             j_coord_offsetB  = DIM*jnrB;
221             j_coord_offsetC  = DIM*jnrC;
222             j_coord_offsetD  = DIM*jnrD;
223             j_coord_offsetE  = DIM*jnrE;
224             j_coord_offsetF  = DIM*jnrF;
225             j_coord_offsetG  = DIM*jnrG;
226             j_coord_offsetH  = DIM*jnrH;
227
228             /* load j atom coordinates */
229             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
230                                                  x+j_coord_offsetC,x+j_coord_offsetD,
231                                                  x+j_coord_offsetE,x+j_coord_offsetF,
232                                                  x+j_coord_offsetG,x+j_coord_offsetH,
233                                                  &jx0,&jy0,&jz0);
234
235             /* Calculate displacement vector */
236             dx00             = _mm256_sub_ps(ix0,jx0);
237             dy00             = _mm256_sub_ps(iy0,jy0);
238             dz00             = _mm256_sub_ps(iz0,jz0);
239             dx10             = _mm256_sub_ps(ix1,jx0);
240             dy10             = _mm256_sub_ps(iy1,jy0);
241             dz10             = _mm256_sub_ps(iz1,jz0);
242             dx20             = _mm256_sub_ps(ix2,jx0);
243             dy20             = _mm256_sub_ps(iy2,jy0);
244             dz20             = _mm256_sub_ps(iz2,jz0);
245
246             /* Calculate squared distance and things based on it */
247             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
248             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
249             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
250
251             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
252             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
253             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
254
255             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
256             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
257             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
258
259             /* Load parameters for j particles */
260             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
261                                                                  charge+jnrC+0,charge+jnrD+0,
262                                                                  charge+jnrE+0,charge+jnrF+0,
263                                                                  charge+jnrG+0,charge+jnrH+0);
264             vdwjidx0A        = 2*vdwtype[jnrA+0];
265             vdwjidx0B        = 2*vdwtype[jnrB+0];
266             vdwjidx0C        = 2*vdwtype[jnrC+0];
267             vdwjidx0D        = 2*vdwtype[jnrD+0];
268             vdwjidx0E        = 2*vdwtype[jnrE+0];
269             vdwjidx0F        = 2*vdwtype[jnrF+0];
270             vdwjidx0G        = 2*vdwtype[jnrG+0];
271             vdwjidx0H        = 2*vdwtype[jnrH+0];
272
273             fjx0             = _mm256_setzero_ps();
274             fjy0             = _mm256_setzero_ps();
275             fjz0             = _mm256_setzero_ps();
276
277             /**************************
278              * CALCULATE INTERACTIONS *
279              **************************/
280
281             if (gmx_mm256_any_lt(rsq00,rcutoff2))
282             {
283
284             r00              = _mm256_mul_ps(rsq00,rinv00);
285
286             /* Compute parameters for interactions between i and j atoms */
287             qq00             = _mm256_mul_ps(iq0,jq0);
288             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
289                                             vdwioffsetptr0+vdwjidx0B,
290                                             vdwioffsetptr0+vdwjidx0C,
291                                             vdwioffsetptr0+vdwjidx0D,
292                                             vdwioffsetptr0+vdwjidx0E,
293                                             vdwioffsetptr0+vdwjidx0F,
294                                             vdwioffsetptr0+vdwjidx0G,
295                                             vdwioffsetptr0+vdwjidx0H,
296                                             &c6_00,&c12_00);
297
298             /* REACTION-FIELD ELECTROSTATICS */
299             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
300             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
301
302             /* LENNARD-JONES DISPERSION/REPULSION */
303
304             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
305             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
306             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
307             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
308             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
309
310             d                = _mm256_sub_ps(r00,rswitch);
311             d                = _mm256_max_ps(d,_mm256_setzero_ps());
312             d2               = _mm256_mul_ps(d,d);
313             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
314
315             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
316
317             /* Evaluate switch function */
318             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
319             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
320             vvdw             = _mm256_mul_ps(vvdw,sw);
321             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
322
323             /* Update potential sum for this i atom from the interaction with this j atom. */
