Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_256_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     real *           vdwioffsetptr1;
91     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
106     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
107     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
108     real             rswitch_scalar,d_scalar;
109     __m256           dummy_mask,cutoff_mask;
110     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
111     __m256           one     = _mm256_set1_ps(1.0);
112     __m256           two     = _mm256_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm256_set1_ps(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     krf              = _mm256_set1_ps(fr->ic->k_rf);
127     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
128     crf              = _mm256_set1_ps(fr->ic->c_rf);
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
136     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
137     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
138     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
139
140     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
141     rcutoff_scalar   = fr->rcoulomb;
142     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
143     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
144
145     rswitch_scalar   = fr->rvdw_switch;
146     rswitch          = _mm256_set1_ps(rswitch_scalar);
147     /* Setup switch parameters */
148     d_scalar         = rcutoff_scalar-rswitch_scalar;
149     d                = _mm256_set1_ps(d_scalar);
150     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
151     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
152     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
153     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
154     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
155     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
156
157     /* Avoid stupid compiler warnings */
158     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
159     j_coord_offsetA = 0;
160     j_coord_offsetB = 0;
161     j_coord_offsetC = 0;
162     j_coord_offsetD = 0;
163     j_coord_offsetE = 0;
164     j_coord_offsetF = 0;
165     j_coord_offsetG = 0;
166     j_coord_offsetH = 0;
167
168     outeriter        = 0;
169     inneriter        = 0;
170
171     for(iidx=0;iidx<4*DIM;iidx++)
172     {
173         scratch[iidx] = 0.0;
174     }
175
176     /* Start outer loop over neighborlists */
177     for(iidx=0; iidx<nri; iidx++)
178     {
179         /* Load shift vector for this list */
180         i_shift_offset   = DIM*shiftidx[iidx];
181
182         /* Load limits for loop over neighbors */
183         j_index_start    = jindex[iidx];
184         j_index_end      = jindex[iidx+1];
185
186         /* Get outer coordinate index */
187         inr              = iinr[iidx];
188         i_coord_offset   = DIM*inr;
189
190         /* Load i particle coords and add shift vector */
191         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
192                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
193
194         fix0             = _mm256_setzero_ps();
195         fiy0             = _mm256_setzero_ps();
196         fiz0             = _mm256_setzero_ps();
197         fix1             = _mm256_setzero_ps();
198         fiy1             = _mm256_setzero_ps();
199         fiz1             = _mm256_setzero_ps();
200         fix2             = _mm256_setzero_ps();
201         fiy2             = _mm256_setzero_ps();
202         fiz2             = _mm256_setzero_ps();
203
204         /* Reset potential sums */
205         velecsum         = _mm256_setzero_ps();
206         vvdwsum          = _mm256_setzero_ps();
207
208         /* Start inner kernel loop */
209         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
210         {
211
212             /* Get j neighbor index, and coordinate index */
213             jnrA             = jjnr[jidx];
214             jnrB             = jjnr[jidx+1];
215             jnrC             = jjnr[jidx+2];
216             jnrD             = jjnr[jidx+3];
217             jnrE             = jjnr[jidx+4];
218             jnrF             = jjnr[jidx+5];
219             jnrG             = jjnr[jidx+6];
220             jnrH             = jjnr[jidx+7];
221             j_coord_offsetA  = DIM*jnrA;
222             j_coord_offsetB  = DIM*jnrB;
223             j_coord_offsetC  = DIM*jnrC;
224             j_coord_offsetD  = DIM*jnrD;
225             j_coord_offsetE  = DIM*jnrE;
226             j_coord_offsetF  = DIM*jnrF;
227             j_coord_offsetG  = DIM*jnrG;
228             j_coord_offsetH  = DIM*jnrH;
229
230             /* load j atom coordinates */
231             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
232                                                  x+j_coord_offsetC,x+j_coord_offsetD,
233                                                  x+j_coord_offsetE,x+j_coord_offsetF,
234                                                  x+j_coord_offsetG,x+j_coord_offsetH,
235                                                  &jx0,&jy0,&jz0);
236
237             /* Calculate displacement vector */
238             dx00             = _mm256_sub_ps(ix0,jx0);
239             dy00             = _mm256_sub_ps(iy0,jy0);
240             dz00             = _mm256_sub_ps(iz0,jz0);
241             dx10             = _mm256_sub_ps(ix1,jx0);
242             dy10             = _mm256_sub_ps(iy1,jy0);
243             dz10             = _mm256_sub_ps(iz1,jz0);
244             dx20             = _mm256_sub_ps(ix2,jx0);
245             dy20             = _mm256_sub_ps(iy2,jy0);
246             dz20             = _mm256_sub_ps(iz2,jz0);
247
248             /* Calculate squared distance and things based on it */
249             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
250             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
251             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
252
253             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
254             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
255             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
256
257             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
258             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
259             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
260
261             /* Load parameters for j particles */
262             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
263                                                                  charge+jnrC+0,charge+jnrD+0,
264                                                                  charge+jnrE+0,charge+jnrF+0,
265                                                                  charge+jnrG+0,charge+jnrH+0);
266             vdwjidx0A        = 2*vdwtype[jnrA+0];
267             vdwjidx0B        = 2*vdwtype[jnrB+0];
268             vdwjidx0C        = 2*vdwtype[jnrC+0];
269             vdwjidx0D        = 2*vdwtype[jnrD+0];
270             vdwjidx0E        = 2*vdwtype[jnrE+0];
271             vdwjidx0F        = 2*vdwtype[jnrF+0];
272             vdwjidx0G        = 2*vdwtype[jnrG+0];
273             vdwjidx0H        = 2*vdwtype[jnrH+0];
274
275             fjx0             = _mm256_setzero_ps();
276             fjy0             = _mm256_setzero_ps();
277             fjz0             = _mm256_setzero_ps();
278
279             /**************************
280              * CALCULATE INTERACTIONS *
281              **************************/
282
283             if (gmx_mm256_any_lt(rsq00,rcutoff2))
284             {
