Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_256_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     real *           vdwioffsetptr1;
75     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     real *           vdwioffsetptr2;
77     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
79     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
90     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
91     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
92     real             rswitch_scalar,d_scalar;
93     __m256           dummy_mask,cutoff_mask;
94     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
95     __m256           one     = _mm256_set1_ps(1.0);
96     __m256           two     = _mm256_set1_ps(2.0);
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = _mm256_set1_ps(fr->epsfac);
109     charge           = mdatoms->chargeA;
110     krf              = _mm256_set1_ps(fr->ic->k_rf);
111     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
112     crf              = _mm256_set1_ps(fr->ic->c_rf);
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
120     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
121     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
122     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
127     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
128
129     rswitch_scalar   = fr->rvdw_switch;
130     rswitch          = _mm256_set1_ps(rswitch_scalar);
131     /* Setup switch parameters */
132     d_scalar         = rcutoff_scalar-rswitch_scalar;
133     d                = _mm256_set1_ps(d_scalar);
134     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
135     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
138     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147     j_coord_offsetE = 0;
148     j_coord_offsetF = 0;
149     j_coord_offsetG = 0;
150     j_coord_offsetH = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
177
178         fix0             = _mm256_setzero_ps();
179         fiy0             = _mm256_setzero_ps();
180         fiz0             = _mm256_setzero_ps();
181         fix1             = _mm256_setzero_ps();
182         fiy1             = _mm256_setzero_ps();
183         fiz1             = _mm256_setzero_ps();
184         fix2             = _mm256_setzero_ps();
185         fiy2             = _mm256_setzero_ps();
186         fiz2             = _mm256_setzero_ps();
187
188         /* Reset potential sums */
189         velecsum         = _mm256_setzero_ps();
190         vvdwsum          = _mm256_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             jnrE             = jjnr[jidx+4];
202             jnrF             = jjnr[jidx+5];
203             jnrG             = jjnr[jidx+6];
204             jnrH             = jjnr[jidx+7];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209             j_coord_offsetE  = DIM*jnrE;
210             j_coord_offsetF  = DIM*jnrF;
211             j_coord_offsetG  = DIM*jnrG;
212             j_coord_offsetH  = DIM*jnrH;
213
214             /* load j atom coordinates */
215             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
216                                                  x+j_coord_offsetC,x+j_coord_offsetD,
217                                                  x+j_coord_offsetE,x+j_coord_offsetF,
218                                                  x+j_coord_offsetG,x+j_coord_offsetH,
219                                                  &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm256_sub_ps(ix0,jx0);
223             dy00             = _mm256_sub_ps(iy0,jy0);
224             dz00             = _mm256_sub_ps(iz0,jz0);
225             dx10             = _mm256_sub_ps(ix1,jx0);
226             dy10             = _mm256_sub_ps(iy1,jy0);
227             dz10             = _mm256_sub_ps(iz1,jz0);
228             dx20             = _mm256_sub_ps(ix2,jx0);
229             dy20             = _mm256_sub_ps(iy2,jy0);
230             dz20             = _mm256_sub_ps(iz2,jz0);
231
232             /* Calculate squared distance and things based on it */
233             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
234             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
235             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
236
237             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
238             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
239             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
240
241             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
242             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
243             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
244
245             /* Load parameters for j particles */
246             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
247                                                                  charge+jnrC+0,charge+jnrD+0,
248                                                                  charge+jnrE+0,charge+jnrF+0,
249                                                                  charge+jnrG+0,charge+jnrH+0);
250             vdwjidx0A        = 2*vdwtype[jnrA+0];
251             vdwjidx0B        = 2*vdwtype[jnrB+0];
252             vdwjidx0C        = 2*vdwtype[jnrC+0];
253             vdwjidx0D        = 2*vdwtype[jnrD+0];
254             vdwjidx0E        = 2*vdwtype[jnrE+0];
255             vdwjidx0F        = 2*vdwtype[jnrF+0];
256             vdwjidx0G        = 2*vdwtype[jnrG+0];
257             vdwjidx0H        = 2*vdwtype[jnrH+0];
258
259             fjx0             = _mm256_setzero_ps();
260             fjy0             = _mm256_setzero_ps();
261             fjz0             = _mm256_setzero_ps();
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             if (gmx_mm256_any_lt(rsq00,rcutoff2))
268             {
269
270             r00              = _mm256_mul_ps(rsq00,rinv00);
271
272             /* Compute parameters for interactions between i and j atoms */
273             qq00             = _mm256_mul_ps(iq0,jq0);
274             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
275                                             vdwioffsetptr0+vdwjidx0B,
276                                             vdwioffsetptr0+vdwjidx0C,
277                                             vdwioffsetptr0+vdwjidx0D,
278                                             vdwioffsetptr0+vdwjidx0E,
279                                             vdwioffsetptr0+vdwjidx0F,
280                                             vdwioffsetptr0+vdwjidx0G,
281                                             vdwioffsetptr0+vdwjidx0H,
282                                             &c6_00,&c12_00);