324             velec            = _mm256_and_ps(velec,cutoff_mask);
325             velecsum         = _mm256_add_ps(velecsum,velec);
326             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
327             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
328
329             fscal            = _mm256_add_ps(felec,fvdw);
330
331             fscal            = _mm256_and_ps(fscal,cutoff_mask);
332
333             /* Calculate temporary vectorial force */
334             tx               = _mm256_mul_ps(fscal,dx00);
335             ty               = _mm256_mul_ps(fscal,dy00);
336             tz               = _mm256_mul_ps(fscal,dz00);
337
338             /* Update vectorial force */
339             fix0             = _mm256_add_ps(fix0,tx);
340             fiy0             = _mm256_add_ps(fiy0,ty);
341             fiz0             = _mm256_add_ps(fiz0,tz);
342
343             fjx0             = _mm256_add_ps(fjx0,tx);
344             fjy0             = _mm256_add_ps(fjy0,ty);
345             fjz0             = _mm256_add_ps(fjz0,tz);
346
347             }
348
349             /**************************
350              * CALCULATE INTERACTIONS *
351              **************************/
352
353             if (gmx_mm256_any_lt(rsq10,rcutoff2))
354             {
355
356             /* Compute parameters for interactions between i and j atoms */
357             qq10             = _mm256_mul_ps(iq1,jq0);
358
359             /* REACTION-FIELD ELECTROSTATICS */
360             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
361             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
362
363             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
364
365             /* Update potential sum for this i atom from the interaction with this j atom. */
366             velec            = _mm256_and_ps(velec,cutoff_mask);
367             velecsum         = _mm256_add_ps(velecsum,velec);
368
369             fscal            = felec;
370
371             fscal            = _mm256_and_ps(fscal,cutoff_mask);
372
373             /* Calculate temporary vectorial force */
374             tx               = _mm256_mul_ps(fscal,dx10);
375             ty               = _mm256_mul_ps(fscal,dy10);
376             tz               = _mm256_mul_ps(fscal,dz10);
377
378             /* Update vectorial force */
379             fix1             = _mm256_add_ps(fix1,tx);
380             fiy1             = _mm256_add_ps(fiy1,ty);
381             fiz1             = _mm256_add_ps(fiz1,tz);
382
383             fjx0             = _mm256_add_ps(fjx0,tx);
384             fjy0             = _mm256_add_ps(fjy0,ty);
385             fjz0             = _mm256_add_ps(fjz0,tz);
386
387             }
388
389             /**************************
390              * CALCULATE INTERACTIONS *
391              **************************/
392
393             if (gmx_mm256_any_lt(rsq20,rcutoff2))
394             {
395
396             /* Compute parameters for interactions between i and j atoms */
397             qq20             = _mm256_mul_ps(iq2,jq0);
398
399             /* REACTION-FIELD ELECTROSTATICS */
400             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
401             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
402
403             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
404
405             /* Update potential sum for this i atom from the interaction with this j atom. */
406             velec            = _mm256_and_ps(velec,cutoff_mask);
407             velecsum         = _mm256_add_ps(velecsum,velec);
408
409             fscal            = felec;
410
411             fscal            = _mm256_and_ps(fscal,cutoff_mask);
412
413             /* Calculate temporary vectorial force */
414             tx               = _mm256_mul_ps(fscal,dx20);
415             ty               = _mm256_mul_ps(fscal,dy20);
416             tz               = _mm256_mul_ps(fscal,dz20);
417
418             /* Update vectorial force */
419             fix2             = _mm256_add_ps(fix2,tx);
420             fiy2             = _mm256_add_ps(fiy2,ty);
421             fiz2             = _mm256_add_ps(fiz2,tz);
422
423             fjx0             = _mm256_add_ps(fjx0,tx);
424             fjy0             = _mm256_add_ps(fjy0,ty);
425             fjz0             = _mm256_add_ps(fjz0,tz);
426
427             }
428
429             fjptrA             = f+j_coord_offsetA;
430             fjptrB             = f+j_coord_offsetB;
431             fjptrC             = f+j_coord_offsetC;
432             fjptrD             = f+j_coord_offsetD;
433             fjptrE             = f+j_coord_offsetE;
434             fjptrF             = f+j_coord_offsetF;
435             fjptrG             = f+j_coord_offsetG;
436             fjptrH             = f+j_coord_offsetH;
437
438             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
439
440             /* Inner loop uses 145 flops */
441         }
442
443         if(jidx<j_index_end)
444         {
445
446             /* Get j neighbor index, and coordinate index */
447             jnrlistA         = jjnr[jidx];
448             jnrlistB         = jjnr[jidx+1];
449             jnrlistC         = jjnr[jidx+2];
450             jnrlistD         = jjnr[jidx+3];
451             jnrlistE         = jjnr[jidx+4];
452             jnrlistF         = jjnr[jidx+5];
453             jnrlistG         = jjnr[jidx+6];
454             jnrlistH         = jjnr[jidx+7];
455             /* Sign of each element will be negative for non-real atoms.