285
286             r00              = _mm256_mul_ps(rsq00,rinv00);
287
288             /* Compute parameters for interactions between i and j atoms */
289             qq00             = _mm256_mul_ps(iq0,jq0);
290             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
291                                             vdwioffsetptr0+vdwjidx0B,
292                                             vdwioffsetptr0+vdwjidx0C,
293                                             vdwioffsetptr0+vdwjidx0D,
294                                             vdwioffsetptr0+vdwjidx0E,
295                                             vdwioffsetptr0+vdwjidx0F,
296                                             vdwioffsetptr0+vdwjidx0G,
297                                             vdwioffsetptr0+vdwjidx0H,
298                                             &c6_00,&c12_00);
299
300             /* REACTION-FIELD ELECTROSTATICS */
301             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
302             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
303
304             /* LENNARD-JONES DISPERSION/REPULSION */
305
306             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
307             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
308             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
309             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
310             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
311
312             d                = _mm256_sub_ps(r00,rswitch);
313             d                = _mm256_max_ps(d,_mm256_setzero_ps());
314             d2               = _mm256_mul_ps(d,d);
315             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
316
317             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
318
319             /* Evaluate switch function */
320             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
321             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
322             vvdw             = _mm256_mul_ps(vvdw,sw);
323             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
324
325             /* Update potential sum for this i atom from the interaction with this j atom. */
326             velec            = _mm256_and_ps(velec,cutoff_mask);
327             velecsum         = _mm256_add_ps(velecsum,velec);
328             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
329             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
330
331             fscal            = _mm256_add_ps(felec,fvdw);
332
333             fscal            = _mm256_and_ps(fscal,cutoff_mask);
334
335             /* Calculate temporary vectorial force */
336             tx               = _mm256_mul_ps(fscal,dx00);
337             ty               = _mm256_mul_ps(fscal,dy00);
338             tz               = _mm256_mul_ps(fscal,dz00);
339
340             /* Update vectorial force */
341             fix0             = _mm256_add_ps(fix0,tx);
342             fiy0             = _mm256_add_ps(fiy0,ty);
343             fiz0             = _mm256_add_ps(fiz0,tz);
344
345             fjx0             = _mm256_add_ps(fjx0,tx);
346             fjy0             = _mm256_add_ps(fjy0,ty);
347             fjz0             = _mm256_add_ps(fjz0,tz);
348
349             }
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             if (gmx_mm256_any_lt(rsq10,rcutoff2))
356             {
357
358             /* Compute parameters for interactions between i and j atoms */
359             qq10             = _mm256_mul_ps(iq1,jq0);
360
361             /* REACTION-FIELD ELECTROSTATICS */
362             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
363             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
364
365             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
366
367             /* Update potential sum for this i atom from the interaction with this j atom. */
368             velec            = _mm256_and_ps(velec,cutoff_mask);
369             velecsum         = _mm256_add_ps(velecsum,velec);
370
371             fscal            = felec;
372
373             fscal            = _mm256_and_ps(fscal,cutoff_mask);
374
375             /* Calculate temporary vectorial force */
376             tx               = _mm256_mul_ps(fscal,dx10);
377             ty               = _mm256_mul_ps(fscal,dy10);
378             tz               = _mm256_mul_ps(fscal,dz10);
379
380             /* Update vectorial force */
381             fix1             = _mm256_add_ps(fix1,tx);
382             fiy1             = _mm256_add_ps(fiy1,ty);
383             fiz1             = _mm256_add_ps(fiz1,tz);
384
385             fjx0             = _mm256_add_ps(fjx0,tx);
386             fjy0             = _mm256_add_ps(fjy0,ty);
387             fjz0             = _mm256_add_ps(fjz0,tz);
388
389             }
390
391             /**************************
392              * CALCULATE INTERACTIONS *
393              **************************/
394
395             if (gmx_mm256_any_lt(rsq20,rcutoff2))
396             {
397
398             /* Compute parameters for interactions between i and j atoms */
399             qq20             = _mm256_mul_ps(iq2,jq0);
400
401             /* REACTION-FIELD ELECTROSTATICS */
402             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
403             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
404
405             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
406
407             /* Update potential sum for this i atom from the interaction with this j atom. */
408             velec            = _mm256_and_ps(velec,cutoff_mask);
409             velecsum         = _mm256_add_ps(velecsum,velec);
410
411             fscal            = felec;
412
413             fscal            = _mm256_and_ps(fscal,cutoff_mask);
414
415             /* Calculate temporary vectorial force */
416             tx               = _mm256_mul_ps(fscal,dx20);
417             ty               = _mm256_mul_ps(fscal,dy20);
418             tz               = _mm256_mul_ps(fscal,dz20);
419
420             /* Update vectorial force */
421             fix2             = _mm256_add_ps(fix2,tx);
422             fiy2             = _mm256_add_ps(fiy2,ty);
423             fiz2             = _mm256_add_ps(fiz2,tz);
424
425             fjx0             = _mm256_add_ps(fjx0,tx);
426             fjy0             = _mm256_add_ps(fjy0,ty);
427             fjz0             = _mm256_add_ps(fjz0,tz);
428
429             }
430
431             fjptrA             = f+j_coord_offsetA;
432             fjptrB             = f+j_coord_offsetB;
433             fjptrC             = f+j_coord_offsetC;
434             fjptrD             = f+j_coord_offsetD;
435             fjptrE             = f+j_coord_offsetE;
436             fjptrF             = f+j_coord_offsetF;
437             fjptrG             = f+j_coord_offsetG;
438             fjptrH             = f+j_coord_offsetH;
439
440             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
441
442             /* Inner loop uses 145 flops */
443         }
444
445         if(jidx<j_index_end)
446         {
447
448             /* Get j neighbor index, and coordinate index */
449             jnrlistA         = jjnr[jidx];
450             jnrlistB         = jjnr[jidx+1];
451             jnrlistC         = jjnr[jidx+2];
452             jnrlistD         = jjnr[jidx+3];
453             jnrlistE         = jjnr[jidx+4];
454             jnrlistF         = jjnr[jidx+5];
455             jnrlistG         = jjnr[jidx+6];
456             jnrlistH         = jjnr[jidx+7];
457             /* Sign of each element will be negative for non-real atoms.
