dfab87ad60247ec5a3f6c71721ee56f8101e24d2
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
98     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
99     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
100     real             rswitch_scalar,d_scalar;
101     __m256           dummy_mask,cutoff_mask;
102     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
103     __m256           one     = _mm256_set1_ps(1.0);
104     __m256           two     = _mm256_set1_ps(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm256_set1_ps(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     krf              = _mm256_set1_ps(fr->ic->k_rf);
119     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
120     crf              = _mm256_set1_ps(fr->ic->c_rf);
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
126     rcutoff_scalar   = fr->rcoulomb;
127     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
128     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
129
130     rswitch_scalar   = fr->rvdw_switch;
131     rswitch          = _mm256_set1_ps(rswitch_scalar);
132     /* Setup switch parameters */
133     d_scalar         = rcutoff_scalar-rswitch_scalar;
134     d                = _mm256_set1_ps(d_scalar);
135     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
136     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
137     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
138     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
139     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
140     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148     j_coord_offsetE = 0;
149     j_coord_offsetF = 0;
150     j_coord_offsetG = 0;
151     j_coord_offsetH = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     for(iidx=0;iidx<4*DIM;iidx++)
157     {
158         scratch[iidx] = 0.0;
159     }
160
161     /* Start outer loop over neighborlists */
162     for(iidx=0; iidx<nri; iidx++)
163     {
164         /* Load shift vector for this list */
165         i_shift_offset   = DIM*shiftidx[iidx];
166
167         /* Load limits for loop over neighbors */
168         j_index_start    = jindex[iidx];
169         j_index_end      = jindex[iidx+1];
170
171         /* Get outer coordinate index */
172         inr              = iinr[iidx];
173         i_coord_offset   = DIM*inr;
174
175         /* Load i particle coords and add shift vector */
176         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
177
178         fix0             = _mm256_setzero_ps();
179         fiy0             = _mm256_setzero_ps();
180         fiz0             = _mm256_setzero_ps();
181
182         /* Load parameters for i particles */
183         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
184         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
185
186         /* Reset potential sums */
187         velecsum         = _mm256_setzero_ps();
188         vvdwsum          = _mm256_setzero_ps();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             jnrE             = jjnr[jidx+4];
200             jnrF             = jjnr[jidx+5];
201             jnrG             = jjnr[jidx+6];
202             jnrH             = jjnr[jidx+7];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207             j_coord_offsetE  = DIM*jnrE;
208             j_coord_offsetF  = DIM*jnrF;
209             j_coord_offsetG  = DIM*jnrG;
210             j_coord_offsetH  = DIM*jnrH;
211
212             /* load j atom coordinates */
213             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
214                                                  x+j_coord_offsetC,x+j_coord_offsetD,
215                                                  x+j_coord_offsetE,x+j_coord_offsetF,
216                                                  x+j_coord_offsetG,x+j_coord_offsetH,
217                                                  &jx0,&jy0,&jz0);
218
219             /* Calculate displacement vector */
220             dx00             = _mm256_sub_ps(ix0,jx0);
221             dy00             = _mm256_sub_ps(iy0,jy0);
222             dz00             = _mm256_sub_ps(iz0,jz0);
223
224             /* Calculate squared distance and things based on it */
225             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
226
227             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
228
229             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
233                                                                  charge+jnrC+0,charge+jnrD+0,
234                                                                  charge+jnrE+0,charge+jnrF+0,
235                                                                  charge+jnrG+0,charge+jnrH+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238             vdwjidx0C        = 2*vdwtype[jnrC+0];