456              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
457              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
458              */
459             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
460                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
461                                             
462             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
463             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
464             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
465             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
466             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
467             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
468             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
469             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
470             j_coord_offsetA  = DIM*jnrA;
471             j_coord_offsetB  = DIM*jnrB;
472             j_coord_offsetC  = DIM*jnrC;
473             j_coord_offsetD  = DIM*jnrD;
474             j_coord_offsetE  = DIM*jnrE;
475             j_coord_offsetF  = DIM*jnrF;
476             j_coord_offsetG  = DIM*jnrG;
477             j_coord_offsetH  = DIM*jnrH;
478
479             /* load j atom coordinates */
480             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
481                                                  x+j_coord_offsetC,x+j_coord_offsetD,
482                                                  x+j_coord_offsetE,x+j_coord_offsetF,
483                                                  x+j_coord_offsetG,x+j_coord_offsetH,
484                                                  &jx0,&jy0,&jz0);
485
486             /* Calculate displacement vector */
487             dx00             = _mm256_sub_ps(ix0,jx0);
488             dy00             = _mm256_sub_ps(iy0,jy0);
489             dz00             = _mm256_sub_ps(iz0,jz0);
490             dx10             = _mm256_sub_ps(ix1,jx0);
491             dy10             = _mm256_sub_ps(iy1,jy0);
492             dz10             = _mm256_sub_ps(iz1,jz0);
493             dx20             = _mm256_sub_ps(ix2,jx0);
494             dy20             = _mm256_sub_ps(iy2,jy0);
495             dz20             = _mm256_sub_ps(iz2,jz0);
496
497             /* Calculate squared distance and things based on it */
498             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
499             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
500             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
501
502             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
503             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
504             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
505
506             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
507             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
508             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
509
510             /* Load parameters for j particles */
511             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
512                                                                  charge+jnrC+0,charge+jnrD+0,
513                                                                  charge+jnrE+0,charge+jnrF+0,
514                                                                  charge+jnrG+0,charge+jnrH+0);
515             vdwjidx0A        = 2*vdwtype[jnrA+0];
516             vdwjidx0B        = 2*vdwtype[jnrB+0];
517             vdwjidx0C        = 2*vdwtype[jnrC+0];
518             vdwjidx0D        = 2*vdwtype[jnrD+0];
519             vdwjidx0E        = 2*vdwtype[jnrE+0];
520             vdwjidx0F        = 2*vdwtype[jnrF+0];
521             vdwjidx0G        = 2*vdwtype[jnrG+0];
522             vdwjidx0H        = 2*vdwtype[jnrH+0];
523
524             fjx0             = _mm256_setzero_ps();
525             fjy0             = _mm256_setzero_ps();
526             fjz0             = _mm256_setzero_ps();
527
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             if (gmx_mm256_any_lt(rsq00,rcutoff2))
533             {
534
535             r00              = _mm256_mul_ps(rsq00,rinv00);
536             r00              = _mm256_andnot_ps(dummy_mask,r00);
537
538             /* Compute parameters for interactions between i and j atoms */
539             qq00             = _mm256_mul_ps(iq0,jq0);
540             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
541                                             vdwioffsetptr0+vdwjidx0B,
542                                             vdwioffsetptr0+vdwjidx0C,
543                                             vdwioffsetptr0+vdwjidx0D,
544                                             vdwioffsetptr0+vdwjidx0E,
545                                             vdwioffsetptr0+vdwjidx0F,
546                                             vdwioffsetptr0+vdwjidx0G,
547                                             vdwioffsetptr0+vdwjidx0H,
548                                             &c6_00,&c12_00);
549
550             /* REACTION-FIELD ELECTROSTATICS */
551             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
552             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
553
554             /* LENNARD-JONES DISPERSION/REPULSION */
555
556             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
557             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
558             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
559             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
560             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
561
562             d                = _mm256_sub_ps(r00,rswitch);
563             d                = _mm256_max_ps(d,_mm256_setzero_ps());
564             d2               = _mm256_mul_ps(d,d);
565             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
566
567             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
568
569             /* Evaluate switch function */
570             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
571             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
572             vvdw             = _mm256_mul_ps(vvdw,sw);
573             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
574
575             /* Update potential sum for this i atom from the interaction with this j atom. */
576             velec            = _mm256_and_ps(velec,cutoff_mask);
577             velec            = _mm256_andnot_ps(dummy_mask,velec);
578             velecsum         = _mm256_add_ps(velecsum,velec);
579             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
580             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
581             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
582
583             fscal            = _mm256_add_ps(felec,fvdw);
584
585             fscal            = _mm256_and_ps(fscal,cutoff_mask);
586