458              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
459              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
460              */
461             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
462                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
463                                             
464             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
465             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
466             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
467             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
468             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
469             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
470             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
471             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
472             j_coord_offsetA  = DIM*jnrA;
473             j_coord_offsetB  = DIM*jnrB;
474             j_coord_offsetC  = DIM*jnrC;
475             j_coord_offsetD  = DIM*jnrD;
476             j_coord_offsetE  = DIM*jnrE;
477             j_coord_offsetF  = DIM*jnrF;
478             j_coord_offsetG  = DIM*jnrG;
479             j_coord_offsetH  = DIM*jnrH;
480
481             /* load j atom coordinates */
482             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
483                                                  x+j_coord_offsetC,x+j_coord_offsetD,
484                                                  x+j_coord_offsetE,x+j_coord_offsetF,
485                                                  x+j_coord_offsetG,x+j_coord_offsetH,
486                                                  &jx0,&jy0,&jz0);
487
488             /* Calculate displacement vector */
489             dx00             = _mm256_sub_ps(ix0,jx0);
490             dy00             = _mm256_sub_ps(iy0,jy0);
491             dz00             = _mm256_sub_ps(iz0,jz0);
492             dx10             = _mm256_sub_ps(ix1,jx0);
493             dy10             = _mm256_sub_ps(iy1,jy0);
494             dz10             = _mm256_sub_ps(iz1,jz0);
495             dx20             = _mm256_sub_ps(ix2,jx0);
496             dy20             = _mm256_sub_ps(iy2,jy0);
497             dz20             = _mm256_sub_ps(iz2,jz0);
498
499             /* Calculate squared distance and things based on it */
500             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
501             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
502             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
503
504             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
505             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
506             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
507
508             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
509             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
510             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
511
512             /* Load parameters for j particles */
513             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
514                                                                  charge+jnrC+0,charge+jnrD+0,
515                                                                  charge+jnrE+0,charge+jnrF+0,
516                                                                  charge+jnrG+0,charge+jnrH+0);
517             vdwjidx0A        = 2*vdwtype[jnrA+0];
518             vdwjidx0B        = 2*vdwtype[jnrB+0];
519             vdwjidx0C        = 2*vdwtype[jnrC+0];
520             vdwjidx0D        = 2*vdwtype[jnrD+0];
521             vdwjidx0E        = 2*vdwtype[jnrE+0];
522             vdwjidx0F        = 2*vdwtype[jnrF+0];
523             vdwjidx0G        = 2*vdwtype[jnrG+0];
524             vdwjidx0H        = 2*vdwtype[jnrH+0];
525
526             fjx0             = _mm256_setzero_ps();
527             fjy0             = _mm256_setzero_ps();
528             fjz0             = _mm256_setzero_ps();
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             if (gmx_mm256_any_lt(rsq00,rcutoff2))
535             {
536
537             r00              = _mm256_mul_ps(rsq00,rinv00);
538             r00              = _mm256_andnot_ps(dummy_mask,r00);
539
540             /* Compute parameters for interactions between i and j atoms */
541             qq00             = _mm256_mul_ps(iq0,jq0);
542             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
543                                             vdwioffsetptr0+vdwjidx0B,
544                                             vdwioffsetptr0+vdwjidx0C,
545                                             vdwioffsetptr0+vdwjidx0D,
546                                             vdwioffsetptr0+vdwjidx0E,
547                                             vdwioffsetptr0+vdwjidx0F,
548                                             vdwioffsetptr0+vdwjidx0G,
549                                             vdwioffsetptr0+vdwjidx0H,
550                                             &c6_00,&c12_00);
551
552             /* REACTION-FIELD ELECTROSTATICS */
553             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
554             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
555
556             /* LENNARD-JONES DISPERSION/REPULSION */
557
558             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
559             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
560             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
561             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
562             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
563
564             d                = _mm256_sub_ps(r00,rswitch);
565             d                = _mm256_max_ps(d,_mm256_setzero_ps());
566             d2               = _mm256_mul_ps(d,d);
567             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
568
569             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
570
571             /* Evaluate switch function */
572             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
573             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
574             vvdw             = _mm256_mul_ps(vvdw,sw);
575             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
576
577             /* Update potential sum for this i atom from the interaction with this j atom. */
578             velec            = _mm256_and_ps(velec,cutoff_mask);
579             velec            = _mm256_andnot_ps(dummy_mask,velec);
580             velecsum         = _mm256_add_ps(velecsum,velec);
581             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
582             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
583             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
584
585             fscal            = _mm256_add_ps(felec,fvdw);
586
