Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_256_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     real *           vdwioffsetptr2;
90     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
92     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
103     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
104     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
105     real             rswitch_scalar,d_scalar;
106     __m256           dummy_mask,cutoff_mask;
107     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
108     __m256           one     = _mm256_set1_ps(1.0);
109     __m256           two     = _mm256_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_ps(fr->ic->epsfac);
122     charge           = mdatoms->chargeA;
123     krf              = _mm256_set1_ps(fr->ic->k_rf);
124     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
125     crf              = _mm256_set1_ps(fr->ic->c_rf);
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
133     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
134     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
135     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
136
137     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
138     rcutoff_scalar   = fr->ic->rcoulomb;
139     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
140     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
141
142     rswitch_scalar   = fr->ic->rvdw_switch;
143     rswitch          = _mm256_set1_ps(rswitch_scalar);
144     /* Setup switch parameters */
145     d_scalar         = rcutoff_scalar-rswitch_scalar;
146     d                = _mm256_set1_ps(d_scalar);
147     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
148     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
149     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
150     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
151     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
152     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
153
154     /* Avoid stupid compiler warnings */
155     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
156     j_coord_offsetA = 0;
157     j_coord_offsetB = 0;
158     j_coord_offsetC = 0;
159     j_coord_offsetD = 0;
160     j_coord_offsetE = 0;
161     j_coord_offsetF = 0;
162     j_coord_offsetG = 0;
163     j_coord_offsetH = 0;
164
165     outeriter        = 0;
166     inneriter        = 0;
167
168     for(iidx=0;iidx<4*DIM;iidx++)
169     {
170         scratch[iidx] = 0.0;
171     }
172
173     /* Start outer loop over neighborlists */
174     for(iidx=0; iidx<nri; iidx++)
175     {
176         /* Load shift vector for this list */
177         i_shift_offset   = DIM*shiftidx[iidx];
178
179         /* Load limits for loop over neighbors */
180         j_index_start    = jindex[iidx];
181         j_index_end      = jindex[iidx+1];
182
183         /* Get outer coordinate index */
184         inr              = iinr[iidx];
185         i_coord_offset   = DIM*inr;
186
187         /* Load i particle coords and add shift vector */
188         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
189                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
190
191         fix0             = _mm256_setzero_ps();
192         fiy0             = _mm256_setzero_ps();
193         fiz0             = _mm256_setzero_ps();
194         fix1             = _mm256_setzero_ps();
195         fiy1             = _mm256_setzero_ps();
196         fiz1             = _mm256_setzero_ps();
197         fix2             = _mm256_setzero_ps();
198         fiy2             = _mm256_setzero_ps();
199         fiz2             = _mm256_setzero_ps();
200
201         /* Reset potential sums */
202         velecsum         = _mm256_setzero_ps();
203         vvdwsum          = _mm256_setzero_ps();
204
205         /* Start inner kernel loop */
206         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
207         {
208
209             /* Get j neighbor index, and coordinate index */
210             jnrA             = jjnr[jidx];
211             jnrB             = jjnr[jidx+1];
212             jnrC             = jjnr[jidx+2];
213             jnrD             = jjnr[jidx+3];
214             jnrE             = jjnr[jidx+4];
215             jnrF             = jjnr[jidx+5];
216             jnrG             = jjnr[jidx+6];
217             jnrH             = jjnr[jidx+7];
218             j_coord_offsetA  = DIM*jnrA;
219             j_coord_offsetB  = DIM*jnrB;
220             j_coord_offsetC  = DIM*jnrC;
221             j_coord_offsetD  = DIM*jnrD;
222             j_coord_offsetE  = DIM*jnrE;
223             j_coord_offsetF  = DIM*jnrF;
224             j_coord_offsetG  = DIM*jnrG;
225             j_coord_offsetH  = DIM*jnrH;
226
227             /* load j atom coordinates */
228             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
229                                                  x+j_coord_offsetC,x+j_coord_offsetD,
230                                                  x+j_coord_offsetE,x+j_coord_offsetF,
231                                                  x+j_coord_offsetG,x+j_coord_offsetH,
232                                                  &jx0,&jy0,&jz0);
233
234             /* Calculate displacement vector */
235             dx00             = _mm256_sub_ps(ix0,jx0);
236             dy00             = _mm256_sub_ps(iy0,jy0);
237             dz00             = _mm256_sub_ps(iz0,jz0);
238             dx10             = _mm256_sub_ps(ix1,jx0);
239             dy10             = _mm256_sub_ps(iy1,jy0);
240             dz10             = _mm256_sub_ps(iz1,jz0);
241             dx20             = _mm256_sub_ps(ix2,jx0);
242             dy20             = _mm256_sub_ps(iy2,jy0);
243             dz20             = _mm256_sub_ps(iz2,jz0);
244
245             /* Calculate squared distance and things based on it */
246             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
247             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
248             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
249
250             rinv00           = avx256_invsqrt_f(rsq00);
251             rinv10           = avx256_invsqrt_f(rsq10);
252             rinv20           = avx256_invsqrt_f(rsq20);
253
254             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
255             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
256             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
257
258             /* Load parameters for j particles */
259             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
260                                                                  charge+jnrC+0,charge+jnrD+0,
261                                                                  charge+jnrE+0,charge+jnrF+0,
262                                                                  charge+jnrG+0,charge+jnrH+0);
263             vdwjidx0A        = 2*vdwtype[jnrA+0];
264             vdwjidx0B        = 2*vdwtype[jnrB+0];
265             vdwjidx0C        = 2*vdwtype[jnrC+0];
266             vdwjidx0D        = 2*vdwtype[jnrD+0];
267             vdwjidx0E        = 2*vdwtype[jnrE+0];
268             vdwjidx0F        = 2*vdwtype[jnrF+0];
269             vdwjidx0G        = 2*vdwtype[jnrG+0];
270             vdwjidx0H        = 2*vdwtype[jnrH+0];
271
272             fjx0             = _mm256_setzero_ps();
273             fjy0             = _mm256_setzero_ps();
274             fjz0             = _mm256_setzero_ps();
275
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             if (gmx_mm256_any_lt(rsq00,rcutoff2))
281             {
282