587             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
588
589             /* Calculate temporary vectorial force */
590             tx               = _mm256_mul_ps(fscal,dx00);
591             ty               = _mm256_mul_ps(fscal,dy00);
592             tz               = _mm256_mul_ps(fscal,dz00);
593
594             /* Update vectorial force */
595             fix0             = _mm256_add_ps(fix0,tx);
596             fiy0             = _mm256_add_ps(fiy0,ty);
597             fiz0             = _mm256_add_ps(fiz0,tz);
598
599             fjx0             = _mm256_add_ps(fjx0,tx);
600             fjy0             = _mm256_add_ps(fjy0,ty);
601             fjz0             = _mm256_add_ps(fjz0,tz);
602
603             }
604
605             /**************************
606              * CALCULATE INTERACTIONS *
607              **************************/
608
609             if (gmx_mm256_any_lt(rsq10,rcutoff2))
610             {
611
612             /* Compute parameters for interactions between i and j atoms */
613             qq10             = _mm256_mul_ps(iq1,jq0);
614
615             /* REACTION-FIELD ELECTROSTATICS */
616             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
617             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
618
619             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
620
621             /* Update potential sum for this i atom from the interaction with this j atom. */
622             velec            = _mm256_and_ps(velec,cutoff_mask);
623             velec            = _mm256_andnot_ps(dummy_mask,velec);
624             velecsum         = _mm256_add_ps(velecsum,velec);
625
626             fscal            = felec;
627
628             fscal            = _mm256_and_ps(fscal,cutoff_mask);
629
630             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
631
632             /* Calculate temporary vectorial force */
633             tx               = _mm256_mul_ps(fscal,dx10);
634             ty               = _mm256_mul_ps(fscal,dy10);
635             tz               = _mm256_mul_ps(fscal,dz10);
636
637             /* Update vectorial force */
638             fix1             = _mm256_add_ps(fix1,tx);
639             fiy1             = _mm256_add_ps(fiy1,ty);
640             fiz1             = _mm256_add_ps(fiz1,tz);
641
642             fjx0             = _mm256_add_ps(fjx0,tx);
643             fjy0             = _mm256_add_ps(fjy0,ty);
644             fjz0             = _mm256_add_ps(fjz0,tz);
645
646             }
647
648             /**************************
649              * CALCULATE INTERACTIONS *
650              **************************/
651
652             if (gmx_mm256_any_lt(rsq20,rcutoff2))
653             {
654
655             /* Compute parameters for interactions between i and j atoms */
656             qq20             = _mm256_mul_ps(iq2,jq0);
657
658             /* REACTION-FIELD ELECTROSTATICS */
659             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
660             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
661
662             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
663
664             /* Update potential sum for this i atom from the interaction with this j atom. */
665             velec            = _mm256_and_ps(velec,cutoff_mask);
666             velec            = _mm256_andnot_ps(dummy_mask,velec);
667             velecsum         = _mm256_add_ps(velecsum,velec);
668
669             fscal            = felec;
670
671             fscal            = _mm256_and_ps(fscal,cutoff_mask);
672
673             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
674
675             /* Calculate temporary vectorial force */
676             tx               = _mm256_mul_ps(fscal,dx20);
677             ty               = _mm256_mul_ps(fscal,dy20);
678             tz               = _mm256_mul_ps(fscal,dz20);
679
680             /* Update vectorial force */
681             fix2             = _mm256_add_ps(fix2,tx);
682             fiy2             = _mm256_add_ps(fiy2,ty);
683             fiz2             = _mm256_add_ps(fiz2,tz);
684
685             fjx0             = _mm256_add_ps(fjx0,tx);
686             fjy0             = _mm256_add_ps(fjy0,ty);
687             fjz0             = _mm256_add_ps(fjz0,tz);
688
689             }
690
691             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
692             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
693             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
694             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
695             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
696             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
697             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
698             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
699
700             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
701
702             /* Inner loop uses 146 flops */
703         }
704
705         /* End of innermost loop */
706
707         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
708                                                  f+i_coord_offset,fshift+i_shift_offset);
709
710         ggid                        = gid[iidx];
711         /* Update potential energies */
712         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
713         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
714
715         /* Increment number of inner iterations */
716         inneriter                  += j_index_end - j_index_start;
717
718         /* Outer loop uses 20 flops */
719     }
720
721     /* Increment number of outer iterations */
722     outeriter        += nri;
723
724     /* Update outer/inner flops */
725
726     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*146);
727 }
728 /*
729  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_256_single
730  * Electrostatics interaction: ReactionField
731  * VdW interaction:            LennardJones
732  * Geometry:                   Water3-Particle
733  * Calculate force/pot:        Force
734  */
735 void
736 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_256_single
737                     (t_nblist                    * gmx_restrict       nlist,
738                      rvec                        * gmx_restrict          xx,
739                      rvec                        * gmx_restrict          ff,
740                      t_forcerec                  * gmx_restrict          fr,
741                      t_mdatoms                   * gmx_restrict     mdatoms,
742                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
743                      t_nrnb                      * gmx_restrict        nrnb)
744 {
745     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
746      * just 0 for non-waters.
747      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
748      * jnr indices corresponding to data put in the four positions in the SIMD register.
