Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_256_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
91     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
100     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
101     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
102     real             rswitch_scalar,d_scalar;
103     __m256           dummy_mask,cutoff_mask;
104     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
105     __m256           one     = _mm256_set1_ps(1.0);
106     __m256           two     = _mm256_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm256_set1_ps(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     krf              = _mm256_set1_ps(fr->ic->k_rf);
121     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
122     crf              = _mm256_set1_ps(fr->ic->c_rf);
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
128     rcutoff_scalar   = fr->rcoulomb;
129     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
130     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
131
132     rswitch_scalar   = fr->rvdw_switch;
133     rswitch          = _mm256_set1_ps(rswitch_scalar);
134     /* Setup switch parameters */
135     d_scalar         = rcutoff_scalar-rswitch_scalar;
136     d                = _mm256_set1_ps(d_scalar);
137     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
138     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
141     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
142     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150     j_coord_offsetE = 0;
151     j_coord_offsetF = 0;
152     j_coord_offsetG = 0;
153     j_coord_offsetH = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
179
180         fix0             = _mm256_setzero_ps();
181         fiy0             = _mm256_setzero_ps();
182         fiz0             = _mm256_setzero_ps();
183
184         /* Load parameters for i particles */
185         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
186         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
187
188         /* Reset potential sums */
189         velecsum         = _mm256_setzero_ps();
190         vvdwsum          = _mm256_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             jnrE             = jjnr[jidx+4];
202             jnrF             = jjnr[jidx+5];
203             jnrG             = jjnr[jidx+6];
204             jnrH             = jjnr[jidx+7];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209             j_coord_offsetE  = DIM*jnrE;
210             j_coord_offsetF  = DIM*jnrF;
211             j_coord_offsetG  = DIM*jnrG;
212             j_coord_offsetH  = DIM*jnrH;
213
214             /* load j atom coordinates */
215             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
216                                                  x+j_coord_offsetC,x+j_coord_offsetD,
217                                                  x+j_coord_offsetE,x+j_coord_offsetF,
218                                                  x+j_coord_offsetG,x+j_coord_offsetH,
219                                                  &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm256_sub_ps(ix0,jx0);
223             dy00             = _mm256_sub_ps(iy0,jy0);
224             dz00             = _mm256_sub_ps(iz0,jz0);
225
226             /* Calculate squared distance and things based on it */
227             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
228
229             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
230
231             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
232
233             /* Load parameters for j particles */
234             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
235                                                                  charge+jnrC+0,charge+jnrD+0,
236                                                                  charge+jnrE+0,charge+jnrF+0,
237                                                                  charge+jnrG+0,charge+jnrH+0);
238             vdwjidx0A        = 2*vdwtype[jnrA+0];
239             vdwjidx0B        = 2*vdwtype[jnrB+0];
240             vdwjidx0C        = 2*vdwtype[jnrC+0];
241             vdwjidx0D        = 2*vdwtype[jnrD+0];
242             vdwjidx0E        = 2*vdwtype[jnrE+0];
243             vdwjidx0F        = 2*vdwtype[jnrF+0];
244             vdwjidx0G        = 2*vdwtype[jnrG+0];
245             vdwjidx0H        = 2*vdwtype[jnrH+0];
246
247             /**************************
248              * CALCULATE INTERACTIONS *
249              **************************/
250
251             if (gmx_mm256_any_lt(rsq00,rcutoff2))
252             {
253
254             r00              = _mm256_mul_ps(rsq00,rinv00);
255
256             /* Compute parameters for interactions between i and j atoms */
257             qq00             = _mm256_mul_ps(iq0,jq0);
258             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
259                                             vdwioffsetptr0+vdwjidx0B,
260                                             vdwioffsetptr0+vdwjidx0C,
261                                             vdwioffsetptr0+vdwjidx0D,
262                                             vdwioffsetptr0+vdwjidx0E,
263                                             vdwioffsetptr0+vdwjidx0F,
264                                             vdwioffsetptr0+vdwjidx0G,
265                                             vdwioffsetptr0+vdwjidx0H,
266                                             &c6_00,&c12_00);
267
268             /* REACTION-FIELD ELECTROSTATICS */
269             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
270             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
271
272             /* LENNARD-JONES DISPERSION/REPULSION */
273
274             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
275             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
276             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
277             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
278             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
279
280             d                = _mm256_sub_ps(r00,rswitch);
281             d                = _mm256_max_ps(d,_mm256_setzero_ps());
282             d2               = _mm256_mul_ps(d,d);
283             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
284
285             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
286
287             /* Evaluate switch function */
288             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
289             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
290             vvdw             = _mm256_mul_ps(vvdw,sw);
291             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
292
293             /* Update potential sum for this i atom from the interaction with this j atom. */
294             velec            = _mm256_and_ps(velec,cutoff_mask);
295             velecsum         = _mm256_add_ps(velecsum,velec);
296             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
297             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
298
299             fscal            = _mm256_add_ps(felec,fvdw);
300
301             fscal            = _mm256_and_ps(fscal,cutoff_mask);
302
303             /* Calculate temporary vectorial force */
304             tx               = _mm256_mul_ps(fscal,dx00);