239             vdwjidx0D        = 2*vdwtype[jnrD+0];
240             vdwjidx0E        = 2*vdwtype[jnrE+0];
241             vdwjidx0F        = 2*vdwtype[jnrF+0];
242             vdwjidx0G        = 2*vdwtype[jnrG+0];
243             vdwjidx0H        = 2*vdwtype[jnrH+0];
244
245             /**************************
246              * CALCULATE INTERACTIONS *
247              **************************/
248
249             if (gmx_mm256_any_lt(rsq00,rcutoff2))
250             {
251
252             r00              = _mm256_mul_ps(rsq00,rinv00);
253
254             /* Compute parameters for interactions between i and j atoms */
255             qq00             = _mm256_mul_ps(iq0,jq0);
256             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
257                                             vdwioffsetptr0+vdwjidx0B,
258                                             vdwioffsetptr0+vdwjidx0C,
259                                             vdwioffsetptr0+vdwjidx0D,
260                                             vdwioffsetptr0+vdwjidx0E,
261                                             vdwioffsetptr0+vdwjidx0F,
262                                             vdwioffsetptr0+vdwjidx0G,
263                                             vdwioffsetptr0+vdwjidx0H,
264                                             &c6_00,&c12_00);
265
266             /* REACTION-FIELD ELECTROSTATICS */
267             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
268             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
269
270             /* LENNARD-JONES DISPERSION/REPULSION */
271
272             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
273             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
274             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
275             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
276             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
277
278             d                = _mm256_sub_ps(r00,rswitch);
279             d                = _mm256_max_ps(d,_mm256_setzero_ps());
280             d2               = _mm256_mul_ps(d,d);
281             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
282
283             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
284
285             /* Evaluate switch function */
286             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
287             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
288             vvdw             = _mm256_mul_ps(vvdw,sw);
289             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
290
291             /* Update potential sum for this i atom from the interaction with this j atom. */
292             velec            = _mm256_and_ps(velec,cutoff_mask);
293             velecsum         = _mm256_add_ps(velecsum,velec);
294             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
295             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
296
297             fscal            = _mm256_add_ps(felec,fvdw);
298
299             fscal            = _mm256_and_ps(fscal,cutoff_mask);
300
301             /* Calculate temporary vectorial force */
302             tx               = _mm256_mul_ps(fscal,dx00);
303             ty               = _mm256_mul_ps(fscal,dy00);
304             tz               = _mm256_mul_ps(fscal,dz00);
305
306             /* Update vectorial force */
307             fix0             = _mm256_add_ps(fix0,tx);
308             fiy0             = _mm256_add_ps(fiy0,ty);
309             fiz0             = _mm256_add_ps(fiz0,tz);
310
311             fjptrA             = f+j_coord_offsetA;
312             fjptrB             = f+j_coord_offsetB;
313             fjptrC             = f+j_coord_offsetC;
314             fjptrD             = f+j_coord_offsetD;
315             fjptrE             = f+j_coord_offsetE;
316             fjptrF             = f+j_coord_offsetF;
317             fjptrG             = f+j_coord_offsetG;
318             fjptrH             = f+j_coord_offsetH;
319             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
320
321             }
322
323             /* Inner loop uses 70 flops */
324         }
325
326         if(jidx<j_index_end)
327         {
328
329             /* Get j neighbor index, and coordinate index */
330             jnrlistA         = jjnr[jidx];
331             jnrlistB         = jjnr[jidx+1];
332             jnrlistC         = jjnr[jidx+2];
333             jnrlistD         = jjnr[jidx+3];
334             jnrlistE         = jjnr[jidx+4];
335             jnrlistF         = jjnr[jidx+5];
336             jnrlistG         = jjnr[jidx+6];
337             jnrlistH         = jjnr[jidx+7];
338             /* Sign of each element will be negative for non-real atoms.