749      */
750     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
751     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
752     int              jnrA,jnrB,jnrC,jnrD;
753     int              jnrE,jnrF,jnrG,jnrH;
754     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
755     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
756     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
757     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
758     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
759     real             rcutoff_scalar;
760     real             *shiftvec,*fshift,*x,*f;
761     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
762     real             scratch[4*DIM];
763     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
764     real *           vdwioffsetptr0;
765     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
766     real *           vdwioffsetptr1;
767     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
768     real *           vdwioffsetptr2;
769     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
770     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
771     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
772     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
773     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
774     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
775     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
776     real             *charge;
777     int              nvdwtype;
778     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
779     int              *vdwtype;
780     real             *vdwparam;
781     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
782     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
783     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
784     real             rswitch_scalar,d_scalar;
785     __m256           dummy_mask,cutoff_mask;
786     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
787     __m256           one     = _mm256_set1_ps(1.0);
788     __m256           two     = _mm256_set1_ps(2.0);
789     x                = xx[0];
790     f                = ff[0];
791
792     nri              = nlist->nri;
793     iinr             = nlist->iinr;
794     jindex           = nlist->jindex;
795     jjnr             = nlist->jjnr;
796     shiftidx         = nlist->shift;
797     gid              = nlist->gid;
798     shiftvec         = fr->shift_vec[0];
799     fshift           = fr->fshift[0];
800     facel            = _mm256_set1_ps(fr->epsfac);
801     charge           = mdatoms->chargeA;
802     krf              = _mm256_set1_ps(fr->ic->k_rf);
803     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
804     crf              = _mm256_set1_ps(fr->ic->c_rf);
805     nvdwtype         = fr->ntype;
806     vdwparam         = fr->nbfp;
807     vdwtype          = mdatoms->typeA;
808
809     /* Setup water-specific parameters */
810     inr              = nlist->iinr[0];
811     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
812     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
813     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
814     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
815
816     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
817     rcutoff_scalar   = fr->rcoulomb;
818     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
819     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
820
821     rswitch_scalar   = fr->rvdw_switch;
822     rswitch          = _mm256_set1_ps(rswitch_scalar);
823     /* Setup switch parameters */
824     d_scalar         = rcutoff_scalar-rswitch_scalar;
825     d                = _mm256_set1_ps(d_scalar);
826     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
827     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
828     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
829     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
830     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
831     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
832
833     /* Avoid stupid compiler warnings */
834     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
835     j_coord_offsetA = 0;
836     j_coord_offsetB = 0;
837     j_coord_offsetC = 0;
838     j_coord_offsetD = 0;
839     j_coord_offsetE = 0;
840     j_coord_offsetF = 0;
841     j_coord_offsetG = 0;
842     j_coord_offsetH = 0;
843
844     outeriter        = 0;
845     inneriter        = 0;
846
847     for(iidx=0;iidx<4*DIM;iidx++)
848     {
849         scratch[iidx] = 0.0;
850     }
851
852     /* Start outer loop over neighborlists */
853     for(iidx=0; iidx<nri; iidx++)
854     {
855         /* Load shift vector for this list */
856         i_shift_offset   = DIM*shiftidx[iidx];
857
858         /* Load limits for loop over neighbors */
859         j_index_start    = jindex[iidx];
860         j_index_end      = jindex[iidx+1];
861
862         /* Get outer coordinate index */
863         inr              = iinr[iidx];
864         i_coord_offset   = DIM*inr;
865
866         /* Load i particle coords and add shift vector */
867         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
868                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
869
870         fix0             = _mm256_setzero_ps();
871         fiy0             = _mm256_setzero_ps();
872         fiz0             = _mm256_setzero_ps();
873         fix1             = _mm256_setzero_ps();
874         fiy1             = _mm256_setzero_ps();
875         fiz1             = _mm256_setzero_ps();
876         fix2             = _mm256_setzero_ps();
877         fiy2             = _mm256_setzero_ps();
878         fiz2             = _mm256_setzero_ps();
879
880         /* Start inner kernel loop */
881         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
882         {
883
884             /* Get j neighbor index, and coordinate index */
885             jnrA             = jjnr[jidx];
886             jnrB             = jjnr[jidx+1];
887             jnrC             = jjnr[jidx+2];
888             jnrD             = jjnr[jidx+3];
889             jnrE             = jjnr[jidx+4];
890             jnrF             = jjnr[jidx+5];
891             jnrG             = jjnr[jidx+6];
892             jnrH             = jjnr[jidx+7];
893             j_coord_offsetA  = DIM*jnrA;
894             j_coord_offsetB  = DIM*jnrB;
895             j_coord_offsetC  = DIM*jnrC;
896             j_coord_offsetD  = DIM*jnrD;
897             j_coord_offsetE  = DIM*jnrE;
898             j_coord_offsetF  = DIM*jnrF;
899             j_coord_offsetG  = DIM*jnrG;
900             j_coord_offsetH  = DIM*jnrH;
901
902             /* load j atom coordinates */
903             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
904                                                  x+j_coord_offsetC,x+j_coord_offsetD,
905                                                  x+j_coord_offsetE,x+j_coord_offsetF,