305             ty               = _mm256_mul_ps(fscal,dy00);
306             tz               = _mm256_mul_ps(fscal,dz00);
307
308             /* Update vectorial force */
309             fix0             = _mm256_add_ps(fix0,tx);
310             fiy0             = _mm256_add_ps(fiy0,ty);
311             fiz0             = _mm256_add_ps(fiz0,tz);
312
313             fjptrA             = f+j_coord_offsetA;
314             fjptrB             = f+j_coord_offsetB;
315             fjptrC             = f+j_coord_offsetC;
316             fjptrD             = f+j_coord_offsetD;
317             fjptrE             = f+j_coord_offsetE;
318             fjptrF             = f+j_coord_offsetF;
319             fjptrG             = f+j_coord_offsetG;
320             fjptrH             = f+j_coord_offsetH;
321             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
322
323             }
324
325             /* Inner loop uses 70 flops */
326         }
327
328         if(jidx<j_index_end)
329         {
330
331             /* Get j neighbor index, and coordinate index */
332             jnrlistA         = jjnr[jidx];
333             jnrlistB         = jjnr[jidx+1];
334             jnrlistC         = jjnr[jidx+2];
335             jnrlistD         = jjnr[jidx+3];
336             jnrlistE         = jjnr[jidx+4];
337             jnrlistF         = jjnr[jidx+5];
338             jnrlistG         = jjnr[jidx+6];
339             jnrlistH         = jjnr[jidx+7];
340             /* Sign of each element will be negative for non-real atoms.
341              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
342              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
343              */
344             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
345                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
346                                             
347             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
348             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
349             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
350             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
351             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
352             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
353             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
354             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
355             j_coord_offsetA  = DIM*jnrA;
356             j_coord_offsetB  = DIM*jnrB;
357             j_coord_offsetC  = DIM*jnrC;
358             j_coord_offsetD  = DIM*jnrD;
359             j_coord_offsetE  = DIM*jnrE;
360             j_coord_offsetF  = DIM*jnrF;
361             j_coord_offsetG  = DIM*jnrG;
362             j_coord_offsetH  = DIM*jnrH;
363
364             /* load j atom coordinates */
365             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
366                                                  x+j_coord_offsetC,x+j_coord_offsetD,
367                                                  x+j_coord_offsetE,x+j_coord_offsetF,
368                                                  x+j_coord_offsetG,x+j_coord_offsetH,
369                                                  &jx0,&jy0,&jz0);
370
371             /* Calculate displacement vector */
372             dx00             = _mm256_sub_ps(ix0,jx0);
373             dy00             = _mm256_sub_ps(iy0,jy0);
374             dz00             = _mm256_sub_ps(iz0,jz0);
375
376             /* Calculate squared distance and things based on it */
377             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
378
379             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
380
381             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
382
383             /* Load parameters for j particles */
384             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
385                                                                  charge+jnrC+0,charge+jnrD+0,
386                                                                  charge+jnrE+0,charge+jnrF+0,
387                                                                  charge+jnrG+0,charge+jnrH+0);
388             vdwjidx0A        = 2*vdwtype[jnrA+0];
389             vdwjidx0B        = 2*vdwtype[jnrB+0];
390             vdwjidx0C        = 2*vdwtype[jnrC+0];
391             vdwjidx0D        = 2*vdwtype[jnrD+0];
392             vdwjidx0E        = 2*vdwtype[jnrE+0];
393             vdwjidx0F        = 2*vdwtype[jnrF+0];
394             vdwjidx0G        = 2*vdwtype[jnrG+0];
395             vdwjidx0H        = 2*vdwtype[jnrH+0];
396
397             /**************************
398              * CALCULATE INTERACTIONS *
399              **************************/
400
401             if (gmx_mm256_any_lt(rsq00,rcutoff2))
402             {
403
404             r00              = _mm256_mul_ps(rsq00,rinv00);
405             r00              = _mm256_andnot_ps(dummy_mask,r00);
406
407             /* Compute parameters for interactions between i and j atoms */
408             qq00             = _mm256_mul_ps(iq0,jq0);
409             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
410                                             vdwioffsetptr0+vdwjidx0B,
411                                             vdwioffsetptr0+vdwjidx0C,
412                                             vdwioffsetptr0+vdwjidx0D,
413                                             vdwioffsetptr0+vdwjidx0E,
414                                             vdwioffsetptr0+vdwjidx0F,
415                                             vdwioffsetptr0+vdwjidx0G,
416                                             vdwioffsetptr0+vdwjidx0H,
417                                             &c6_00,&c12_00);
418
419             /* REACTION-FIELD ELECTROSTATICS */
420             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
421             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
422
423             /* LENNARD-JONES DISPERSION/REPULSION */
424
425             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
426             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
427             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
428             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
429             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
430
431             d                = _mm256_sub_ps(r00,rswitch);
432             d                = _mm256_max_ps(d,_mm256_setzero_ps());
433             d2               = _mm256_mul_ps(d,d);
434             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
435
436             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
437
438             /* Evaluate switch function */
439             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
440             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
441             vvdw             = _mm256_mul_ps(vvdw,sw);
442             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
443
444             /* Update potential sum for this i atom from the interaction with this j atom. */
445             velec            = _mm256_and_ps(velec,cutoff_mask);
446             velec            = _mm256_andnot_ps(dummy_mask,velec);
447             velecsum         = _mm256_add_ps(velecsum,velec);
448             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