339              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
340              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
341              */
342             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
343                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
344                                             
345             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
346             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
347             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
348             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
349             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
350             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
351             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
352             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
353             j_coord_offsetA  = DIM*jnrA;
354             j_coord_offsetB  = DIM*jnrB;
355             j_coord_offsetC  = DIM*jnrC;
356             j_coord_offsetD  = DIM*jnrD;
357             j_coord_offsetE  = DIM*jnrE;
358             j_coord_offsetF  = DIM*jnrF;
359             j_coord_offsetG  = DIM*jnrG;
360             j_coord_offsetH  = DIM*jnrH;
361
362             /* load j atom coordinates */
363             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
364                                                  x+j_coord_offsetC,x+j_coord_offsetD,
365                                                  x+j_coord_offsetE,x+j_coord_offsetF,
366                                                  x+j_coord_offsetG,x+j_coord_offsetH,
367                                                  &jx0,&jy0,&jz0);
368
369             /* Calculate displacement vector */
370             dx00             = _mm256_sub_ps(ix0,jx0);
371             dy00             = _mm256_sub_ps(iy0,jy0);
372             dz00             = _mm256_sub_ps(iz0,jz0);
373
374             /* Calculate squared distance and things based on it */
375             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
376
377             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
378
379             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
380
381             /* Load parameters for j particles */
382             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
383                                                                  charge+jnrC+0,charge+jnrD+0,
384                                                                  charge+jnrE+0,charge+jnrF+0,
385                                                                  charge+jnrG+0,charge+jnrH+0);
386             vdwjidx0A        = 2*vdwtype[jnrA+0];
387             vdwjidx0B        = 2*vdwtype[jnrB+0];
388             vdwjidx0C        = 2*vdwtype[jnrC+0];
389             vdwjidx0D        = 2*vdwtype[jnrD+0];
390             vdwjidx0E        = 2*vdwtype[jnrE+0];
391             vdwjidx0F        = 2*vdwtype[jnrF+0];
392             vdwjidx0G        = 2*vdwtype[jnrG+0];
393             vdwjidx0H        = 2*vdwtype[jnrH+0];
394
395             /**************************
396              * CALCULATE INTERACTIONS *
397              **************************/
398
399             if (gmx_mm256_any_lt(rsq00,rcutoff2))
400             {
401
402             r00              = _mm256_mul_ps(rsq00,rinv00);
403             r00              = _mm256_andnot_ps(dummy_mask,r00);
404
405             /* Compute parameters for interactions between i and j atoms */
406             qq00             = _mm256_mul_ps(iq0,jq0);
407             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
408                                             vdwioffsetptr0+vdwjidx0B,
409                                             vdwioffsetptr0+vdwjidx0C,
410                                             vdwioffsetptr0+vdwjidx0D,
411                                             vdwioffsetptr0+vdwjidx0E,
412                                             vdwioffsetptr0+vdwjidx0F,
413                                             vdwioffsetptr0+vdwjidx0G,
414                                             vdwioffsetptr0+vdwjidx0H,
415                                             &c6_00,&c12_00);
416
417             /* REACTION-FIELD ELECTROSTATICS */
418             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
419             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
420
421             /* LENNARD-JONES DISPERSION/REPULSION */
422
423             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
424             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
425             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
426             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
427             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
428
429             d                = _mm256_sub_ps(r00,rswitch);
430             d                = _mm256_max_ps(d,_mm256_setzero_ps());
431             d2               = _mm256_mul_ps(d,d);
432             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
433
434             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
435
436             /* Evaluate switch function */
437             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