283             r00              = _mm256_mul_ps(rsq00,rinv00);
284
285             /* Compute parameters for interactions between i and j atoms */
286             qq00             = _mm256_mul_ps(iq0,jq0);
287             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
288                                             vdwioffsetptr0+vdwjidx0B,
289                                             vdwioffsetptr0+vdwjidx0C,
290                                             vdwioffsetptr0+vdwjidx0D,
291                                             vdwioffsetptr0+vdwjidx0E,
292                                             vdwioffsetptr0+vdwjidx0F,
293                                             vdwioffsetptr0+vdwjidx0G,
294                                             vdwioffsetptr0+vdwjidx0H,
295                                             &c6_00,&c12_00);
296
297             /* REACTION-FIELD ELECTROSTATICS */
298             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
299             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
300
301             /* LENNARD-JONES DISPERSION/REPULSION */
302
303             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
304             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
305             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
306             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
307             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
308
309             d                = _mm256_sub_ps(r00,rswitch);
310             d                = _mm256_max_ps(d,_mm256_setzero_ps());
311             d2               = _mm256_mul_ps(d,d);
312             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
313
314             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
315
316             /* Evaluate switch function */
317             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
318             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
319             vvdw             = _mm256_mul_ps(vvdw,sw);
320             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
321
322             /* Update potential sum for this i atom from the interaction with this j atom. */
323             velec            = _mm256_and_ps(velec,cutoff_mask);
324             velecsum         = _mm256_add_ps(velecsum,velec);
325             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
326             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
327
328             fscal            = _mm256_add_ps(felec,fvdw);
329
330             fscal            = _mm256_and_ps(fscal,cutoff_mask);
331
332             /* Calculate temporary vectorial force */
333             tx               = _mm256_mul_ps(fscal,dx00);
334             ty               = _mm256_mul_ps(fscal,dy00);
335             tz               = _mm256_mul_ps(fscal,dz00);
336
337             /* Update vectorial force */
338             fix0             = _mm256_add_ps(fix0,tx);
339             fiy0             = _mm256_add_ps(fiy0,ty);
340             fiz0             = _mm256_add_ps(fiz0,tz);
341
342             fjx0             = _mm256_add_ps(fjx0,tx);
343             fjy0             = _mm256_add_ps(fjy0,ty);
344             fjz0             = _mm256_add_ps(fjz0,tz);
345
346             }
347
348             /**************************
349              * CALCULATE INTERACTIONS *
350              **************************/
351
352             if (gmx_mm256_any_lt(rsq10,rcutoff2))
353             {
354
355             /* Compute parameters for interactions between i and j atoms */
356             qq10             = _mm256_mul_ps(iq1,jq0);
357
358             /* REACTION-FIELD ELECTROSTATICS */
359             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
360             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
361
362             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
363
364             /* Update potential sum for this i atom from the interaction with this j atom. */
365             velec            = _mm256_and_ps(velec,cutoff_mask);
366             velecsum         = _mm256_add_ps(velecsum,velec);
367
368             fscal            = felec;
369
370             fscal            = _mm256_and_ps(fscal,cutoff_mask);
371
372             /* Calculate temporary vectorial force */
373             tx               = _mm256_mul_ps(fscal,dx10);
374             ty               = _mm256_mul_ps(fscal,dy10);
375             tz               = _mm256_mul_ps(fscal,dz10);
376
377             /* Update vectorial force */
378             fix1             = _mm256_add_ps(fix1,tx);
379             fiy1             = _mm256_add_ps(fiy1,ty);
380             fiz1             = _mm256_add_ps(fiz1,tz);
381
382             fjx0             = _mm256_add_ps(fjx0,tx);
383             fjy0             = _mm256_add_ps(fjy0,ty);
384             fjz0             = _mm256_add_ps(fjz0,tz);
385
386             }
387
388             /**************************
389              * CALCULATE INTERACTIONS *
390              **************************/
391
392             if (gmx_mm256_any_lt(rsq20,rcutoff2))
393             {
394
395             /* Compute parameters for interactions between i and j atoms */
396             qq20             = _mm256_mul_ps(iq2,jq0);
397
398             /* REACTION-FIELD ELECTROSTATICS */
399             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
400             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
401
402             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velec            = _mm256_and_ps(velec,cutoff_mask);
406             velecsum         = _mm256_add_ps(velecsum,velec);
407
408             fscal            = felec;
409
410             fscal            = _mm256_and_ps(fscal,cutoff_mask);
411
412             /* Calculate temporary vectorial force */
413             tx               = _mm256_mul_ps(fscal,dx20);
414             ty               = _mm256_mul_ps(fscal,dy20);
415             tz               = _mm256_mul_ps(fscal,dz20);
416
417             /* Update vectorial force */
418             fix2             = _mm256_add_ps(fix2,tx);
419             fiy2             = _mm256_add_ps(fiy2,ty);
420             fiz2             = _mm256_add_ps(fiz2,tz);
421
422             fjx0             = _mm256_add_ps(fjx0,tx);
423             fjy0             = _mm256_add_ps(fjy0,ty);
424             fjz0             = _mm256_add_ps(fjz0,tz);
425
426             }
427
428             fjptrA             = f+j_coord_offsetA;
429             fjptrB             = f+j_coord_offsetB;
430             fjptrC             = f+j_coord_offsetC;
431             fjptrD             = f+j_coord_offsetD;
432             fjptrE             = f+j_coord_offsetE;
433             fjptrF             = f+j_coord_offsetF;
434             fjptrG             = f+j_coord_offsetG;
435             fjptrH             = f+j_coord_offsetH;
436
437             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
438
439             /* Inner loop uses 145 flops */
440         }
441
442         if(jidx<j_index_end)
443         {
444
445             /* Get j neighbor index, and coordinate index */
446             jnrlistA         = jjnr[jidx];
447             jnrlistB         = jjnr[jidx+1];
448             jnrlistC         = jjnr[jidx+2];
449             jnrlistD         = jjnr[jidx+3];
450             jnrlistE         = jjnr[jidx+4];
451             jnrlistF         = jjnr[jidx+5];
452             jnrlistG         = jjnr[jidx+6];
453             jnrlistH         = jjnr[jidx+7];
454             /* Sign of each element will be negative for non-real atoms.