283
284             /* REACTION-FIELD ELECTROSTATICS */
285             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
286             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
287
288             /* LENNARD-JONES DISPERSION/REPULSION */
289
290             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
291             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
292             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
293             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
294             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
295
296             d                = _mm256_sub_ps(r00,rswitch);
297             d                = _mm256_max_ps(d,_mm256_setzero_ps());
298             d2               = _mm256_mul_ps(d,d);
299             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
300
301             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
302
303             /* Evaluate switch function */
304             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
305             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
306             vvdw             = _mm256_mul_ps(vvdw,sw);
307             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             velec            = _mm256_and_ps(velec,cutoff_mask);
311             velecsum         = _mm256_add_ps(velecsum,velec);
312             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
313             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
314
315             fscal            = _mm256_add_ps(felec,fvdw);
316
317             fscal            = _mm256_and_ps(fscal,cutoff_mask);
318
319             /* Calculate temporary vectorial force */
320             tx               = _mm256_mul_ps(fscal,dx00);
321             ty               = _mm256_mul_ps(fscal,dy00);
322             tz               = _mm256_mul_ps(fscal,dz00);
323
324             /* Update vectorial force */
325             fix0             = _mm256_add_ps(fix0,tx);
326             fiy0             = _mm256_add_ps(fiy0,ty);
327             fiz0             = _mm256_add_ps(fiz0,tz);
328
329             fjx0             = _mm256_add_ps(fjx0,tx);
330             fjy0             = _mm256_add_ps(fjy0,ty);
331             fjz0             = _mm256_add_ps(fjz0,tz);
332
333             }
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             if (gmx_mm256_any_lt(rsq10,rcutoff2))
340             {
341
342             /* Compute parameters for interactions between i and j atoms */
343             qq10             = _mm256_mul_ps(iq1,jq0);
344
345             /* REACTION-FIELD ELECTROSTATICS */
346             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
347             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
348
349             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
350
351             /* Update potential sum for this i atom from the interaction with this j atom. */
352             velec            = _mm256_and_ps(velec,cutoff_mask);
353             velecsum         = _mm256_add_ps(velecsum,velec);
354
355             fscal            = felec;
356
357             fscal            = _mm256_and_ps(fscal,cutoff_mask);
358
359             /* Calculate temporary vectorial force */
360             tx               = _mm256_mul_ps(fscal,dx10);
361             ty               = _mm256_mul_ps(fscal,dy10);
362             tz               = _mm256_mul_ps(fscal,dz10);
363
364             /* Update vectorial force */
365             fix1             = _mm256_add_ps(fix1,tx);
366             fiy1             = _mm256_add_ps(fiy1,ty);
367             fiz1             = _mm256_add_ps(fiz1,tz);
368
369             fjx0             = _mm256_add_ps(fjx0,tx);
370             fjy0             = _mm256_add_ps(fjy0,ty);
371             fjz0             = _mm256_add_ps(fjz0,tz);
372
373             }
374
375             /**************************
376              * CALCULATE INTERACTIONS *
377              **************************/
378
379             if (gmx_mm256_any_lt(rsq20,rcutoff2))
380             {
381
382             /* Compute parameters for interactions between i and j atoms */
383             qq20             = _mm256_mul_ps(iq2,jq0);
384
385             /* REACTION-FIELD ELECTROSTATICS */
386             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
387             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
388
389             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
390
391             /* Update potential sum for this i atom from the interaction with this j atom. */
392             velec            = _mm256_and_ps(velec,cutoff_mask);
393             velecsum         = _mm256_add_ps(velecsum,velec);
394
395             fscal            = felec;
396
397             fscal            = _mm256_and_ps(fscal,cutoff_mask);
398
399             /* Calculate temporary vectorial force */
400             tx               = _mm256_mul_ps(fscal,dx20);
401             ty               = _mm256_mul_ps(fscal,dy20);
402             tz               = _mm256_mul_ps(fscal,dz20);
403
404             /* Update vectorial force */
405             fix2             = _mm256_add_ps(fix2,tx);
406             fiy2             = _mm256_add_ps(fiy2,ty);
407             fiz2             = _mm256_add_ps(fiz2,tz);
408
409             fjx0             = _mm256_add_ps(fjx0,tx);
410             fjy0             = _mm256_add_ps(fjy0,ty);
411             fjz0             = _mm256_add_ps(fjz0,tz);
412
413             }
414
415             fjptrA             = f+j_coord_offsetA;
416             fjptrB             = f+j_coord_offsetB;
417             fjptrC             = f+j_coord_offsetC;
418             fjptrD             = f+j_coord_offsetD;
419             fjptrE             = f+j_coord_offsetE;
420             fjptrF             = f+j_coord_offsetF;
421             fjptrG             = f+j_coord_offsetG;
422             fjptrH             = f+j_coord_offsetH;
423
424             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
425
426             /* Inner loop uses 145 flops */
427         }
428
429         if(jidx<j_index_end)
430         {
431
432             /* Get j neighbor index, and coordinate index */
433             jnrlistA         = jjnr[jidx];
434             jnrlistB         = jjnr[jidx+1];
435             jnrlistC         = jjnr[jidx+2];
436             jnrlistD         = jjnr[jidx+3];
437             jnrlistE         = jjnr[jidx+4];
438             jnrlistF         = jjnr[jidx+5];
439             jnrlistG         = jjnr[jidx+6];
440             jnrlistH         = jjnr[jidx+7];
441             /* Sign of each element will be negative for non-real atoms.