438             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
439             vvdw             = _mm256_mul_ps(vvdw,sw);
440             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
441
442             /* Update potential sum for this i atom from the interaction with this j atom. */
443             velec            = _mm256_and_ps(velec,cutoff_mask);
444             velec            = _mm256_andnot_ps(dummy_mask,velec);
445             velecsum         = _mm256_add_ps(velecsum,velec);
446             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
447             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
448             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
449
450             fscal            = _mm256_add_ps(felec,fvdw);
451
452             fscal            = _mm256_and_ps(fscal,cutoff_mask);
453
454             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
455
456             /* Calculate temporary vectorial force */
457             tx               = _mm256_mul_ps(fscal,dx00);
458             ty               = _mm256_mul_ps(fscal,dy00);
459             tz               = _mm256_mul_ps(fscal,dz00);
460
461             /* Update vectorial force */
462             fix0             = _mm256_add_ps(fix0,tx);
463             fiy0             = _mm256_add_ps(fiy0,ty);
464             fiz0             = _mm256_add_ps(fiz0,tz);
465
466             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
467             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
468             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
469             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
470             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
471             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
472             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
473             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
474             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
475
476             }
477
478             /* Inner loop uses 71 flops */
479         }
480
481         /* End of innermost loop */
482
483         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
484                                                  f+i_coord_offset,fshift+i_shift_offset);
485
486         ggid                        = gid[iidx];
487         /* Update potential energies */
488         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
489         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
490
491         /* Increment number of inner iterations */
492         inneriter                  += j_index_end - j_index_start;
493
494         /* Outer loop uses 9 flops */
495     }
496
497     /* Increment number of outer iterations */
498     outeriter        += nri;
499
500     /* Update outer/inner flops */
501
502     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*71);
503 }
504 /*
505  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_256_single
506  * Electrostatics interaction: ReactionField
507  * VdW interaction:            LennardJones
508  * Geometry:                   Particle-Particle
509  * Calculate force/pot:        Force
510  */
511 void
512 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_256_single
513                     (t_nblist                    * gmx_restrict       nlist,
514                      rvec                        * gmx_restrict          xx,
515                      rvec                        * gmx_restrict          ff,
516                      t_forcerec                  * gmx_restrict          fr,
517                      t_mdatoms                   * gmx_restrict     mdatoms,
518                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
519                      t_nrnb                      * gmx_restrict        nrnb)
520 {
521     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
522      * just 0 for non-waters.
523      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
524      * jnr indices corresponding to data put in the four positions in the SIMD register.
525      */
526     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
527     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
528     int              jnrA,jnrB,jnrC,jnrD;
529     int              jnrE,jnrF,jnrG,jnrH;
530     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
531     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
532     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
533     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
534     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
535     real             rcutoff_scalar;
536     real             *shiftvec,*fshift,*x,*f;
537     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
538     real             scratch[4*DIM];
539     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
540     real *           vdwioffsetptr0;
541     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
542     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
543     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
544     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
545     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