455              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
456              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
457              */
458             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
459                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
460                                             
461             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
462             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
463             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
464             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
465             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
466             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
467             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
468             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
469             j_coord_offsetA  = DIM*jnrA;
470             j_coord_offsetB  = DIM*jnrB;
471             j_coord_offsetC  = DIM*jnrC;
472             j_coord_offsetD  = DIM*jnrD;
473             j_coord_offsetE  = DIM*jnrE;
474             j_coord_offsetF  = DIM*jnrF;
475             j_coord_offsetG  = DIM*jnrG;
476             j_coord_offsetH  = DIM*jnrH;
477
478             /* load j atom coordinates */
479             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
480                                                  x+j_coord_offsetC,x+j_coord_offsetD,
481                                                  x+j_coord_offsetE,x+j_coord_offsetF,
482                                                  x+j_coord_offsetG,x+j_coord_offsetH,
483                                                  &jx0,&jy0,&jz0);
484
485             /* Calculate displacement vector */
486             dx00             = _mm256_sub_ps(ix0,jx0);
487             dy00             = _mm256_sub_ps(iy0,jy0);
488             dz00             = _mm256_sub_ps(iz0,jz0);
489             dx10             = _mm256_sub_ps(ix1,jx0);
490             dy10             = _mm256_sub_ps(iy1,jy0);
491             dz10             = _mm256_sub_ps(iz1,jz0);
492             dx20             = _mm256_sub_ps(ix2,jx0);
493             dy20             = _mm256_sub_ps(iy2,jy0);
494             dz20             = _mm256_sub_ps(iz2,jz0);
495
496             /* Calculate squared distance and things based on it */
497             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
498             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
499             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
500
501             rinv00           = avx256_invsqrt_f(rsq00);
502             rinv10           = avx256_invsqrt_f(rsq10);
503             rinv20           = avx256_invsqrt_f(rsq20);
504
505             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
506             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
507             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
508
509             /* Load parameters for j particles */
510             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
511                                                                  charge+jnrC+0,charge+jnrD+0,
512                                                                  charge+jnrE+0,charge+jnrF+0,
513                                                                  charge+jnrG+0,charge+jnrH+0);
514             vdwjidx0A        = 2*vdwtype[jnrA+0];
515             vdwjidx0B        = 2*vdwtype[jnrB+0];
516             vdwjidx0C        = 2*vdwtype[jnrC+0];
517             vdwjidx0D        = 2*vdwtype[jnrD+0];
518             vdwjidx0E        = 2*vdwtype[jnrE+0];
519             vdwjidx0F        = 2*vdwtype[jnrF+0];
520             vdwjidx0G        = 2*vdwtype[jnrG+0];
521             vdwjidx0H        = 2*vdwtype[jnrH+0];
522
523             fjx0             = _mm256_setzero_ps();
524             fjy0             = _mm256_setzero_ps();
525             fjz0             = _mm256_setzero_ps();
526
527             /**************************
528              * CALCULATE INTERACTIONS *
529              **************************/
530
531             if (gmx_mm256_any_lt(rsq00,rcutoff2))
532             {
533
534             r00              = _mm256_mul_ps(rsq00,rinv00);
535             r00              = _mm256_andnot_ps(dummy_mask,r00);
536
537             /* Compute parameters for interactions between i and j atoms */
538             qq00             = _mm256_mul_ps(iq0,jq0);
539             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
540                                             vdwioffsetptr0+vdwjidx0B,
541                                             vdwioffsetptr0+vdwjidx0C,
542                                             vdwioffsetptr0+vdwjidx0D,
543                                             vdwioffsetptr0+vdwjidx0E,
544                                             vdwioffsetptr0+vdwjidx0F,
545                                             vdwioffsetptr0+vdwjidx0G,
546                                             vdwioffsetptr0+vdwjidx0H,
547                                             &c6_00,&c12_00);
548
549             /* REACTION-FIELD ELECTROSTATICS */
550             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
551             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
552
553             /* LENNARD-JONES DISPERSION/REPULSION */
554
555             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
556             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
557             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
558             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
559             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
560
561             d                = _mm256_sub_ps(r00,rswitch);
562             d                = _mm256_max_ps(d,_mm256_setzero_ps());
563             d2               = _mm256_mul_ps(d,d);
564             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
565
566             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
567
568             /* Evaluate switch function */
569             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
570             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
571             vvdw             = _mm256_mul_ps(vvdw,sw);
572             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
573
574             /* Update potential sum for this i atom from the interaction with this j atom. */
575             velec            = _mm256_and_ps(velec,cutoff_mask);
576             velec            = _mm256_andnot_ps(dummy_mask,velec);
577             velecsum         = _mm256_add_ps(velecsum,velec);
578             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
579             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
580             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
581
582             fscal            = _mm256_add_ps(felec,fvdw);