442              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
443              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
444              */
445             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
446                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
447                                             
448             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
449             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
450             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
451             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
452             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
453             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
454             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
455             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
456             j_coord_offsetA  = DIM*jnrA;
457             j_coord_offsetB  = DIM*jnrB;
458             j_coord_offsetC  = DIM*jnrC;
459             j_coord_offsetD  = DIM*jnrD;
460             j_coord_offsetE  = DIM*jnrE;
461             j_coord_offsetF  = DIM*jnrF;
462             j_coord_offsetG  = DIM*jnrG;
463             j_coord_offsetH  = DIM*jnrH;
464
465             /* load j atom coordinates */
466             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
467                                                  x+j_coord_offsetC,x+j_coord_offsetD,
468                                                  x+j_coord_offsetE,x+j_coord_offsetF,
469                                                  x+j_coord_offsetG,x+j_coord_offsetH,
470                                                  &jx0,&jy0,&jz0);
471
472             /* Calculate displacement vector */
473             dx00             = _mm256_sub_ps(ix0,jx0);
474             dy00             = _mm256_sub_ps(iy0,jy0);
475             dz00             = _mm256_sub_ps(iz0,jz0);
476             dx10             = _mm256_sub_ps(ix1,jx0);
477             dy10             = _mm256_sub_ps(iy1,jy0);
478             dz10             = _mm256_sub_ps(iz1,jz0);
479             dx20             = _mm256_sub_ps(ix2,jx0);
480             dy20             = _mm256_sub_ps(iy2,jy0);
481             dz20             = _mm256_sub_ps(iz2,jz0);
482
483             /* Calculate squared distance and things based on it */
484             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
485             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
486             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
487
488             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
489             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
490             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
491
492             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
493             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
494             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
495
496             /* Load parameters for j particles */
497             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
498                                                                  charge+jnrC+0,charge+jnrD+0,
499                                                                  charge+jnrE+0,charge+jnrF+0,
500                                                                  charge+jnrG+0,charge+jnrH+0);
501             vdwjidx0A        = 2*vdwtype[jnrA+0];
502             vdwjidx0B        = 2*vdwtype[jnrB+0];
503             vdwjidx0C        = 2*vdwtype[jnrC+0];
504             vdwjidx0D        = 2*vdwtype[jnrD+0];
505             vdwjidx0E        = 2*vdwtype[jnrE+0];
506             vdwjidx0F        = 2*vdwtype[jnrF+0];
507             vdwjidx0G        = 2*vdwtype[jnrG+0];
508             vdwjidx0H        = 2*vdwtype[jnrH+0];
509
510             fjx0             = _mm256_setzero_ps();
511             fjy0             = _mm256_setzero_ps();
512             fjz0             = _mm256_setzero_ps();
513
514             /**************************
515              * CALCULATE INTERACTIONS *
516              **************************/
517
518             if (gmx_mm256_any_lt(rsq00,rcutoff2))
519             {
520
521             r00              = _mm256_mul_ps(rsq00,rinv00);
522             r00              = _mm256_andnot_ps(dummy_mask,r00);
523
524             /* Compute parameters for interactions between i and j atoms */
525             qq00             = _mm256_mul_ps(iq0,jq0);
526             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
527                                             vdwioffsetptr0+vdwjidx0B,
528                                             vdwioffsetptr0+vdwjidx0C,
529                                             vdwioffsetptr0+vdwjidx0D,
530                                             vdwioffsetptr0+vdwjidx0E,
531                                             vdwioffsetptr0+vdwjidx0F,
532                                             vdwioffsetptr0+vdwjidx0G,
533                                             vdwioffsetptr0+vdwjidx0H,
534                                             &c6_00,&c12_00);
535
536             /* REACTION-FIELD ELECTROSTATICS */
537             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
538             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
539
540             /* LENNARD-JONES DISPERSION/REPULSION */
541
542             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
543             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
544             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
545             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
546             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
547
548             d                = _mm256_sub_ps(r00,rswitch);
549             d                = _mm256_max_ps(d,_mm256_setzero_ps());
550             d2               = _mm256_mul_ps(d,d);
551             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
552
553             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
554
555             /* Evaluate switch function */
556             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
557             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
558             vvdw             = _mm256_mul_ps(vvdw,sw);
559             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
560
561             /* Update potential sum for this i atom from the interaction with this j atom. */
562             velec            = _mm256_and_ps(velec,cutoff_mask);
563             velec            = _mm256_andnot_ps(dummy_mask,velec);
564             velecsum         = _mm256_add_ps(velecsum,velec);
565             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
566             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
567             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
568
569             fscal            = _mm256_add_ps(felec,fvdw);
570