546     real             *charge;
547     int              nvdwtype;
548     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
549     int              *vdwtype;
550     real             *vdwparam;
551     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
552     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
553     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
554     real             rswitch_scalar,d_scalar;
555     __m256           dummy_mask,cutoff_mask;
556     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
557     __m256           one     = _mm256_set1_ps(1.0);
558     __m256           two     = _mm256_set1_ps(2.0);
559     x                = xx[0];
560     f                = ff[0];
561
562     nri              = nlist->nri;
563     iinr             = nlist->iinr;
564     jindex           = nlist->jindex;
565     jjnr             = nlist->jjnr;
566     shiftidx         = nlist->shift;
567     gid              = nlist->gid;
568     shiftvec         = fr->shift_vec[0];
569     fshift           = fr->fshift[0];
570     facel            = _mm256_set1_ps(fr->epsfac);
571     charge           = mdatoms->chargeA;
572     krf              = _mm256_set1_ps(fr->ic->k_rf);
573     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
574     crf              = _mm256_set1_ps(fr->ic->c_rf);
575     nvdwtype         = fr->ntype;
576     vdwparam         = fr->nbfp;
577     vdwtype          = mdatoms->typeA;
578
579     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
580     rcutoff_scalar   = fr->rcoulomb;
581     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
582     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
583
584     rswitch_scalar   = fr->rvdw_switch;
585     rswitch          = _mm256_set1_ps(rswitch_scalar);
586     /* Setup switch parameters */
587     d_scalar         = rcutoff_scalar-rswitch_scalar;
588     d                = _mm256_set1_ps(d_scalar);
589     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
590     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
591     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
592     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
593     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
594     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
595
596     /* Avoid stupid compiler warnings */
597     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
598     j_coord_offsetA = 0;
599     j_coord_offsetB = 0;
600     j_coord_offsetC = 0;
601     j_coord_offsetD = 0;
602     j_coord_offsetE = 0;
603     j_coord_offsetF = 0;
604     j_coord_offsetG = 0;
605     j_coord_offsetH = 0;
606
607     outeriter        = 0;
608     inneriter        = 0;
609
610     for(iidx=0;iidx<4*DIM;iidx++)
611     {
612         scratch[iidx] = 0.0;
613     }
614
615     /* Start outer loop over neighborlists */
616     for(iidx=0; iidx<nri; iidx++)
617     {
618         /* Load shift vector for this list */
619         i_shift_offset   = DIM*shiftidx[iidx];
620
621         /* Load limits for loop over neighbors */
622         j_index_start    = jindex[iidx];
623         j_index_end      = jindex[iidx+1];
624
625         /* Get outer coordinate index */
626         inr              = iinr[iidx];
627         i_coord_offset   = DIM*inr;
628
629         /* Load i particle coords and add shift vector */
630         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
631
632         fix0             = _mm256_setzero_ps();
633         fiy0             = _mm256_setzero_ps();
634         fiz0             = _mm256_setzero_ps();
635
636         /* Load parameters for i particles */
637         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
638         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
639
640         /* Start inner kernel loop */
641         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
642         {
643
644             /* Get j neighbor index, and coordinate index */
645             jnrA             = jjnr[jidx];
646             jnrB             = jjnr[jidx+1];
647             jnrC             = jjnr[jidx+2];
648             jnrD             = jjnr[jidx+3];
649             jnrE             = jjnr[jidx+4];
650             jnrF             = jjnr[jidx+5];
651             jnrG             = jjnr[jidx+6];
652             jnrH             = jjnr[jidx+7];
653             j_coord_offsetA  = DIM*jnrA;
654             j_coord_offsetB  = DIM*jnrB;
655             j_coord_offsetC  = DIM*jnrC;
656             j_coord_offsetD  = DIM*jnrD;
657             j_coord_offsetE  = DIM*jnrE;
658             j_coord_offsetF  = DIM*jnrF;
659             j_coord_offsetG  = DIM*jnrG;
660             j_coord_offsetH  = DIM*jnrH;
661
662             /* load j atom coordinates */
663             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
664                                                  x+j_coord_offsetC,x+j_coord_offsetD,
665                                                  x+j_coord_offsetE,x+j_coord_offsetF,
666                                                  x+j_coord_offsetG,x+j_coord_offsetH,
667                                                  &jx0,&jy0,&jz0);
668
669             /* Calculate displacement vector */
670             dx00             = _mm256_sub_ps(ix0,jx0);