583
584             fscal            = _mm256_and_ps(fscal,cutoff_mask);
585
586             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
587
588             /* Calculate temporary vectorial force */
589             tx               = _mm256_mul_ps(fscal,dx00);
590             ty               = _mm256_mul_ps(fscal,dy00);
591             tz               = _mm256_mul_ps(fscal,dz00);
592
593             /* Update vectorial force */
594             fix0             = _mm256_add_ps(fix0,tx);
595             fiy0             = _mm256_add_ps(fiy0,ty);
596             fiz0             = _mm256_add_ps(fiz0,tz);
597
598             fjx0             = _mm256_add_ps(fjx0,tx);
599             fjy0             = _mm256_add_ps(fjy0,ty);
600             fjz0             = _mm256_add_ps(fjz0,tz);
601
602             }
603
604             /**************************
605              * CALCULATE INTERACTIONS *
606              **************************/
607
608             if (gmx_mm256_any_lt(rsq10,rcutoff2))
609             {
610
611             /* Compute parameters for interactions between i and j atoms */
612             qq10             = _mm256_mul_ps(iq1,jq0);
613
614             /* REACTION-FIELD ELECTROSTATICS */
615             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
616             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
617
618             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
619
620             /* Update potential sum for this i atom from the interaction with this j atom. */
621             velec            = _mm256_and_ps(velec,cutoff_mask);
622             velec            = _mm256_andnot_ps(dummy_mask,velec);
623             velecsum         = _mm256_add_ps(velecsum,velec);
624
625             fscal            = felec;
626
627             fscal            = _mm256_and_ps(fscal,cutoff_mask);
628
629             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
630
631             /* Calculate temporary vectorial force */
632             tx               = _mm256_mul_ps(fscal,dx10);
633             ty               = _mm256_mul_ps(fscal,dy10);
634             tz               = _mm256_mul_ps(fscal,dz10);
635
636             /* Update vectorial force */
637             fix1             = _mm256_add_ps(fix1,tx);
638             fiy1             = _mm256_add_ps(fiy1,ty);
639             fiz1             = _mm256_add_ps(fiz1,tz);
640
641             fjx0             = _mm256_add_ps(fjx0,tx);
642             fjy0             = _mm256_add_ps(fjy0,ty);
643             fjz0             = _mm256_add_ps(fjz0,tz);
644
645             }
646
647             /**************************
648              * CALCULATE INTERACTIONS *
649              **************************/
650
651             if (gmx_mm256_any_lt(rsq20,rcutoff2))
652             {
653
654             /* Compute parameters for interactions between i and j atoms */
655             qq20             = _mm256_mul_ps(iq2,jq0);
656
657             /* REACTION-FIELD ELECTROSTATICS */
658             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
659             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
660
661             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
662
663             /* Update potential sum for this i atom from the interaction with this j atom. */
664             velec            = _mm256_and_ps(velec,cutoff_mask);
665             velec            = _mm256_andnot_ps(dummy_mask,velec);
666             velecsum         = _mm256_add_ps(velecsum,velec);
667
668             fscal            = felec;
669
670             fscal            = _mm256_and_ps(fscal,cutoff_mask);
671
672             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
673
674             /* Calculate temporary vectorial force */
675             tx               = _mm256_mul_ps(fscal,dx20);
676             ty               = _mm256_mul_ps(fscal,dy20);
677             tz               = _mm256_mul_ps(fscal,dz20);
678
679             /* Update vectorial force */
680             fix2             = _mm256_add_ps(fix2,tx);
681             fiy2             = _mm256_add_ps(fiy2,ty);
682             fiz2             = _mm256_add_ps(fiz2,tz);
683
684             fjx0             = _mm256_add_ps(fjx0,tx);
685             fjy0             = _mm256_add_ps(fjy0,ty);
686             fjz0             = _mm256_add_ps(fjz0,tz);
687
688             }
689
690             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
691             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
692             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
693             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
694             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
695             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
696             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
697             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
698
699             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
700
701             /* Inner loop uses 146 flops */
702         }
703
704         /* End of innermost loop */
705
706         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
707                                                  f+i_coord_offset,fshift+i_shift_offset);
708
709         ggid                        = gid[iidx];
710         /* Update potential energies */
711         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
712         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
713
714         /* Increment number of inner iterations */
715         inneriter                  += j_index_end - j_index_start;
716
717         /* Outer loop uses 20 flops */
718     }
719
720     /* Increment number of outer iterations */
721     outeriter        += nri;
722
723     /* Update outer/inner flops */
724
725     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*146);
726 }
727 /*
728  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_256_single
729  * Electrostatics interaction: ReactionField
730  * VdW interaction:            LennardJones
731  * Geometry:                   Water3-Particle
732  * Calculate force/pot:        Force
733  */
734 void
735 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_256_single
736                     (t_nblist                    * gmx_restrict       nlist,
737                      rvec                        * gmx_restrict          xx,
738                      rvec                        * gmx_restrict          ff,
739                      struct t_forcerec           * gmx_restrict          fr,
740                      t_mdatoms                   * gmx_restrict     mdatoms,
741                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
742                      t_nrnb                      * gmx_restrict        nrnb)
743 {
744     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
745      * just 0 for non-waters.