571             fscal            = _mm256_and_ps(fscal,cutoff_mask);
572
573             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
574
575             /* Calculate temporary vectorial force */
576             tx               = _mm256_mul_ps(fscal,dx00);
577             ty               = _mm256_mul_ps(fscal,dy00);
578             tz               = _mm256_mul_ps(fscal,dz00);
579
580             /* Update vectorial force */
581             fix0             = _mm256_add_ps(fix0,tx);
582             fiy0             = _mm256_add_ps(fiy0,ty);
583             fiz0             = _mm256_add_ps(fiz0,tz);
584
585             fjx0             = _mm256_add_ps(fjx0,tx);
586             fjy0             = _mm256_add_ps(fjy0,ty);
587             fjz0             = _mm256_add_ps(fjz0,tz);
588
589             }
590
591             /**************************
592              * CALCULATE INTERACTIONS *
593              **************************/
594
595             if (gmx_mm256_any_lt(rsq10,rcutoff2))
596             {
597
598             /* Compute parameters for interactions between i and j atoms */
599             qq10             = _mm256_mul_ps(iq1,jq0);
600
601             /* REACTION-FIELD ELECTROSTATICS */
602             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
603             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
604
605             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
606
607             /* Update potential sum for this i atom from the interaction with this j atom. */
608             velec            = _mm256_and_ps(velec,cutoff_mask);
609             velec            = _mm256_andnot_ps(dummy_mask,velec);
610             velecsum         = _mm256_add_ps(velecsum,velec);
611
612             fscal            = felec;
613
614             fscal            = _mm256_and_ps(fscal,cutoff_mask);
615
616             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
617
618             /* Calculate temporary vectorial force */
619             tx               = _mm256_mul_ps(fscal,dx10);
620             ty               = _mm256_mul_ps(fscal,dy10);
621             tz               = _mm256_mul_ps(fscal,dz10);
622
623             /* Update vectorial force */
624             fix1             = _mm256_add_ps(fix1,tx);
625             fiy1             = _mm256_add_ps(fiy1,ty);
626             fiz1             = _mm256_add_ps(fiz1,tz);
627
628             fjx0             = _mm256_add_ps(fjx0,tx);
629             fjy0             = _mm256_add_ps(fjy0,ty);
630             fjz0             = _mm256_add_ps(fjz0,tz);
631
632             }
633
634             /**************************
635              * CALCULATE INTERACTIONS *
636              **************************/
637
638             if (gmx_mm256_any_lt(rsq20,rcutoff2))
639             {
640
641             /* Compute parameters for interactions between i and j atoms */
642             qq20             = _mm256_mul_ps(iq2,jq0);
643
644             /* REACTION-FIELD ELECTROSTATICS */
645             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
646             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
647
648             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
649
650             /* Update potential sum for this i atom from the interaction with this j atom. */
651             velec            = _mm256_and_ps(velec,cutoff_mask);
652             velec            = _mm256_andnot_ps(dummy_mask,velec);
653             velecsum         = _mm256_add_ps(velecsum,velec);
654
655             fscal            = felec;
656
657             fscal            = _mm256_and_ps(fscal,cutoff_mask);
658
659             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
660
661             /* Calculate temporary vectorial force */
662             tx               = _mm256_mul_ps(fscal,dx20);
663             ty               = _mm256_mul_ps(fscal,dy20);
664             tz               = _mm256_mul_ps(fscal,dz20);
665
666             /* Update vectorial force */
667             fix2             = _mm256_add_ps(fix2,tx);
668             fiy2             = _mm256_add_ps(fiy2,ty);
669             fiz2             = _mm256_add_ps(fiz2,tz);
670
671             fjx0             = _mm256_add_ps(fjx0,tx);
672             fjy0             = _mm256_add_ps(fjy0,ty);
673             fjz0             = _mm256_add_ps(fjz0,tz);
674
675             }
676
677             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
678             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
679             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
680             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
681             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
682             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
683             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
684             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
685
686             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
687
688             /* Inner loop uses 146 flops */
689         }
690
691         /* End of innermost loop */
692
693         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
694                                                  f+i_coord_offset,fshift+i_shift_offset);
695
696         ggid                        = gid[iidx];
697         /* Update potential energies */
698         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
699         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
700
701         /* Increment number of inner iterations */
702         inneriter                  += j_index_end - j_index_start;
703
704         /* Outer loop uses 20 flops */
705     }
706
707     /* Increment number of outer iterations */
708     outeriter        += nri;
709
710     /* Update outer/inner flops */
711
712     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*146);
713 }
714 /*
715  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_256_single
716  * Electrostatics interaction: ReactionField
717  * VdW interaction:            LennardJones
718  * Geometry:                   Water3-Particle
719  * Calculate force/pot:        Force
720  */
721 void
722 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_256_single
723                     (t_nblist * gmx_restrict                nlist,
724                      rvec * gmx_restrict                    xx,
725                      rvec * gmx_restrict                    ff,
726                      t_forcerec * gmx_restrict              fr,
727                      t_mdatoms * gmx_restrict               mdatoms,
728                      nb_kernel_data_t * gmx_restrict        kernel_data,
729                      t_nrnb * gmx_restrict                  nrnb)
730 {
731     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
732      * just 0 for non-waters.
733      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
734      * jnr indices corresponding to data put in the four positions in the SIMD register.