587             fscal            = _mm256_and_ps(fscal,cutoff_mask);
588
589             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
590
591             /* Calculate temporary vectorial force */
592             tx               = _mm256_mul_ps(fscal,dx00);
593             ty               = _mm256_mul_ps(fscal,dy00);
594             tz               = _mm256_mul_ps(fscal,dz00);
595
596             /* Update vectorial force */
597             fix0             = _mm256_add_ps(fix0,tx);
598             fiy0             = _mm256_add_ps(fiy0,ty);
599             fiz0             = _mm256_add_ps(fiz0,tz);
600
601             fjx0             = _mm256_add_ps(fjx0,tx);
602             fjy0             = _mm256_add_ps(fjy0,ty);
603             fjz0             = _mm256_add_ps(fjz0,tz);
604
605             }
606
607             /**************************
608              * CALCULATE INTERACTIONS *
609              **************************/
610
611             if (gmx_mm256_any_lt(rsq10,rcutoff2))
612             {
613
614             /* Compute parameters for interactions between i and j atoms */
615             qq10             = _mm256_mul_ps(iq1,jq0);
616
617             /* REACTION-FIELD ELECTROSTATICS */
618             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
619             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
620
621             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
622
623             /* Update potential sum for this i atom from the interaction with this j atom. */
624             velec            = _mm256_and_ps(velec,cutoff_mask);
625             velec            = _mm256_andnot_ps(dummy_mask,velec);
626             velecsum         = _mm256_add_ps(velecsum,velec);
627
628             fscal            = felec;
629
630             fscal            = _mm256_and_ps(fscal,cutoff_mask);
631
632             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
633
634             /* Calculate temporary vectorial force */
635             tx               = _mm256_mul_ps(fscal,dx10);
636             ty               = _mm256_mul_ps(fscal,dy10);
637             tz               = _mm256_mul_ps(fscal,dz10);
638
639             /* Update vectorial force */
640             fix1             = _mm256_add_ps(fix1,tx);
641             fiy1             = _mm256_add_ps(fiy1,ty);
642             fiz1             = _mm256_add_ps(fiz1,tz);
643
644             fjx0             = _mm256_add_ps(fjx0,tx);
645             fjy0             = _mm256_add_ps(fjy0,ty);
646             fjz0             = _mm256_add_ps(fjz0,tz);
647
648             }
649
650             /**************************
651              * CALCULATE INTERACTIONS *
652              **************************/
653
654             if (gmx_mm256_any_lt(rsq20,rcutoff2))
655             {
656
657             /* Compute parameters for interactions between i and j atoms */
658             qq20             = _mm256_mul_ps(iq2,jq0);
659
660             /* REACTION-FIELD ELECTROSTATICS */
661             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
662             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
663
664             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
665
666             /* Update potential sum for this i atom from the interaction with this j atom. */
667             velec            = _mm256_and_ps(velec,cutoff_mask);
668             velec            = _mm256_andnot_ps(dummy_mask,velec);
669             velecsum         = _mm256_add_ps(velecsum,velec);
670
671             fscal            = felec;
672
673             fscal            = _mm256_and_ps(fscal,cutoff_mask);
674
675             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
676
677             /* Calculate temporary vectorial force */
678             tx               = _mm256_mul_ps(fscal,dx20);
679             ty               = _mm256_mul_ps(fscal,dy20);
680             tz               = _mm256_mul_ps(fscal,dz20);
681
682             /* Update vectorial force */
683             fix2             = _mm256_add_ps(fix2,tx);
684             fiy2             = _mm256_add_ps(fiy2,ty);
685             fiz2             = _mm256_add_ps(fiz2,tz);
686
687             fjx0             = _mm256_add_ps(fjx0,tx);
688             fjy0             = _mm256_add_ps(fjy0,ty);
689             fjz0             = _mm256_add_ps(fjz0,tz);
690
691             }
692
693             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
694             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
695             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
696             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
697             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
698             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
699             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
700             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
701
702             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
703
704             /* Inner loop uses 146 flops */
705         }
706
707         /* End of innermost loop */
708
709         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
710                                                  f+i_coord_offset,fshift+i_shift_offset);
711
712         ggid                        = gid[iidx];
713         /* Update potential energies */
714         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
715         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
716
717         /* Increment number of inner iterations */
718         inneriter                  += j_index_end - j_index_start;
719
720         /* Outer loop uses 20 flops */
721     }
722
723     /* Increment number of outer iterations */
724     outeriter        += nri;
725
726     /* Update outer/inner flops */
727
728     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*146);
729 }
730 /*
731  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_256_single
732  * Electrostatics interaction: ReactionField
733  * VdW interaction:            LennardJones
734  * Geometry:                   Water3-Particle
735  * Calculate force/pot:        Force
736  */
737 void
738 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_256_single
739                     (t_nblist                    * gmx_restrict       nlist,
740                      rvec                        * gmx_restrict          xx,
741                      rvec                        * gmx_restrict          ff,
742                      t_forcerec                  * gmx_restrict          fr,
743                      t_mdatoms                   * gmx_restrict     mdatoms,
744                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
745                      t_nrnb                      * gmx_restrict        nrnb)
746 {
747     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
748      * just 0 for non-waters.