746      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
747      * jnr indices corresponding to data put in the four positions in the SIMD register.
748      */
749     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
750     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
751     int              jnrA,jnrB,jnrC,jnrD;
752     int              jnrE,jnrF,jnrG,jnrH;
753     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
754     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
755     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
756     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
757     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
758     real             rcutoff_scalar;
759     real             *shiftvec,*fshift,*x,*f;
760     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
761     real             scratch[4*DIM];
762     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
763     real *           vdwioffsetptr0;
764     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
765     real *           vdwioffsetptr1;
766     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
767     real *           vdwioffsetptr2;
768     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
769     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
770     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
771     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
772     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
773     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
774     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
775     real             *charge;
776     int              nvdwtype;
777     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
778     int              *vdwtype;
779     real             *vdwparam;
780     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
781     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
782     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
783     real             rswitch_scalar,d_scalar;
784     __m256           dummy_mask,cutoff_mask;
785     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
786     __m256           one     = _mm256_set1_ps(1.0);
787     __m256           two     = _mm256_set1_ps(2.0);
788     x                = xx[0];
789     f                = ff[0];
790
791     nri              = nlist->nri;
792     iinr             = nlist->iinr;
793     jindex           = nlist->jindex;
794     jjnr             = nlist->jjnr;
795     shiftidx         = nlist->shift;
796     gid              = nlist->gid;
797     shiftvec         = fr->shift_vec[0];
798     fshift           = fr->fshift[0];
799     facel            = _mm256_set1_ps(fr->ic->epsfac);
800     charge           = mdatoms->chargeA;
801     krf              = _mm256_set1_ps(fr->ic->k_rf);
802     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
803     crf              = _mm256_set1_ps(fr->ic->c_rf);
804     nvdwtype         = fr->ntype;
805     vdwparam         = fr->nbfp;
806     vdwtype          = mdatoms->typeA;
807
808     /* Setup water-specific parameters */
809     inr              = nlist->iinr[0];
810     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
811     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
812     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
813     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
814
815     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
816     rcutoff_scalar   = fr->ic->rcoulomb;
817     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
818     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
819
820     rswitch_scalar   = fr->ic->rvdw_switch;
821     rswitch          = _mm256_set1_ps(rswitch_scalar);
822     /* Setup switch parameters */
823     d_scalar         = rcutoff_scalar-rswitch_scalar;
824     d                = _mm256_set1_ps(d_scalar);
825     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
826     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
827     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
828     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
829     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
830     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
831
832     /* Avoid stupid compiler warnings */
833     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
834     j_coord_offsetA = 0;
835     j_coord_offsetB = 0;
836     j_coord_offsetC = 0;
837     j_coord_offsetD = 0;
838     j_coord_offsetE = 0;
839     j_coord_offsetF = 0;
840     j_coord_offsetG = 0;
841     j_coord_offsetH = 0;
842
843     outeriter        = 0;
844     inneriter        = 0;
845
846     for(iidx=0;iidx<4*DIM;iidx++)
847     {
848         scratch[iidx] = 0.0;
849     }
850
851     /* Start outer loop over neighborlists */
852     for(iidx=0; iidx<nri; iidx++)
853     {
854         /* Load shift vector for this list */
855         i_shift_offset   = DIM*shiftidx[iidx];
856
857         /* Load limits for loop over neighbors */
858         j_index_start    = jindex[iidx];
859         j_index_end      = jindex[iidx+1];
860
861         /* Get outer coordinate index */
862         inr              = iinr[iidx];
863         i_coord_offset   = DIM*inr;
864
865         /* Load i particle coords and add shift vector */
866         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
867                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
868
869         fix0             = _mm256_setzero_ps();
870         fiy0             = _mm256_setzero_ps();
871         fiz0             = _mm256_setzero_ps();
872         fix1             = _mm256_setzero_ps();
873         fiy1             = _mm256_setzero_ps();
874         fiz1             = _mm256_setzero_ps();
875         fix2             = _mm256_setzero_ps();
876         fiy2             = _mm256_setzero_ps();
877         fiz2             = _mm256_setzero_ps();
878
879         /* Start inner kernel loop */
880         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
881         {
882
883             /* Get j neighbor index, and coordinate index */
884             jnrA             = jjnr[jidx];
885             jnrB             = jjnr[jidx+1];
886             jnrC             = jjnr[jidx+2];
887             jnrD             = jjnr[jidx+3];
888             jnrE             = jjnr[jidx+4];
889             jnrF             = jjnr[jidx+5];
890             jnrG             = jjnr[jidx+6];
891             jnrH             = jjnr[jidx+7];
892             j_coord_offsetA  = DIM*jnrA;
893             j_coord_offsetB  = DIM*jnrB;
894             j_coord_offsetC  = DIM*jnrC;
895             j_coord_offsetD  = DIM*jnrD;
896             j_coord_offsetE  = DIM*jnrE;
897             j_coord_offsetF  = DIM*jnrF;
898             j_coord_offsetG  = DIM*jnrG;
899             j_coord_offsetH  = DIM*jnrH;
900
901             /* load j atom coordinates */
902             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