735      */
736     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
737     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
738     int              jnrA,jnrB,jnrC,jnrD;
739     int              jnrE,jnrF,jnrG,jnrH;
740     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
741     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
742     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
743     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
744     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
745     real             rcutoff_scalar;
746     real             *shiftvec,*fshift,*x,*f;
747     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
748     real             scratch[4*DIM];
749     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
750     real *           vdwioffsetptr0;
751     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
752     real *           vdwioffsetptr1;
753     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
754     real *           vdwioffsetptr2;
755     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
756     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
757     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
758     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
759     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
760     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
761     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
762     real             *charge;
763     int              nvdwtype;
764     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
765     int              *vdwtype;
766     real             *vdwparam;
767     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
768     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
769     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
770     real             rswitch_scalar,d_scalar;
771     __m256           dummy_mask,cutoff_mask;
772     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
773     __m256           one     = _mm256_set1_ps(1.0);
774     __m256           two     = _mm256_set1_ps(2.0);
775     x                = xx[0];
776     f                = ff[0];
777
778     nri              = nlist->nri;
779     iinr             = nlist->iinr;
780     jindex           = nlist->jindex;
781     jjnr             = nlist->jjnr;
782     shiftidx         = nlist->shift;
783     gid              = nlist->gid;
784     shiftvec         = fr->shift_vec[0];
785     fshift           = fr->fshift[0];
786     facel            = _mm256_set1_ps(fr->epsfac);
787     charge           = mdatoms->chargeA;
788     krf              = _mm256_set1_ps(fr->ic->k_rf);
789     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
790     crf              = _mm256_set1_ps(fr->ic->c_rf);
791     nvdwtype         = fr->ntype;
792     vdwparam         = fr->nbfp;
793     vdwtype          = mdatoms->typeA;
794
795     /* Setup water-specific parameters */
796     inr              = nlist->iinr[0];
797     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
798     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
799     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
800     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
801
802     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
803     rcutoff_scalar   = fr->rcoulomb;
804     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
805     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
806
807     rswitch_scalar   = fr->rvdw_switch;
808     rswitch          = _mm256_set1_ps(rswitch_scalar);
809     /* Setup switch parameters */
810     d_scalar         = rcutoff_scalar-rswitch_scalar;
811     d                = _mm256_set1_ps(d_scalar);
812     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
813     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
814     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
815     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
816     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
817     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
818
819     /* Avoid stupid compiler warnings */
820     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
821     j_coord_offsetA = 0;
822     j_coord_offsetB = 0;
823     j_coord_offsetC = 0;
824     j_coord_offsetD = 0;
825     j_coord_offsetE = 0;
826     j_coord_offsetF = 0;
827     j_coord_offsetG = 0;
828     j_coord_offsetH = 0;
829
830     outeriter        = 0;
831     inneriter        = 0;
832
833     for(iidx=0;iidx<4*DIM;iidx++)
834     {
835         scratch[iidx] = 0.0;
836     }
837
838     /* Start outer loop over neighborlists */
839     for(iidx=0; iidx<nri; iidx++)
840     {
841         /* Load shift vector for this list */
842         i_shift_offset   = DIM*shiftidx[iidx];
843
844         /* Load limits for loop over neighbors */
845         j_index_start    = jindex[iidx];
846         j_index_end      = jindex[iidx+1];
847
848         /* Get outer coordinate index */
849         inr              = iinr[iidx];
850         i_coord_offset   = DIM*inr;
851
852         /* Load i particle coords and add shift vector */
853         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
854                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
855
856         fix0             = _mm256_setzero_ps();
857         fiy0             = _mm256_setzero_ps();
858         fiz0             = _mm256_setzero_ps();
859         fix1             = _mm256_setzero_ps();
860         fiy1             = _mm256_setzero_ps();
861         fiz1             = _mm256_setzero_ps();
862         fix2             = _mm256_setzero_ps();
863         fiy2             = _mm256_setzero_ps();
864         fiz2             = _mm256_setzero_ps();
865
866         /* Start inner kernel loop */
867         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
868         {
869
870             /* Get j neighbor index, and coordinate index */
871             jnrA             = jjnr[jidx];
872             jnrB             = jjnr[jidx+1];
873             jnrC             = jjnr[jidx+2];
874             jnrD             = jjnr[jidx+3];
875             jnrE             = jjnr[jidx+4];
876             jnrF             = jjnr[jidx+5];
877             jnrG             = jjnr[jidx+6];
878             jnrH             = jjnr[jidx+7];
879             j_coord_offsetA  = DIM*jnrA;
880             j_coord_offsetB  = DIM*jnrB;
881             j_coord_offsetC  = DIM*jnrC;
882             j_coord_offsetD  = DIM*jnrD;
883             j_coord_offsetE  = DIM*jnrE;
884             j_coord_offsetF  = DIM*jnrF;
885             j_coord_offsetG  = DIM*jnrG;
886             j_coord_offsetH  = DIM*jnrH;
887
888             /* load j atom coordinates */
889             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
890                                                  x+j_coord_offsetC,x+j_coord_offsetD,
891                                                  x+j_coord_offsetE,x+j_coord_offsetF,