749      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
750      * jnr indices corresponding to data put in the four positions in the SIMD register.
751      */
752     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
753     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
754     int              jnrA,jnrB,jnrC,jnrD;
755     int              jnrE,jnrF,jnrG,jnrH;
756     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
757     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
758     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
759     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
760     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
761     real             rcutoff_scalar;
762     real             *shiftvec,*fshift,*x,*f;
763     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
764     real             scratch[4*DIM];
765     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
766     real *           vdwioffsetptr0;
767     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
768     real *           vdwioffsetptr1;
769     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
770     real *           vdwioffsetptr2;
771     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
772     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
773     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
774     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
775     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
776     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
777     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
778     real             *charge;
779     int              nvdwtype;
780     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
781     int              *vdwtype;
782     real             *vdwparam;
783     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
784     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
785     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
786     real             rswitch_scalar,d_scalar;
787     __m256           dummy_mask,cutoff_mask;
788     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
789     __m256           one     = _mm256_set1_ps(1.0);
790     __m256           two     = _mm256_set1_ps(2.0);
791     x                = xx[0];
792     f                = ff[0];
793
794     nri              = nlist->nri;
795     iinr             = nlist->iinr;
796     jindex           = nlist->jindex;
797     jjnr             = nlist->jjnr;
798     shiftidx         = nlist->shift;
799     gid              = nlist->gid;
800     shiftvec         = fr->shift_vec[0];
801     fshift           = fr->fshift[0];
802     facel            = _mm256_set1_ps(fr->epsfac);
803     charge           = mdatoms->chargeA;
804     krf              = _mm256_set1_ps(fr->ic->k_rf);
805     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
806     crf              = _mm256_set1_ps(fr->ic->c_rf);
807     nvdwtype         = fr->ntype;
808     vdwparam         = fr->nbfp;
809     vdwtype          = mdatoms->typeA;
810
811     /* Setup water-specific parameters */
812     inr              = nlist->iinr[0];
813     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
814     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
815     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
816     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
817
818     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
819     rcutoff_scalar   = fr->rcoulomb;
820     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
821     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
822
823     rswitch_scalar   = fr->rvdw_switch;
824     rswitch          = _mm256_set1_ps(rswitch_scalar);
825     /* Setup switch parameters */
826     d_scalar         = rcutoff_scalar-rswitch_scalar;
827     d                = _mm256_set1_ps(d_scalar);
828     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
829     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
830     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
831     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
832     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
833     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
834
835     /* Avoid stupid compiler warnings */
836     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
837     j_coord_offsetA = 0;
838     j_coord_offsetB = 0;
839     j_coord_offsetC = 0;
840     j_coord_offsetD = 0;
841     j_coord_offsetE = 0;
842     j_coord_offsetF = 0;
843     j_coord_offsetG = 0;
844     j_coord_offsetH = 0;
845
846     outeriter        = 0;
847     inneriter        = 0;
848
849     for(iidx=0;iidx<4*DIM;iidx++)
850     {
851         scratch[iidx] = 0.0;
852     }
853
854     /* Start outer loop over neighborlists */
855     for(iidx=0; iidx<nri; iidx++)
856     {
857         /* Load shift vector for this list */
858         i_shift_offset   = DIM*shiftidx[iidx];
859
860         /* Load limits for loop over neighbors */
861         j_index_start    = jindex[iidx];
862         j_index_end      = jindex[iidx+1];
863
864         /* Get outer coordinate index */
865         inr              = iinr[iidx];
866         i_coord_offset   = DIM*inr;
867
868         /* Load i particle coords and add shift vector */
869         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
870                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
871
872         fix0             = _mm256_setzero_ps();
873         fiy0             = _mm256_setzero_ps();
874         fiz0             = _mm256_setzero_ps();
875         fix1             = _mm256_setzero_ps();
876         fiy1             = _mm256_setzero_ps();
877         fiz1             = _mm256_setzero_ps();
878         fix2             = _mm256_setzero_ps();
879         fiy2             = _mm256_setzero_ps();
880         fiz2             = _mm256_setzero_ps();
881
882         /* Start inner kernel loop */
883         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
884         {
885
886             /* Get j neighbor index, and coordinate index */
887             jnrA             = jjnr[jidx];
888             jnrB             = jjnr[jidx+1];
889             jnrC             = jjnr[jidx+2];
890             jnrD             = jjnr[jidx+3];
891             jnrE             = jjnr[jidx+4];
892             jnrF             = jjnr[jidx+5];
893             jnrG             = jjnr[jidx+6];
894             jnrH             = jjnr[jidx+7];
895             j_coord_offsetA  = DIM*jnrA;
896             j_coord_offsetB  = DIM*jnrB;
897             j_coord_offsetC  = DIM*jnrC;
898             j_coord_offsetD  = DIM*jnrD;
899             j_coord_offsetE  = DIM*jnrE;
900             j_coord_offsetF  = DIM*jnrF;
901             j_coord_offsetG  = DIM*jnrG;
902             j_coord_offsetH  = DIM*jnrH;
903
904             /* load j atom coordinates */
905             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
906                                                  x+j_coord_offsetC,x+j_coord_offsetD,