671             dy00             = _mm256_sub_ps(iy0,jy0);
672             dz00             = _mm256_sub_ps(iz0,jz0);
673
674             /* Calculate squared distance and things based on it */
675             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
676
677             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
678
679             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
680
681             /* Load parameters for j particles */
682             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
683                                                                  charge+jnrC+0,charge+jnrD+0,
684                                                                  charge+jnrE+0,charge+jnrF+0,
685                                                                  charge+jnrG+0,charge+jnrH+0);
686             vdwjidx0A        = 2*vdwtype[jnrA+0];
687             vdwjidx0B        = 2*vdwtype[jnrB+0];
688             vdwjidx0C        = 2*vdwtype[jnrC+0];
689             vdwjidx0D        = 2*vdwtype[jnrD+0];
690             vdwjidx0E        = 2*vdwtype[jnrE+0];
691             vdwjidx0F        = 2*vdwtype[jnrF+0];
692             vdwjidx0G        = 2*vdwtype[jnrG+0];
693             vdwjidx0H        = 2*vdwtype[jnrH+0];
694
695             /**************************
696              * CALCULATE INTERACTIONS *
697              **************************/
698
699             if (gmx_mm256_any_lt(rsq00,rcutoff2))
700             {
701
702             r00              = _mm256_mul_ps(rsq00,rinv00);
703
704             /* Compute parameters for interactions between i and j atoms */
705             qq00             = _mm256_mul_ps(iq0,jq0);
706             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
707                                             vdwioffsetptr0+vdwjidx0B,
708                                             vdwioffsetptr0+vdwjidx0C,
709                                             vdwioffsetptr0+vdwjidx0D,
710                                             vdwioffsetptr0+vdwjidx0E,
711                                             vdwioffsetptr0+vdwjidx0F,
712                                             vdwioffsetptr0+vdwjidx0G,
713                                             vdwioffsetptr0+vdwjidx0H,
714                                             &c6_00,&c12_00);
715
716             /* REACTION-FIELD ELECTROSTATICS */
717             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
718
719             /* LENNARD-JONES DISPERSION/REPULSION */
720
721             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
722             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
723             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
724             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
725             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
726
727             d                = _mm256_sub_ps(r00,rswitch);
728             d                = _mm256_max_ps(d,_mm256_setzero_ps());
729             d2               = _mm256_mul_ps(d,d);
730             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
731
732             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
733
734             /* Evaluate switch function */
735             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
736             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
737             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
738
739             fscal            = _mm256_add_ps(felec,fvdw);
740
741             fscal            = _mm256_and_ps(fscal,cutoff_mask);
742
743             /* Calculate temporary vectorial force */
744             tx               = _mm256_mul_ps(fscal,dx00);
745             ty               = _mm256_mul_ps(fscal,dy00);
746             tz               = _mm256_mul_ps(fscal,dz00);
747
748             /* Update vectorial force */
749             fix0             = _mm256_add_ps(fix0,tx);
750             fiy0             = _mm256_add_ps(fiy0,ty);
751             fiz0             = _mm256_add_ps(fiz0,tz);
752
753             fjptrA             = f+j_coord_offsetA;
754             fjptrB             = f+j_coord_offsetB;
755             fjptrC             = f+j_coord_offsetC;
756             fjptrD             = f+j_coord_offsetD;
757             fjptrE             = f+j_coord_offsetE;
758             fjptrF             = f+j_coord_offsetF;
759             fjptrG             = f+j_coord_offsetG;
760             fjptrH             = f+j_coord_offsetH;
761             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
762
763             }
764
765             /* Inner loop uses 61 flops */
766         }
767
768         if(jidx<j_index_end)
769         {
770
771             /* Get j neighbor index, and coordinate index */
772             jnrlistA         = jjnr[jidx];
773             jnrlistB         = jjnr[jidx+1];
774             jnrlistC         = jjnr[jidx+2];
775             jnrlistD         = jjnr[jidx+3];
776             jnrlistE         = jjnr[jidx+4];
777             jnrlistF         = jjnr[jidx+5];
778             jnrlistG         = jjnr[jidx+6];
779             jnrlistH         = jjnr[jidx+7];
780             /* Sign of each element will be negative for non-real atoms.