892                                                  x+j_coord_offsetG,x+j_coord_offsetH,
893                                                  &jx0,&jy0,&jz0);
894
895             /* Calculate displacement vector */
896             dx00             = _mm256_sub_ps(ix0,jx0);
897             dy00             = _mm256_sub_ps(iy0,jy0);
898             dz00             = _mm256_sub_ps(iz0,jz0);
899             dx10             = _mm256_sub_ps(ix1,jx0);
900             dy10             = _mm256_sub_ps(iy1,jy0);
901             dz10             = _mm256_sub_ps(iz1,jz0);
902             dx20             = _mm256_sub_ps(ix2,jx0);
903             dy20             = _mm256_sub_ps(iy2,jy0);
904             dz20             = _mm256_sub_ps(iz2,jz0);
905
906             /* Calculate squared distance and things based on it */
907             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
908             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
909             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
910
911             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
912             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
913             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
914
915             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
916             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
917             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
918
919             /* Load parameters for j particles */
920             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
921                                                                  charge+jnrC+0,charge+jnrD+0,
922                                                                  charge+jnrE+0,charge+jnrF+0,
923                                                                  charge+jnrG+0,charge+jnrH+0);
924             vdwjidx0A        = 2*vdwtype[jnrA+0];
925             vdwjidx0B        = 2*vdwtype[jnrB+0];
926             vdwjidx0C        = 2*vdwtype[jnrC+0];
927             vdwjidx0D        = 2*vdwtype[jnrD+0];
928             vdwjidx0E        = 2*vdwtype[jnrE+0];
929             vdwjidx0F        = 2*vdwtype[jnrF+0];
930             vdwjidx0G        = 2*vdwtype[jnrG+0];
931             vdwjidx0H        = 2*vdwtype[jnrH+0];
932
933             fjx0             = _mm256_setzero_ps();
934             fjy0             = _mm256_setzero_ps();
935             fjz0             = _mm256_setzero_ps();
936
937             /**************************
938              * CALCULATE INTERACTIONS *
939              **************************/
940
941             if (gmx_mm256_any_lt(rsq00,rcutoff2))
942             {
943
944             r00              = _mm256_mul_ps(rsq00,rinv00);
945
946             /* Compute parameters for interactions between i and j atoms */
947             qq00             = _mm256_mul_ps(iq0,jq0);
948             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
949                                             vdwioffsetptr0+vdwjidx0B,
950                                             vdwioffsetptr0+vdwjidx0C,
951                                             vdwioffsetptr0+vdwjidx0D,
952                                             vdwioffsetptr0+vdwjidx0E,
953                                             vdwioffsetptr0+vdwjidx0F,
954                                             vdwioffsetptr0+vdwjidx0G,
955                                             vdwioffsetptr0+vdwjidx0H,
956                                             &c6_00,&c12_00);
957
958             /* REACTION-FIELD ELECTROSTATICS */
959             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
960
961             /* LENNARD-JONES DISPERSION/REPULSION */
962
963             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
964             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
965             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
966             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
967             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
968
969             d                = _mm256_sub_ps(r00,rswitch);
970             d                = _mm256_max_ps(d,_mm256_setzero_ps());
971             d2               = _mm256_mul_ps(d,d);
972             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
973
974             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
975
976             /* Evaluate switch function */
977             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
978             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
979             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
980
981             fscal            = _mm256_add_ps(felec,fvdw);
982
983             fscal            = _mm256_and_ps(fscal,cutoff_mask);
984
985             /* Calculate temporary vectorial force */
986             tx               = _mm256_mul_ps(fscal,dx00);
987             ty               = _mm256_mul_ps(fscal,dy00);
988             tz               = _mm256_mul_ps(fscal,dz00);
989
990             /* Update vectorial force */
991             fix0             = _mm256_add_ps(fix0,tx);
992             fiy0             = _mm256_add_ps(fiy0,ty);
993             fiz0             = _mm256_add_ps(fiz0,tz);
994
995             fjx0             = _mm256_add_ps(fjx0,tx);
996             fjy0             = _mm256_add_ps(fjy0,ty);
997             fjz0             = _mm256_add_ps(fjz0,tz);
998
999             }
1000
1001             /**************************
1002              * CALCULATE INTERACTIONS *
1003              **************************/
1004
1005             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1006             {
1007
1008             /* Compute parameters for interactions between i and j atoms */
1009             qq10             = _mm256_mul_ps(iq1,jq0);
1010
1011             /* REACTION-FIELD ELECTROSTATICS */
1012             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1013
1014             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1015
1016             fscal            = felec;
1017
1018             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1019
1020             /* Calculate temporary vectorial force */
1021             tx               = _mm256_mul_ps(fscal,dx10);
1022             ty               = _mm256_mul_ps(fscal,dy10);
1023             tz               = _mm256_mul_ps(fscal,dz10);
1024
1025             /* Update vectorial force */
1026             fix1             = _mm256_add_ps(fix1,tx);
1027             fiy1             = _mm256_add_ps(fiy1,ty);
1028             fiz1             = _mm256_add_ps(fiz1,tz);
1029
1030             fjx0             = _mm256_add_ps(fjx0,tx);
1031             fjy0             = _mm256_add_ps(fjy0,ty);
1032             fjz0             = _mm256_add_ps(fjz0,tz);
1033
1034             }
1035
1036             /**************************
1037              * CALCULATE INTERACTIONS *