907                                                  x+j_coord_offsetE,x+j_coord_offsetF,
908                                                  x+j_coord_offsetG,x+j_coord_offsetH,
909                                                  &jx0,&jy0,&jz0);
910
911             /* Calculate displacement vector */
912             dx00             = _mm256_sub_ps(ix0,jx0);
913             dy00             = _mm256_sub_ps(iy0,jy0);
914             dz00             = _mm256_sub_ps(iz0,jz0);
915             dx10             = _mm256_sub_ps(ix1,jx0);
916             dy10             = _mm256_sub_ps(iy1,jy0);
917             dz10             = _mm256_sub_ps(iz1,jz0);
918             dx20             = _mm256_sub_ps(ix2,jx0);
919             dy20             = _mm256_sub_ps(iy2,jy0);
920             dz20             = _mm256_sub_ps(iz2,jz0);
921
922             /* Calculate squared distance and things based on it */
923             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
924             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
925             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
926
927             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
928             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
929             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
930
931             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
932             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
933             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
934
935             /* Load parameters for j particles */
936             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
937                                                                  charge+jnrC+0,charge+jnrD+0,
938                                                                  charge+jnrE+0,charge+jnrF+0,
939                                                                  charge+jnrG+0,charge+jnrH+0);
940             vdwjidx0A        = 2*vdwtype[jnrA+0];
941             vdwjidx0B        = 2*vdwtype[jnrB+0];
942             vdwjidx0C        = 2*vdwtype[jnrC+0];
943             vdwjidx0D        = 2*vdwtype[jnrD+0];
944             vdwjidx0E        = 2*vdwtype[jnrE+0];
945             vdwjidx0F        = 2*vdwtype[jnrF+0];
946             vdwjidx0G        = 2*vdwtype[jnrG+0];
947             vdwjidx0H        = 2*vdwtype[jnrH+0];
948
949             fjx0             = _mm256_setzero_ps();
950             fjy0             = _mm256_setzero_ps();
951             fjz0             = _mm256_setzero_ps();
952
953             /**************************
954              * CALCULATE INTERACTIONS *
955              **************************/
956
957             if (gmx_mm256_any_lt(rsq00,rcutoff2))
958             {
959
960             r00              = _mm256_mul_ps(rsq00,rinv00);
961
962             /* Compute parameters for interactions between i and j atoms */
963             qq00             = _mm256_mul_ps(iq0,jq0);
964             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
965                                             vdwioffsetptr0+vdwjidx0B,
966                                             vdwioffsetptr0+vdwjidx0C,
967                                             vdwioffsetptr0+vdwjidx0D,
968                                             vdwioffsetptr0+vdwjidx0E,
969                                             vdwioffsetptr0+vdwjidx0F,
970                                             vdwioffsetptr0+vdwjidx0G,
971                                             vdwioffsetptr0+vdwjidx0H,
972                                             &c6_00,&c12_00);
973
974             /* REACTION-FIELD ELECTROSTATICS */
975             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
976
977             /* LENNARD-JONES DISPERSION/REPULSION */
978
979             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
980             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
981             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
982             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
983             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
984
985             d                = _mm256_sub_ps(r00,rswitch);
986             d                = _mm256_max_ps(d,_mm256_setzero_ps());
987             d2               = _mm256_mul_ps(d,d);
988             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
989
990             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
991
992             /* Evaluate switch function */
993             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
994             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
995             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
996
997             fscal            = _mm256_add_ps(felec,fvdw);
998
999             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1000
1001             /* Calculate temporary vectorial force */
1002             tx               = _mm256_mul_ps(fscal,dx00);
1003             ty               = _mm256_mul_ps(fscal,dy00);
1004             tz               = _mm256_mul_ps(fscal,dz00);
1005
1006             /* Update vectorial force */
1007             fix0             = _mm256_add_ps(fix0,tx);
1008             fiy0             = _mm256_add_ps(fiy0,ty);
1009             fiz0             = _mm256_add_ps(fiz0,tz);
1010
1011             fjx0             = _mm256_add_ps(fjx0,tx);
1012             fjy0             = _mm256_add_ps(fjy0,ty);
1013             fjz0             = _mm256_add_ps(fjz0,tz);
1014
1015             }
1016
1017             /**************************
1018              * CALCULATE INTERACTIONS *
1019              **************************/
1020
1021             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1022             {
1023
1024             /* Compute parameters for interactions between i and j atoms */
1025             qq10             = _mm256_mul_ps(iq1,jq0);
1026
1027             /* REACTION-FIELD ELECTROSTATICS */
1028             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1029
1030             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1031
1032             fscal            = felec;
1033
1034             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1035
1036             /* Calculate temporary vectorial force */
1037             tx               = _mm256_mul_ps(fscal,dx10);
1038             ty               = _mm256_mul_ps(fscal,dy10);
1039             tz               = _mm256_mul_ps(fscal,dz10);
1040
1041             /* Update vectorial force */
1042             fix1             = _mm256_add_ps(fix1,tx);
1043             fiy1             = _mm256_add_ps(fiy1,ty);
1044             fiz1             = _mm256_add_ps(fiz1,tz);
1045
1046             fjx0             = _mm256_add_ps(fjx0,tx);
1047             fjy0             = _mm256_add_ps(fjy0,ty);
1048             fjz0             = _mm256_add_ps(fjz0,tz);
1049
1050             }
1051
1052             /**************************