903                                                  x+j_coord_offsetC,x+j_coord_offsetD,
904                                                  x+j_coord_offsetE,x+j_coord_offsetF,
905                                                  x+j_coord_offsetG,x+j_coord_offsetH,
906                                                  &jx0,&jy0,&jz0);
907
908             /* Calculate displacement vector */
909             dx00             = _mm256_sub_ps(ix0,jx0);
910             dy00             = _mm256_sub_ps(iy0,jy0);
911             dz00             = _mm256_sub_ps(iz0,jz0);
912             dx10             = _mm256_sub_ps(ix1,jx0);
913             dy10             = _mm256_sub_ps(iy1,jy0);
914             dz10             = _mm256_sub_ps(iz1,jz0);
915             dx20             = _mm256_sub_ps(ix2,jx0);
916             dy20             = _mm256_sub_ps(iy2,jy0);
917             dz20             = _mm256_sub_ps(iz2,jz0);
918
919             /* Calculate squared distance and things based on it */
920             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
921             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
922             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
923
924             rinv00           = avx256_invsqrt_f(rsq00);
925             rinv10           = avx256_invsqrt_f(rsq10);
926             rinv20           = avx256_invsqrt_f(rsq20);
927
928             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
929             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
930             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
931
932             /* Load parameters for j particles */
933             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
934                                                                  charge+jnrC+0,charge+jnrD+0,
935                                                                  charge+jnrE+0,charge+jnrF+0,
936                                                                  charge+jnrG+0,charge+jnrH+0);
937             vdwjidx0A        = 2*vdwtype[jnrA+0];
938             vdwjidx0B        = 2*vdwtype[jnrB+0];
939             vdwjidx0C        = 2*vdwtype[jnrC+0];
940             vdwjidx0D        = 2*vdwtype[jnrD+0];
941             vdwjidx0E        = 2*vdwtype[jnrE+0];
942             vdwjidx0F        = 2*vdwtype[jnrF+0];
943             vdwjidx0G        = 2*vdwtype[jnrG+0];
944             vdwjidx0H        = 2*vdwtype[jnrH+0];
945
946             fjx0             = _mm256_setzero_ps();
947             fjy0             = _mm256_setzero_ps();
948             fjz0             = _mm256_setzero_ps();
949
950             /**************************
951              * CALCULATE INTERACTIONS *
952              **************************/
953
954             if (gmx_mm256_any_lt(rsq00,rcutoff2))
955             {
956
957             r00              = _mm256_mul_ps(rsq00,rinv00);
958
959             /* Compute parameters for interactions between i and j atoms */
960             qq00             = _mm256_mul_ps(iq0,jq0);
961             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
962                                             vdwioffsetptr0+vdwjidx0B,
963                                             vdwioffsetptr0+vdwjidx0C,
964                                             vdwioffsetptr0+vdwjidx0D,
965                                             vdwioffsetptr0+vdwjidx0E,
966                                             vdwioffsetptr0+vdwjidx0F,
967                                             vdwioffsetptr0+vdwjidx0G,
968                                             vdwioffsetptr0+vdwjidx0H,
969                                             &c6_00,&c12_00);
970
971             /* REACTION-FIELD ELECTROSTATICS */
972             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
973
974             /* LENNARD-JONES DISPERSION/REPULSION */
975
976             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
977             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
978             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
979             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
980             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
981
982             d                = _mm256_sub_ps(r00,rswitch);
983             d                = _mm256_max_ps(d,_mm256_setzero_ps());
984             d2               = _mm256_mul_ps(d,d);
985             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
986
987             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
988
989             /* Evaluate switch function */
990             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
991             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
992             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
993
994             fscal            = _mm256_add_ps(felec,fvdw);
995
996             fscal            = _mm256_and_ps(fscal,cutoff_mask);
997
998             /* Calculate temporary vectorial force */
999             tx               = _mm256_mul_ps(fscal,dx00);
1000             ty               = _mm256_mul_ps(fscal,dy00);
1001             tz               = _mm256_mul_ps(fscal,dz00);
1002
1003             /* Update vectorial force */
1004             fix0             = _mm256_add_ps(fix0,tx);
1005             fiy0             = _mm256_add_ps(fiy0,ty);
1006             fiz0             = _mm256_add_ps(fiz0,tz);
1007
1008             fjx0             = _mm256_add_ps(fjx0,tx);
1009             fjy0             = _mm256_add_ps(fjy0,ty);
1010             fjz0             = _mm256_add_ps(fjz0,tz);
1011
1012             }
1013
1014             /**************************
1015              * CALCULATE INTERACTIONS *
1016              **************************/
1017
1018             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1019             {
1020
1021             /* Compute parameters for interactions between i and j atoms */
1022             qq10             = _mm256_mul_ps(iq1,jq0);
1023
1024             /* REACTION-FIELD ELECTROSTATICS */
1025             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1026
1027             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1028
1029             fscal            = felec;
1030
1031             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1032
1033             /* Calculate temporary vectorial force */
1034             tx               = _mm256_mul_ps(fscal,dx10);
1035             ty               = _mm256_mul_ps(fscal,dy10);
1036             tz               = _mm256_mul_ps(fscal,dz10);
1037
1038             /* Update vectorial force */
1039             fix1             = _mm256_add_ps(fix1,tx);
1040             fiy1             = _mm256_add_ps(fiy1,ty);
1041             fiz1             = _mm256_add_ps(fiz1,tz);
1042
1043             fjx0             = _mm256_add_ps(fjx0,tx);
1044             fjy0             = _mm256_add_ps(fjy0,ty);
1045             fjz0             = _mm256_add_ps(fjz0,tz);
1046
1047             }
1048