1038              **************************/
1039
1040             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1041             {
1042
1043             /* Compute parameters for interactions between i and j atoms */
1044             qq20             = _mm256_mul_ps(iq2,jq0);
1045
1046             /* REACTION-FIELD ELECTROSTATICS */
1047             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1048
1049             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1050
1051             fscal            = felec;
1052
1053             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1054
1055             /* Calculate temporary vectorial force */
1056             tx               = _mm256_mul_ps(fscal,dx20);
1057             ty               = _mm256_mul_ps(fscal,dy20);
1058             tz               = _mm256_mul_ps(fscal,dz20);
1059
1060             /* Update vectorial force */
1061             fix2             = _mm256_add_ps(fix2,tx);
1062             fiy2             = _mm256_add_ps(fiy2,ty);
1063             fiz2             = _mm256_add_ps(fiz2,tz);
1064
1065             fjx0             = _mm256_add_ps(fjx0,tx);
1066             fjy0             = _mm256_add_ps(fjy0,ty);
1067             fjz0             = _mm256_add_ps(fjz0,tz);
1068
1069             }
1070
1071             fjptrA             = f+j_coord_offsetA;
1072             fjptrB             = f+j_coord_offsetB;
1073             fjptrC             = f+j_coord_offsetC;
1074             fjptrD             = f+j_coord_offsetD;
1075             fjptrE             = f+j_coord_offsetE;
1076             fjptrF             = f+j_coord_offsetF;
1077             fjptrG             = f+j_coord_offsetG;
1078             fjptrH             = f+j_coord_offsetH;
1079
1080             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1081
1082             /* Inner loop uses 124 flops */
1083         }
1084
1085         if(jidx<j_index_end)
1086         {
1087
1088             /* Get j neighbor index, and coordinate index */
1089             jnrlistA         = jjnr[jidx];
1090             jnrlistB         = jjnr[jidx+1];
1091             jnrlistC         = jjnr[jidx+2];
1092             jnrlistD         = jjnr[jidx+3];
1093             jnrlistE         = jjnr[jidx+4];
1094             jnrlistF         = jjnr[jidx+5];
1095             jnrlistG         = jjnr[jidx+6];
1096             jnrlistH         = jjnr[jidx+7];
1097             /* Sign of each element will be negative for non-real atoms.
1098              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1099              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1100              */
1101             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1102                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1103                                             
1104             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1105             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1106             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1107             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1108             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1109             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1110             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1111             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1112             j_coord_offsetA  = DIM*jnrA;
1113             j_coord_offsetB  = DIM*jnrB;
1114             j_coord_offsetC  = DIM*jnrC;
1115             j_coord_offsetD  = DIM*jnrD;
1116             j_coord_offsetE  = DIM*jnrE;
1117             j_coord_offsetF  = DIM*jnrF;
1118             j_coord_offsetG  = DIM*jnrG;
1119             j_coord_offsetH  = DIM*jnrH;
1120
1121             /* load j atom coordinates */
1122             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1123                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1124                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1125                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1126                                                  &jx0,&jy0,&jz0);
1127
1128             /* Calculate displacement vector */
1129             dx00             = _mm256_sub_ps(ix0,jx0);
1130             dy00             = _mm256_sub_ps(iy0,jy0);
1131             dz00             = _mm256_sub_ps(iz0,jz0);
1132             dx10             = _mm256_sub_ps(ix1,jx0);
1133             dy10             = _mm256_sub_ps(iy1,jy0);
1134             dz10             = _mm256_sub_ps(iz1,jz0);
1135             dx20             = _mm256_sub_ps(ix2,jx0);
1136             dy20             = _mm256_sub_ps(iy2,jy0);
1137             dz20             = _mm256_sub_ps(iz2,jz0);
1138
1139             /* Calculate squared distance and things based on it */
1140             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1141             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1142             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1143
1144             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1145             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1146             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1147
1148             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1149             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1150             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1151
1152             /* Load parameters for j particles */
1153             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1154                                                                  charge+jnrC+0,charge+jnrD+0,
1155                                                                  charge+jnrE+0,charge+jnrF+0,
1156                                                                  charge+jnrG+0,charge+jnrH+0);
1157             vdwjidx0A        = 2*vdwtype[jnrA+0];
1158             vdwjidx0B        = 2*vdwtype[jnrB+0];
1159             vdwjidx0C        = 2*vdwtype[jnrC+0];
1160             vdwjidx0D        = 2*vdwtype[jnrD+0];
1161             vdwjidx0E        = 2*vdwtype[jnrE+0];
1162             vdwjidx0F        = 2*vdwtype[jnrF+0];
1163             vdwjidx0G        = 2*vdwtype[jnrG+0];
1164             vdwjidx0H        = 2*vdwtype[jnrH+0];
1165
1166             fjx0             = _mm256_setzero_ps();
1167             fjy0             = _mm256_setzero_ps();
1168             fjz0             = _mm256_setzero_ps();
1169
1170             /**************************
1171              * CALCULATE INTERACTIONS *
1172              **************************/
1173
1174             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1175             {
1176
1177             r00              = _mm256_mul_ps(rsq00,rinv00);
1178             r00              = _mm256_andnot_ps(dummy_mask,r00);
1179
1180             /* Compute parameters for interactions between i and j atoms */