1053              * CALCULATE INTERACTIONS *
1054              **************************/
1055
1056             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1057             {
1058
1059             /* Compute parameters for interactions between i and j atoms */
1060             qq20             = _mm256_mul_ps(iq2,jq0);
1061
1062             /* REACTION-FIELD ELECTROSTATICS */
1063             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1064
1065             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1066
1067             fscal            = felec;
1068
1069             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1070
1071             /* Calculate temporary vectorial force */
1072             tx               = _mm256_mul_ps(fscal,dx20);
1073             ty               = _mm256_mul_ps(fscal,dy20);
1074             tz               = _mm256_mul_ps(fscal,dz20);
1075
1076             /* Update vectorial force */
1077             fix2             = _mm256_add_ps(fix2,tx);
1078             fiy2             = _mm256_add_ps(fiy2,ty);
1079             fiz2             = _mm256_add_ps(fiz2,tz);
1080
1081             fjx0             = _mm256_add_ps(fjx0,tx);
1082             fjy0             = _mm256_add_ps(fjy0,ty);
1083             fjz0             = _mm256_add_ps(fjz0,tz);
1084
1085             }
1086
1087             fjptrA             = f+j_coord_offsetA;
1088             fjptrB             = f+j_coord_offsetB;
1089             fjptrC             = f+j_coord_offsetC;
1090             fjptrD             = f+j_coord_offsetD;
1091             fjptrE             = f+j_coord_offsetE;
1092             fjptrF             = f+j_coord_offsetF;
1093             fjptrG             = f+j_coord_offsetG;
1094             fjptrH             = f+j_coord_offsetH;
1095
1096             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1097
1098             /* Inner loop uses 124 flops */
1099         }
1100
1101         if(jidx<j_index_end)
1102         {
1103
1104             /* Get j neighbor index, and coordinate index */
1105             jnrlistA         = jjnr[jidx];
1106             jnrlistB         = jjnr[jidx+1];
1107             jnrlistC         = jjnr[jidx+2];
1108             jnrlistD         = jjnr[jidx+3];
1109             jnrlistE         = jjnr[jidx+4];
1110             jnrlistF         = jjnr[jidx+5];
1111             jnrlistG         = jjnr[jidx+6];
1112             jnrlistH         = jjnr[jidx+7];
1113             /* Sign of each element will be negative for non-real atoms.
1114              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1115              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1116              */
1117             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1118                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1119                                             
1120             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1121             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1122             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1123             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1124             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1125             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1126             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1127             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1128             j_coord_offsetA  = DIM*jnrA;
1129             j_coord_offsetB  = DIM*jnrB;
1130             j_coord_offsetC  = DIM*jnrC;
1131             j_coord_offsetD  = DIM*jnrD;
1132             j_coord_offsetE  = DIM*jnrE;
1133             j_coord_offsetF  = DIM*jnrF;
1134             j_coord_offsetG  = DIM*jnrG;
1135             j_coord_offsetH  = DIM*jnrH;
1136
1137             /* load j atom coordinates */
1138             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1139                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1140                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1141                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1142                                                  &jx0,&jy0,&jz0);
1143
1144             /* Calculate displacement vector */
1145             dx00             = _mm256_sub_ps(ix0,jx0);
1146             dy00             = _mm256_sub_ps(iy0,jy0);
1147             dz00             = _mm256_sub_ps(iz0,jz0);
1148             dx10             = _mm256_sub_ps(ix1,jx0);
1149             dy10             = _mm256_sub_ps(iy1,jy0);
1150             dz10             = _mm256_sub_ps(iz1,jz0);
1151             dx20             = _mm256_sub_ps(ix2,jx0);
1152             dy20             = _mm256_sub_ps(iy2,jy0);
1153             dz20             = _mm256_sub_ps(iz2,jz0);
1154
1155             /* Calculate squared distance and things based on it */
1156             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1157             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1158             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1159
1160             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1161             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1162             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1163
1164             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1165             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1166             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1167
1168             /* Load parameters for j particles */
1169             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1170                                                                  charge+jnrC+0,charge+jnrD+0,
1171                                                                  charge+jnrE+0,charge+jnrF+0,
1172                                                                  charge+jnrG+0,charge+jnrH+0);
1173             vdwjidx0A        = 2*vdwtype[jnrA+0];
1174             vdwjidx0B        = 2*vdwtype[jnrB+0];
1175             vdwjidx0C        = 2*vdwtype[jnrC+0];
1176             vdwjidx0D        = 2*vdwtype[jnrD+0];
1177             vdwjidx0E        = 2*vdwtype[jnrE+0];
1178             vdwjidx0F        = 2*vdwtype[jnrF+0];
1179             vdwjidx0G        = 2*vdwtype[jnrG+0];
1180             vdwjidx0H        = 2*vdwtype[jnrH+0];
1181
1182             fjx0             = _mm256_setzero_ps();
1183             fjy0             = _mm256_setzero_ps();
1184             fjz0             = _mm256_setzero_ps();
1185
1186             /**************************
1187              * CALCULATE INTERACTIONS *
1188              **************************/
1189
1190             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1191             {
1192
1193             r00              = _mm256_mul_ps(rsq00,rinv00);
1194             r00              = _mm256_andnot_ps(dummy_mask,r00);
1195
1196             /* Compute parameters for interactions between i and j atoms */