1049             /**************************
1050              * CALCULATE INTERACTIONS *
1051              **************************/
1052
1053             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1054             {
1055
1056             /* Compute parameters for interactions between i and j atoms */
1057             qq20             = _mm256_mul_ps(iq2,jq0);
1058
1059             /* REACTION-FIELD ELECTROSTATICS */
1060             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1061
1062             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1063
1064             fscal            = felec;
1065
1066             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1067
1068             /* Calculate temporary vectorial force */
1069             tx               = _mm256_mul_ps(fscal,dx20);
1070             ty               = _mm256_mul_ps(fscal,dy20);
1071             tz               = _mm256_mul_ps(fscal,dz20);
1072
1073             /* Update vectorial force */
1074             fix2             = _mm256_add_ps(fix2,tx);
1075             fiy2             = _mm256_add_ps(fiy2,ty);
1076             fiz2             = _mm256_add_ps(fiz2,tz);
1077
1078             fjx0             = _mm256_add_ps(fjx0,tx);
1079             fjy0             = _mm256_add_ps(fjy0,ty);
1080             fjz0             = _mm256_add_ps(fjz0,tz);
1081
1082             }
1083
1084             fjptrA             = f+j_coord_offsetA;
1085             fjptrB             = f+j_coord_offsetB;
1086             fjptrC             = f+j_coord_offsetC;
1087             fjptrD             = f+j_coord_offsetD;
1088             fjptrE             = f+j_coord_offsetE;
1089             fjptrF             = f+j_coord_offsetF;
1090             fjptrG             = f+j_coord_offsetG;
1091             fjptrH             = f+j_coord_offsetH;
1092
1093             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1094
1095             /* Inner loop uses 124 flops */
1096         }
1097
1098         if(jidx<j_index_end)
1099         {
1100
1101             /* Get j neighbor index, and coordinate index */
1102             jnrlistA         = jjnr[jidx];
1103             jnrlistB         = jjnr[jidx+1];
1104             jnrlistC         = jjnr[jidx+2];
1105             jnrlistD         = jjnr[jidx+3];
1106             jnrlistE         = jjnr[jidx+4];
1107             jnrlistF         = jjnr[jidx+5];
1108             jnrlistG         = jjnr[jidx+6];
1109             jnrlistH         = jjnr[jidx+7];
1110             /* Sign of each element will be negative for non-real atoms.
1111              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1112              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1113              */
1114             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1115                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1116                                             
1117             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1118             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1119             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1120             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1121             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1122             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1123             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1124             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1125             j_coord_offsetA  = DIM*jnrA;
1126             j_coord_offsetB  = DIM*jnrB;
1127             j_coord_offsetC  = DIM*jnrC;
1128             j_coord_offsetD  = DIM*jnrD;
1129             j_coord_offsetE  = DIM*jnrE;
1130             j_coord_offsetF  = DIM*jnrF;
1131             j_coord_offsetG  = DIM*jnrG;
1132             j_coord_offsetH  = DIM*jnrH;
1133
1134             /* load j atom coordinates */
1135             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1136                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1137                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1138                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1139                                                  &jx0,&jy0,&jz0);
1140
1141             /* Calculate displacement vector */
1142             dx00             = _mm256_sub_ps(ix0,jx0);
1143             dy00             = _mm256_sub_ps(iy0,jy0);
1144             dz00             = _mm256_sub_ps(iz0,jz0);
1145             dx10             = _mm256_sub_ps(ix1,jx0);
1146             dy10             = _mm256_sub_ps(iy1,jy0);
1147             dz10             = _mm256_sub_ps(iz1,jz0);
1148             dx20             = _mm256_sub_ps(ix2,jx0);
1149             dy20             = _mm256_sub_ps(iy2,jy0);
1150             dz20             = _mm256_sub_ps(iz2,jz0);
1151
1152             /* Calculate squared distance and things based on it */
1153             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1154             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1155             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1156
1157             rinv00           = avx256_invsqrt_f(rsq00);
1158             rinv10           = avx256_invsqrt_f(rsq10);
1159             rinv20           = avx256_invsqrt_f(rsq20);
1160
1161             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1162             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1163             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1164
1165             /* Load parameters for j particles */
1166             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1167                                                                  charge+jnrC+0,charge+jnrD+0,
1168                                                                  charge+jnrE+0,charge+jnrF+0,
1169                                                                  charge+jnrG+0,charge+jnrH+0);
1170             vdwjidx0A        = 2*vdwtype[jnrA+0];
1171             vdwjidx0B        = 2*vdwtype[jnrB+0];
1172             vdwjidx0C        = 2*vdwtype[jnrC+0];
1173             vdwjidx0D        = 2*vdwtype[jnrD+0];
1174             vdwjidx0E        = 2*vdwtype[jnrE+0];
1175             vdwjidx0F        = 2*vdwtype[jnrF+0];
1176             vdwjidx0G        = 2*vdwtype[jnrG+0];
1177             vdwjidx0H        = 2*vdwtype[jnrH+0];
1178
1179             fjx0             = _mm256_setzero_ps();
1180             fjy0             = _mm256_setzero_ps();
1181             fjz0             = _mm256_setzero_ps();
1182
1183             /**************************
1184              * CALCULATE INTERACTIONS *
1185              **************************/
1186
1187             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1188             {
1189
1190             r00              = _mm256_mul_ps(rsq00,rinv00);
1191             r00              = _mm256_andnot_ps(dummy_mask,r00);
1192
1193             /* Compute parameters for interactions between i and j atoms */