906                                                  x+j_coord_offsetG,x+j_coord_offsetH,
907                                                  &jx0,&jy0,&jz0);
908
909             /* Calculate displacement vector */
910             dx00             = _mm256_sub_ps(ix0,jx0);
911             dy00             = _mm256_sub_ps(iy0,jy0);
912             dz00             = _mm256_sub_ps(iz0,jz0);
913             dx10             = _mm256_sub_ps(ix1,jx0);
914             dy10             = _mm256_sub_ps(iy1,jy0);
915             dz10             = _mm256_sub_ps(iz1,jz0);
916             dx20             = _mm256_sub_ps(ix2,jx0);
917             dy20             = _mm256_sub_ps(iy2,jy0);
918             dz20             = _mm256_sub_ps(iz2,jz0);
919
920             /* Calculate squared distance and things based on it */
921             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
922             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
923             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
924
925             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
926             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
927             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
928
929             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
930             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
931             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
932
933             /* Load parameters for j particles */
934             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
935                                                                  charge+jnrC+0,charge+jnrD+0,
936                                                                  charge+jnrE+0,charge+jnrF+0,
937                                                                  charge+jnrG+0,charge+jnrH+0);
938             vdwjidx0A        = 2*vdwtype[jnrA+0];
939             vdwjidx0B        = 2*vdwtype[jnrB+0];
940             vdwjidx0C        = 2*vdwtype[jnrC+0];
941             vdwjidx0D        = 2*vdwtype[jnrD+0];
942             vdwjidx0E        = 2*vdwtype[jnrE+0];
943             vdwjidx0F        = 2*vdwtype[jnrF+0];
944             vdwjidx0G        = 2*vdwtype[jnrG+0];
945             vdwjidx0H        = 2*vdwtype[jnrH+0];
946
947             fjx0             = _mm256_setzero_ps();
948             fjy0             = _mm256_setzero_ps();
949             fjz0             = _mm256_setzero_ps();
950
951             /**************************
952              * CALCULATE INTERACTIONS *
953              **************************/
954
955             if (gmx_mm256_any_lt(rsq00,rcutoff2))
956             {
957
958             r00              = _mm256_mul_ps(rsq00,rinv00);
959
960             /* Compute parameters for interactions between i and j atoms */
961             qq00             = _mm256_mul_ps(iq0,jq0);
962             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
963                                             vdwioffsetptr0+vdwjidx0B,
964                                             vdwioffsetptr0+vdwjidx0C,
965                                             vdwioffsetptr0+vdwjidx0D,
966                                             vdwioffsetptr0+vdwjidx0E,
967                                             vdwioffsetptr0+vdwjidx0F,
968                                             vdwioffsetptr0+vdwjidx0G,
969                                             vdwioffsetptr0+vdwjidx0H,
970                                             &c6_00,&c12_00);
971
972             /* REACTION-FIELD ELECTROSTATICS */
973             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
974
975             /* LENNARD-JONES DISPERSION/REPULSION */
976
977             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
978             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
979             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
980             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
981             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
982
983             d                = _mm256_sub_ps(r00,rswitch);
984             d                = _mm256_max_ps(d,_mm256_setzero_ps());
985             d2               = _mm256_mul_ps(d,d);
986             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
987
988             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
989
990             /* Evaluate switch function */
991             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
992             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
993             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
994
995             fscal            = _mm256_add_ps(felec,fvdw);
996
997             fscal            = _mm256_and_ps(fscal,cutoff_mask);
998
999             /* Calculate temporary vectorial force */
1000             tx               = _mm256_mul_ps(fscal,dx00);
1001             ty               = _mm256_mul_ps(fscal,dy00);
1002             tz               = _mm256_mul_ps(fscal,dz00);
1003
1004             /* Update vectorial force */
1005             fix0             = _mm256_add_ps(fix0,tx);
1006             fiy0             = _mm256_add_ps(fiy0,ty);
1007             fiz0             = _mm256_add_ps(fiz0,tz);
1008
1009             fjx0             = _mm256_add_ps(fjx0,tx);
1010             fjy0             = _mm256_add_ps(fjy0,ty);
1011             fjz0             = _mm256_add_ps(fjz0,tz);
1012
1013             }
1014
1015             /**************************
1016              * CALCULATE INTERACTIONS *
1017              **************************/
1018
1019             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1020             {
1021
1022             /* Compute parameters for interactions between i and j atoms */
1023             qq10             = _mm256_mul_ps(iq1,jq0);
1024
1025             /* REACTION-FIELD ELECTROSTATICS */
1026             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1027
1028             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1029
1030             fscal            = felec;
1031
1032             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1033
1034             /* Calculate temporary vectorial force */
1035             tx               = _mm256_mul_ps(fscal,dx10);
1036             ty               = _mm256_mul_ps(fscal,dy10);
1037             tz               = _mm256_mul_ps(fscal,dz10);
1038
1039             /* Update vectorial force */
1040             fix1             = _mm256_add_ps(fix1,tx);
1041             fiy1             = _mm256_add_ps(fiy1,ty);
1042             fiz1             = _mm256_add_ps(fiz1,tz);
1043
1044             fjx0             = _mm256_add_ps(fjx0,tx);
1045             fjy0             = _mm256_add_ps(fjy0,ty);
1046             fjz0             = _mm256_add_ps(fjz0,tz);
1047
1048             }
1049
1050             /**************************
1051              * CALCULATE INTERACTIONS *