1181             qq00             = _mm256_mul_ps(iq0,jq0);
1182             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1183                                             vdwioffsetptr0+vdwjidx0B,
1184                                             vdwioffsetptr0+vdwjidx0C,
1185                                             vdwioffsetptr0+vdwjidx0D,
1186                                             vdwioffsetptr0+vdwjidx0E,
1187                                             vdwioffsetptr0+vdwjidx0F,
1188                                             vdwioffsetptr0+vdwjidx0G,
1189                                             vdwioffsetptr0+vdwjidx0H,
1190                                             &c6_00,&c12_00);
1191
1192             /* REACTION-FIELD ELECTROSTATICS */
1193             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
1194
1195             /* LENNARD-JONES DISPERSION/REPULSION */
1196
1197             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1198             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
1199             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
1200             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
1201             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
1202
1203             d                = _mm256_sub_ps(r00,rswitch);
1204             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1205             d2               = _mm256_mul_ps(d,d);
1206             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1207
1208             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1209
1210             /* Evaluate switch function */
1211             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1212             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
1213             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1214
1215             fscal            = _mm256_add_ps(felec,fvdw);
1216
1217             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1218
1219             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1220
1221             /* Calculate temporary vectorial force */
1222             tx               = _mm256_mul_ps(fscal,dx00);
1223             ty               = _mm256_mul_ps(fscal,dy00);
1224             tz               = _mm256_mul_ps(fscal,dz00);
1225
1226             /* Update vectorial force */
1227             fix0             = _mm256_add_ps(fix0,tx);
1228             fiy0             = _mm256_add_ps(fiy0,ty);
1229             fiz0             = _mm256_add_ps(fiz0,tz);
1230
1231             fjx0             = _mm256_add_ps(fjx0,tx);
1232             fjy0             = _mm256_add_ps(fjy0,ty);
1233             fjz0             = _mm256_add_ps(fjz0,tz);
1234
1235             }
1236
1237             /**************************
1238              * CALCULATE INTERACTIONS *
1239              **************************/
1240
1241             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1242             {
1243
1244             /* Compute parameters for interactions between i and j atoms */
1245             qq10             = _mm256_mul_ps(iq1,jq0);
1246
1247             /* REACTION-FIELD ELECTROSTATICS */
1248             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1249
1250             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1251
1252             fscal            = felec;
1253
1254             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1255
1256             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1257
1258             /* Calculate temporary vectorial force */
1259             tx               = _mm256_mul_ps(fscal,dx10);
1260             ty               = _mm256_mul_ps(fscal,dy10);
1261             tz               = _mm256_mul_ps(fscal,dz10);
1262
1263             /* Update vectorial force */
1264             fix1             = _mm256_add_ps(fix1,tx);
1265             fiy1             = _mm256_add_ps(fiy1,ty);
1266             fiz1             = _mm256_add_ps(fiz1,tz);
1267
1268             fjx0             = _mm256_add_ps(fjx0,tx);
1269             fjy0             = _mm256_add_ps(fjy0,ty);
1270             fjz0             = _mm256_add_ps(fjz0,tz);
1271
1272             }
1273
1274             /**************************
1275              * CALCULATE INTERACTIONS *
1276              **************************/
1277
1278             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1279             {
1280
1281             /* Compute parameters for interactions between i and j atoms */
1282             qq20             = _mm256_mul_ps(iq2,jq0);
1283
1284             /* REACTION-FIELD ELECTROSTATICS */
1285             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1286
1287             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1288
1289             fscal            = felec;
1290
1291             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1292
1293             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1294
1295             /* Calculate temporary vectorial force */
1296             tx               = _mm256_mul_ps(fscal,dx20);
1297             ty               = _mm256_mul_ps(fscal,dy20);
1298             tz               = _mm256_mul_ps(fscal,dz20);
1299
1300             /* Update vectorial force */
1301             fix2             = _mm256_add_ps(fix2,tx);
1302             fiy2             = _mm256_add_ps(fiy2,ty);
1303             fiz2             = _mm256_add_ps(fiz2,tz);
1304
1305             fjx0             = _mm256_add_ps(fjx0,tx);
1306             fjy0             = _mm256_add_ps(fjy0,ty);
1307             fjz0             = _mm256_add_ps(fjz0,tz);
1308
1309             }
1310
1311             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1312             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1313             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1314             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1315             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1316             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1317             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1318             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1319
1320             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1321
1322             /* Inner loop uses 125 flops */
1323         }
1324
1325         /* End of innermost loop */
1326
1327         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1328                                                  f+i_coord_offset,fshift+i_shift_offset);
1329
1330         /* Increment number of inner iterations */
1331         inneriter                  += j_index_end - j_index_start;
1332
1333         /* Outer loop uses 18 flops */
1334     }
1335
1336     /* Increment number of outer iterations */
1337     outeriter        += nri;
1338
1339     /* Update outer/inner flops */
1340
1341     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*125);
1342 }