1194             qq00             = _mm256_mul_ps(iq0,jq0);
1195             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1196                                             vdwioffsetptr0+vdwjidx0B,
1197                                             vdwioffsetptr0+vdwjidx0C,
1198                                             vdwioffsetptr0+vdwjidx0D,
1199                                             vdwioffsetptr0+vdwjidx0E,
1200                                             vdwioffsetptr0+vdwjidx0F,
1201                                             vdwioffsetptr0+vdwjidx0G,
1202                                             vdwioffsetptr0+vdwjidx0H,
1203                                             &c6_00,&c12_00);
1204
1205             /* REACTION-FIELD ELECTROSTATICS */
1206             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
1207
1208             /* LENNARD-JONES DISPERSION/REPULSION */
1209
1210             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1211             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
1212             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
1213             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
1214             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
1215
1216             d                = _mm256_sub_ps(r00,rswitch);
1217             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1218             d2               = _mm256_mul_ps(d,d);
1219             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1220
1221             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1222
1223             /* Evaluate switch function */
1224             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1225             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
1226             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1227
1228             fscal            = _mm256_add_ps(felec,fvdw);
1229
1230             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1231
1232             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1233
1234             /* Calculate temporary vectorial force */
1235             tx               = _mm256_mul_ps(fscal,dx00);
1236             ty               = _mm256_mul_ps(fscal,dy00);
1237             tz               = _mm256_mul_ps(fscal,dz00);
1238
1239             /* Update vectorial force */
1240             fix0             = _mm256_add_ps(fix0,tx);
1241             fiy0             = _mm256_add_ps(fiy0,ty);
1242             fiz0             = _mm256_add_ps(fiz0,tz);
1243
1244             fjx0             = _mm256_add_ps(fjx0,tx);
1245             fjy0             = _mm256_add_ps(fjy0,ty);
1246             fjz0             = _mm256_add_ps(fjz0,tz);
1247
1248             }
1249
1250             /**************************
1251              * CALCULATE INTERACTIONS *
1252              **************************/
1253
1254             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1255             {
1256
1257             /* Compute parameters for interactions between i and j atoms */
1258             qq10             = _mm256_mul_ps(iq1,jq0);
1259
1260             /* REACTION-FIELD ELECTROSTATICS */
1261             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1262
1263             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1264
1265             fscal            = felec;
1266
1267             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1268
1269             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1270
1271             /* Calculate temporary vectorial force */
1272             tx               = _mm256_mul_ps(fscal,dx10);
1273             ty               = _mm256_mul_ps(fscal,dy10);
1274             tz               = _mm256_mul_ps(fscal,dz10);
1275
1276             /* Update vectorial force */
1277             fix1             = _mm256_add_ps(fix1,tx);
1278             fiy1             = _mm256_add_ps(fiy1,ty);
1279             fiz1             = _mm256_add_ps(fiz1,tz);
1280
1281             fjx0             = _mm256_add_ps(fjx0,tx);
1282             fjy0             = _mm256_add_ps(fjy0,ty);
1283             fjz0             = _mm256_add_ps(fjz0,tz);
1284
1285             }
1286
1287             /**************************
1288              * CALCULATE INTERACTIONS *
1289              **************************/
1290
1291             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1292             {
1293
1294             /* Compute parameters for interactions between i and j atoms */
1295             qq20             = _mm256_mul_ps(iq2,jq0);
1296
1297             /* REACTION-FIELD ELECTROSTATICS */
1298             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1299
1300             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1301
1302             fscal            = felec;
1303
1304             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1305
1306             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1307
1308             /* Calculate temporary vectorial force */
1309             tx               = _mm256_mul_ps(fscal,dx20);
1310             ty               = _mm256_mul_ps(fscal,dy20);
1311             tz               = _mm256_mul_ps(fscal,dz20);
1312
1313             /* Update vectorial force */
1314             fix2             = _mm256_add_ps(fix2,tx);
1315             fiy2             = _mm256_add_ps(fiy2,ty);
1316             fiz2             = _mm256_add_ps(fiz2,tz);
1317
1318             fjx0             = _mm256_add_ps(fjx0,tx);
1319             fjy0             = _mm256_add_ps(fjy0,ty);
1320             fjz0             = _mm256_add_ps(fjz0,tz);
1321
1322             }
1323
1324             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1325             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1326             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1327             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1328             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1329             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1330             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1331             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1332
1333             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1334
1335             /* Inner loop uses 125 flops */
1336         }
1337
1338         /* End of innermost loop */
1339
1340         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1341                                                  f+i_coord_offset,fshift+i_shift_offset);
1342
1343         /* Increment number of inner iterations */
1344         inneriter                  += j_index_end - j_index_start;
1345
1346         /* Outer loop uses 18 flops */
1347     }
1348
1349     /* Increment number of outer iterations */
1350     outeriter        += nri;
1351
1352     /* Update outer/inner flops */
1353
1354     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*125);
1355 }