1052              **************************/
1053
1054             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1055             {
1056
1057             /* Compute parameters for interactions between i and j atoms */
1058             qq20             = _mm256_mul_ps(iq2,jq0);
1059
1060             /* REACTION-FIELD ELECTROSTATICS */
1061             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1062
1063             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1064
1065             fscal            = felec;
1066
1067             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1068
1069             /* Calculate temporary vectorial force */
1070             tx               = _mm256_mul_ps(fscal,dx20);
1071             ty               = _mm256_mul_ps(fscal,dy20);
1072             tz               = _mm256_mul_ps(fscal,dz20);
1073
1074             /* Update vectorial force */
1075             fix2             = _mm256_add_ps(fix2,tx);
1076             fiy2             = _mm256_add_ps(fiy2,ty);
1077             fiz2             = _mm256_add_ps(fiz2,tz);
1078
1079             fjx0             = _mm256_add_ps(fjx0,tx);
1080             fjy0             = _mm256_add_ps(fjy0,ty);
1081             fjz0             = _mm256_add_ps(fjz0,tz);
1082
1083             }
1084
1085             fjptrA             = f+j_coord_offsetA;
1086             fjptrB             = f+j_coord_offsetB;
1087             fjptrC             = f+j_coord_offsetC;
1088             fjptrD             = f+j_coord_offsetD;
1089             fjptrE             = f+j_coord_offsetE;
1090             fjptrF             = f+j_coord_offsetF;
1091             fjptrG             = f+j_coord_offsetG;
1092             fjptrH             = f+j_coord_offsetH;
1093
1094             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1095
1096             /* Inner loop uses 124 flops */
1097         }
1098
1099         if(jidx<j_index_end)
1100         {
1101
1102             /* Get j neighbor index, and coordinate index */
1103             jnrlistA         = jjnr[jidx];
1104             jnrlistB         = jjnr[jidx+1];
1105             jnrlistC         = jjnr[jidx+2];
1106             jnrlistD         = jjnr[jidx+3];
1107             jnrlistE         = jjnr[jidx+4];
1108             jnrlistF         = jjnr[jidx+5];
1109             jnrlistG         = jjnr[jidx+6];
1110             jnrlistH         = jjnr[jidx+7];
1111             /* Sign of each element will be negative for non-real atoms.
1112              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1113              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1114              */
1115             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1116                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1117                                             
1118             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1119             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1120             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1121             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1122             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1123             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1124             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1125             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1126             j_coord_offsetA  = DIM*jnrA;
1127             j_coord_offsetB  = DIM*jnrB;
1128             j_coord_offsetC  = DIM*jnrC;
1129             j_coord_offsetD  = DIM*jnrD;
1130             j_coord_offsetE  = DIM*jnrE;
1131             j_coord_offsetF  = DIM*jnrF;
1132             j_coord_offsetG  = DIM*jnrG;
1133             j_coord_offsetH  = DIM*jnrH;
1134
1135             /* load j atom coordinates */
1136             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1137                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1138                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1139                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1140                                                  &jx0,&jy0,&jz0);
1141
1142             /* Calculate displacement vector */
1143             dx00             = _mm256_sub_ps(ix0,jx0);
1144             dy00             = _mm256_sub_ps(iy0,jy0);
1145             dz00             = _mm256_sub_ps(iz0,jz0);
1146             dx10             = _mm256_sub_ps(ix1,jx0);
1147             dy10             = _mm256_sub_ps(iy1,jy0);
1148             dz10             = _mm256_sub_ps(iz1,jz0);
1149             dx20             = _mm256_sub_ps(ix2,jx0);
1150             dy20             = _mm256_sub_ps(iy2,jy0);
1151             dz20             = _mm256_sub_ps(iz2,jz0);
1152
1153             /* Calculate squared distance and things based on it */
1154             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1155             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1156             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1157
1158             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1159             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1160             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1161
1162             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1163             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1164             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1165
1166             /* Load parameters for j particles */
1167             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1168                                                                  charge+jnrC+0,charge+jnrD+0,
1169                                                                  charge+jnrE+0,charge+jnrF+0,
1170                                                                  charge+jnrG+0,charge+jnrH+0);
1171             vdwjidx0A        = 2*vdwtype[jnrA+0];
1172             vdwjidx0B        = 2*vdwtype[jnrB+0];
1173             vdwjidx0C        = 2*vdwtype[jnrC+0];
1174             vdwjidx0D        = 2*vdwtype[jnrD+0];
1175             vdwjidx0E        = 2*vdwtype[jnrE+0];
1176             vdwjidx0F        = 2*vdwtype[jnrF+0];
1177             vdwjidx0G        = 2*vdwtype[jnrG+0];
1178             vdwjidx0H        = 2*vdwtype[jnrH+0];
1179
1180             fjx0             = _mm256_setzero_ps();
1181             fjy0             = _mm256_setzero_ps();
1182             fjz0             = _mm256_setzero_ps();
1183
1184             /**************************
1185              * CALCULATE INTERACTIONS *
1186              **************************/
1187
1188             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1189             {
1190
1191             r00              = _mm256_mul_ps(rsq00,rinv00);
1192             r00              = _mm256_andnot_ps(dummy_mask,r00);
1193
1194             /* Compute parameters for interactions between i and j atoms */