781              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
782              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
783              */
784             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
785                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
786                                             
787             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
788             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
789             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
790             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
791             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
792             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
793             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
794             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
795             j_coord_offsetA  = DIM*jnrA;
796             j_coord_offsetB  = DIM*jnrB;
797             j_coord_offsetC  = DIM*jnrC;
798             j_coord_offsetD  = DIM*jnrD;
799             j_coord_offsetE  = DIM*jnrE;
800             j_coord_offsetF  = DIM*jnrF;
801             j_coord_offsetG  = DIM*jnrG;
802             j_coord_offsetH  = DIM*jnrH;
803
804             /* load j atom coordinates */
805             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
806                                                  x+j_coord_offsetC,x+j_coord_offsetD,
807                                                  x+j_coord_offsetE,x+j_coord_offsetF,
808                                                  x+j_coord_offsetG,x+j_coord_offsetH,
809                                                  &jx0,&jy0,&jz0);
810
811             /* Calculate displacement vector */
812             dx00             = _mm256_sub_ps(ix0,jx0);
813             dy00             = _mm256_sub_ps(iy0,jy0);
814             dz00             = _mm256_sub_ps(iz0,jz0);
815
816             /* Calculate squared distance and things based on it */
817             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
818
819             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
820
821             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
822
823             /* Load parameters for j particles */
824             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
825                                                                  charge+jnrC+0,charge+jnrD+0,
826                                                                  charge+jnrE+0,charge+jnrF+0,
827                                                                  charge+jnrG+0,charge+jnrH+0);
828             vdwjidx0A        = 2*vdwtype[jnrA+0];
829             vdwjidx0B        = 2*vdwtype[jnrB+0];
830             vdwjidx0C        = 2*vdwtype[jnrC+0];
831             vdwjidx0D        = 2*vdwtype[jnrD+0];
832             vdwjidx0E        = 2*vdwtype[jnrE+0];
833             vdwjidx0F        = 2*vdwtype[jnrF+0];
834             vdwjidx0G        = 2*vdwtype[jnrG+0];
835             vdwjidx0H        = 2*vdwtype[jnrH+0];
836
837             /**************************
838              * CALCULATE INTERACTIONS *
839              **************************/
840
841             if (gmx_mm256_any_lt(rsq00,rcutoff2))
842             {
843
844             r00              = _mm256_mul_ps(rsq00,rinv00);
845             r00              = _mm256_andnot_ps(dummy_mask,r00);
846
847             /* Compute parameters for interactions between i and j atoms */
848             qq00             = _mm256_mul_ps(iq0,jq0);
849             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
850                                             vdwioffsetptr0+vdwjidx0B,
851                                             vdwioffsetptr0+vdwjidx0C,
852                                             vdwioffsetptr0+vdwjidx0D,
853                                             vdwioffsetptr0+vdwjidx0E,
854                                             vdwioffsetptr0+vdwjidx0F,
855                                             vdwioffsetptr0+vdwjidx0G,
856                                             vdwioffsetptr0+vdwjidx0H,
857                                             &c6_00,&c12_00);
858
859             /* REACTION-FIELD ELECTROSTATICS */
860             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
861
862             /* LENNARD-JONES DISPERSION/REPULSION */
863
864             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
865             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
866             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
867             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
868             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
869
870             d                = _mm256_sub_ps(r00,rswitch);
871             d                = _mm256_max_ps(d,_mm256_setzero_ps());
872             d2               = _mm256_mul_ps(d,d);
873             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
874
875             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
876
877             /* Evaluate switch function */
878             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
879             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
880             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
881
882             fscal            = _mm256_add_ps(felec,fvdw);
883
884             fscal            = _mm256_and_ps(fscal,cutoff_mask);
885
886             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
887
888             /* Calculate temporary vectorial force */
889             tx               = _mm256_mul_ps(fscal,dx00);
890             ty               = _mm256_mul_ps(fscal,dy00);
891             tz               = _mm256_mul_ps(fscal,dz00);
892
893             /* Update vectorial force */
894             fix0             = _mm256_add_ps(fix0,tx);
895             fiy0             = _mm256_add_ps(fiy0,ty);
896             fiz0             = _mm256_add_ps(fiz0,tz);
897
898             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
899             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
900             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
901             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
902             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
903             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
904             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
905             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
906             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
907
908             }
909
910             /* Inner loop uses 62 flops */
911         }
912
913         /* End of innermost loop */
914
915         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
916                                                  f+i_coord_offset,fshift+i_shift_offset);
917
918         /* Increment number of inner iterations */
919         inneriter                  += j_index_end - j_index_start;
920
921         /* Outer loop uses 7 flops */
922     }
923
924     /* Increment number of outer iterations */
925     outeriter        += nri;
926
927     /* Update outer/inner flops */
928
929     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
930 }