1197             qq00             = _mm256_mul_ps(iq0,jq0);
1198             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1199                                             vdwioffsetptr0+vdwjidx0B,
1200                                             vdwioffsetptr0+vdwjidx0C,
1201                                             vdwioffsetptr0+vdwjidx0D,
1202                                             vdwioffsetptr0+vdwjidx0E,
1203                                             vdwioffsetptr0+vdwjidx0F,
1204                                             vdwioffsetptr0+vdwjidx0G,
1205                                             vdwioffsetptr0+vdwjidx0H,
1206                                             &c6_00,&c12_00);
1207
1208             /* REACTION-FIELD ELECTROSTATICS */
1209             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
1210
1211             /* LENNARD-JONES DISPERSION/REPULSION */
1212
1213             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1214             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
1215             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
1216             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
1217             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
1218
1219             d                = _mm256_sub_ps(r00,rswitch);
1220             d                = _mm256_max_ps(d,_mm256_setzero_ps());
1221             d2               = _mm256_mul_ps(d,d);
1222             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
1223
1224             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
1225
1226             /* Evaluate switch function */
1227             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1228             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
1229             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1230
1231             fscal            = _mm256_add_ps(felec,fvdw);
1232
1233             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1234
1235             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1236
1237             /* Calculate temporary vectorial force */
1238             tx               = _mm256_mul_ps(fscal,dx00);
1239             ty               = _mm256_mul_ps(fscal,dy00);
1240             tz               = _mm256_mul_ps(fscal,dz00);
1241
1242             /* Update vectorial force */
1243             fix0             = _mm256_add_ps(fix0,tx);
1244             fiy0             = _mm256_add_ps(fiy0,ty);
1245             fiz0             = _mm256_add_ps(fiz0,tz);
1246
1247             fjx0             = _mm256_add_ps(fjx0,tx);
1248             fjy0             = _mm256_add_ps(fjy0,ty);
1249             fjz0             = _mm256_add_ps(fjz0,tz);
1250
1251             }
1252
1253             /**************************
1254              * CALCULATE INTERACTIONS *
1255              **************************/
1256
1257             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1258             {
1259
1260             /* Compute parameters for interactions between i and j atoms */
1261             qq10             = _mm256_mul_ps(iq1,jq0);
1262
1263             /* REACTION-FIELD ELECTROSTATICS */
1264             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1265
1266             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1267
1268             fscal            = felec;
1269
1270             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1271
1272             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1273
1274             /* Calculate temporary vectorial force */
1275             tx               = _mm256_mul_ps(fscal,dx10);
1276             ty               = _mm256_mul_ps(fscal,dy10);
1277             tz               = _mm256_mul_ps(fscal,dz10);
1278
1279             /* Update vectorial force */
1280             fix1             = _mm256_add_ps(fix1,tx);
1281             fiy1             = _mm256_add_ps(fiy1,ty);
1282             fiz1             = _mm256_add_ps(fiz1,tz);
1283
1284             fjx0             = _mm256_add_ps(fjx0,tx);
1285             fjy0             = _mm256_add_ps(fjy0,ty);
1286             fjz0             = _mm256_add_ps(fjz0,tz);
1287
1288             }
1289
1290             /**************************
1291              * CALCULATE INTERACTIONS *
1292              **************************/
1293
1294             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1295             {
1296
1297             /* Compute parameters for interactions between i and j atoms */
1298             qq20             = _mm256_mul_ps(iq2,jq0);
1299
1300             /* REACTION-FIELD ELECTROSTATICS */
1301             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1302
1303             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1304
1305             fscal            = felec;
1306
1307             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1308
1309             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1310
1311             /* Calculate temporary vectorial force */
1312             tx               = _mm256_mul_ps(fscal,dx20);
1313             ty               = _mm256_mul_ps(fscal,dy20);
1314             tz               = _mm256_mul_ps(fscal,dz20);
1315
1316             /* Update vectorial force */
1317             fix2             = _mm256_add_ps(fix2,tx);
1318             fiy2             = _mm256_add_ps(fiy2,ty);
1319             fiz2             = _mm256_add_ps(fiz2,tz);
1320
1321             fjx0             = _mm256_add_ps(fjx0,tx);
1322             fjy0             = _mm256_add_ps(fjy0,ty);
1323             fjz0             = _mm256_add_ps(fjz0,tz);
1324
1325             }
1326
1327             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1328             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1329             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1330             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1331             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1332             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1333             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1334             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1335
1336             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1337
1338             /* Inner loop uses 125 flops */
1339         }
1340
1341         /* End of innermost loop */
1342
1343         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1344                                                  f+i_coord_offset,fshift+i_shift_offset);
1345
1346         /* Increment number of inner iterations */
1347         inneriter                  += j_index_end - j_index_start;
1348
1349         /* Outer loop uses 18 flops */
1350     }
1351
1352     /* Increment number of outer iterations */
1353     outeriter        += nri;
1354
1355     /* Update outer/inner flops */
1356
1357     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*125);
1358 }