1195             qq00             = _mm256_mul_ps(iq0,jq0);
1196             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1197                                             vdwioffsetptr0+vdwjidx0B,
1198                                             vdwioffsetptr0+vdwjidx0C,
1199                                             vdwioffsetptr0+vdwjidx0D,
1200                                             vdwioffsetptr0+vdwjidx0E,
1201                                             vdwioffsetptr0+vdwjidx0F,
1202                                             vdwioffsetptr0+vdwjidx0G,
1203                                             vdwioffsetptr0+vdwjidx0H,
1204                                             &c6_00,&c12_00);
1205
1206             /* REACTION-FIELD ELECTROSTATICS */
1207             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
1208
1209             /* LENNARD-JONES DISPERSION/REPULSION */
1210
1211             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1212             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
1213             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
1214             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
1215             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
1216
1217             d                = _mm256_sub_ps(r00,rswitch);
1218             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1219             d2               = _mm256_mul_ps(d,d);
1220             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1221
1222             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1223
1224             /* Evaluate switch function */
1225             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1226             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
1227             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1228
1229             fscal            = _mm256_add_ps(felec,fvdw);
1230
1231             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1232
1233             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1234
1235             /* Calculate temporary vectorial force */
1236             tx               = _mm256_mul_ps(fscal,dx00);
1237             ty               = _mm256_mul_ps(fscal,dy00);
1238             tz               = _mm256_mul_ps(fscal,dz00);
1239
1240             /* Update vectorial force */
1241             fix0             = _mm256_add_ps(fix0,tx);
1242             fiy0             = _mm256_add_ps(fiy0,ty);
1243             fiz0             = _mm256_add_ps(fiz0,tz);
1244
1245             fjx0             = _mm256_add_ps(fjx0,tx);
1246             fjy0             = _mm256_add_ps(fjy0,ty);
1247             fjz0             = _mm256_add_ps(fjz0,tz);
1248
1249             }
1250
1251             /**************************
1252              * CALCULATE INTERACTIONS *
1253              **************************/
1254
1255             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1256             {
1257
1258             /* Compute parameters for interactions between i and j atoms */
1259             qq10             = _mm256_mul_ps(iq1,jq0);
1260
1261             /* REACTION-FIELD ELECTROSTATICS */
1262             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1263
1264             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1265
1266             fscal            = felec;
1267
1268             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1269
1270             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1271
1272             /* Calculate temporary vectorial force */
1273             tx               = _mm256_mul_ps(fscal,dx10);
1274             ty               = _mm256_mul_ps(fscal,dy10);
1275             tz               = _mm256_mul_ps(fscal,dz10);
1276
1277             /* Update vectorial force */
1278             fix1             = _mm256_add_ps(fix1,tx);
1279             fiy1             = _mm256_add_ps(fiy1,ty);
1280             fiz1             = _mm256_add_ps(fiz1,tz);
1281
1282             fjx0             = _mm256_add_ps(fjx0,tx);
1283             fjy0             = _mm256_add_ps(fjy0,ty);
1284             fjz0             = _mm256_add_ps(fjz0,tz);
1285
1286             }
1287
1288             /**************************
1289              * CALCULATE INTERACTIONS *
1290              **************************/
1291
1292             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1293             {
1294
1295             /* Compute parameters for interactions between i and j atoms */
1296             qq20             = _mm256_mul_ps(iq2,jq0);
1297
1298             /* REACTION-FIELD ELECTROSTATICS */
1299             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1300
1301             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1302
1303             fscal            = felec;
1304
1305             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1306
1307             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1308
1309             /* Calculate temporary vectorial force */
1310             tx               = _mm256_mul_ps(fscal,dx20);
1311             ty               = _mm256_mul_ps(fscal,dy20);
1312             tz               = _mm256_mul_ps(fscal,dz20);
1313
1314             /* Update vectorial force */
1315             fix2             = _mm256_add_ps(fix2,tx);
1316             fiy2             = _mm256_add_ps(fiy2,ty);
1317             fiz2             = _mm256_add_ps(fiz2,tz);
1318
1319             fjx0             = _mm256_add_ps(fjx0,tx);
1320             fjy0             = _mm256_add_ps(fjy0,ty);
1321             fjz0             = _mm256_add_ps(fjz0,tz);
1322
1323             }
1324
1325             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1326             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1327             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1328             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1329             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1330             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1331             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1332             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1333
1334             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1335
1336             /* Inner loop uses 125 flops */
1337         }
1338
1339         /* End of innermost loop */
1340
1341         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1342                                                  f+i_coord_offset,fshift+i_shift_offset);
1343
1344         /* Increment number of inner iterations */
1345         inneriter                  += j_index_end - j_index_start;
1346
1347         /* Outer loop uses 18 flops */
1348     }
1349
1350     /* Increment number of outer iterations */
1351     outeriter        += nri;
1352
1353     /* Update outer/inner flops */
1354
1355     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*125);
1356 }