449             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
450             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
451
452             fscal            = _mm256_add_ps(felec,fvdw);
453
454             fscal            = _mm256_and_ps(fscal,cutoff_mask);
455
456             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
457
458             /* Calculate temporary vectorial force */
459             tx               = _mm256_mul_ps(fscal,dx00);
460             ty               = _mm256_mul_ps(fscal,dy00);
461             tz               = _mm256_mul_ps(fscal,dz00);
462
463             /* Update vectorial force */
464             fix0             = _mm256_add_ps(fix0,tx);
465             fiy0             = _mm256_add_ps(fiy0,ty);
466             fiz0             = _mm256_add_ps(fiz0,tz);
467
468             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
469             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
470             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
471             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
472             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
473             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
474             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
475             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
476             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
477
478             }
479
480             /* Inner loop uses 71 flops */
481         }
482
483         /* End of innermost loop */
484
485         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
486                                                  f+i_coord_offset,fshift+i_shift_offset);
487
488         ggid                        = gid[iidx];
489         /* Update potential energies */
490         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
491         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
492
493         /* Increment number of inner iterations */
494         inneriter                  += j_index_end - j_index_start;
495
496         /* Outer loop uses 9 flops */
497     }
498
499     /* Increment number of outer iterations */
500     outeriter        += nri;
501
502     /* Update outer/inner flops */
503
504     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*71);
505 }
506 /*
507  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_256_single
508  * Electrostatics interaction: ReactionField
509  * VdW interaction:            LennardJones
510  * Geometry:                   Particle-Particle
511  * Calculate force/pot:        Force
512  */
513 void
514 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_256_single
515                     (t_nblist                    * gmx_restrict       nlist,
516                      rvec                        * gmx_restrict          xx,
517                      rvec                        * gmx_restrict          ff,
518                      t_forcerec                  * gmx_restrict          fr,
519                      t_mdatoms                   * gmx_restrict     mdatoms,
520                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
521                      t_nrnb                      * gmx_restrict        nrnb)
522 {
523     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
524      * just 0 for non-waters.
525      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
526      * jnr indices corresponding to data put in the four positions in the SIMD register.
527      */
528     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
529     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
530     int              jnrA,jnrB,jnrC,jnrD;
531     int              jnrE,jnrF,jnrG,jnrH;
532     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
533     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
534     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
535     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
536     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
537     real             rcutoff_scalar;
538     real             *shiftvec,*fshift,*x,*f;
539     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
540     real             scratch[4*DIM];
541     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
542     real *           vdwioffsetptr0;
543     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
544     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
545     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
546     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
547     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
548     real             *charge;
549     int              nvdwtype;
550     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
551     int              *vdwtype;
552     real             *vdwparam;
553     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
554     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
555     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
556     real             rswitch_scalar,d_scalar;
557     __m256           dummy_mask,cutoff_mask;
558     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
559     __m256           one     = _mm256_set1_ps(1.0);
560     __m256           two     = _mm256_set1_ps(2.0);
561     x                = xx[0];
562     f                = ff[0];
563
564     nri              = nlist->nri;
565     iinr             = nlist->iinr;
566     jindex           = nlist->jindex;
567     jjnr             = nlist->jjnr;
568     shiftidx         = nlist->shift;
569     gid              = nlist->gid;
570     shiftvec         = fr->shift_vec[0];
571     fshift           = fr->fshift[0];
572     facel            = _mm256_set1_ps(fr->epsfac);
573     charge           = mdatoms->chargeA;
574     krf              = _mm256_set1_ps(fr->ic->k_rf);
575     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
576     crf              = _mm256_set1_ps(fr->ic->c_rf);
577     nvdwtype         = fr->ntype;
578     vdwparam         = fr->nbfp;
579     vdwtype          = mdatoms->typeA;
580
581     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
582     rcutoff_scalar   = fr->rcoulomb;
583     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
584     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
585
586     rswitch_scalar   = fr->rvdw_switch;
587     rswitch          = _mm256_set1_ps(rswitch_scalar);
588     /* Setup switch parameters */
589     d_scalar         = rcutoff_scalar-rswitch_scalar;
590     d                = _mm256_set1_ps(d_scalar);
591     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
592     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
593     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
594     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
595     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
596     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
597
598     /* Avoid stupid compiler warnings */
599     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
600     j_coord_offsetA = 0;
601     j_coord_offsetB = 0;
602     j_coord_offsetC = 0;
603     j_coord_offsetD = 0;
604     j_coord_offsetE = 0;
605     j_coord_offsetF = 0;
606     j_coord_offsetG = 0;
607     j_coord_offsetH = 0;
608
609     outeriter        = 0;
610     inneriter        = 0;
611
612     for(iidx=0;iidx<4*DIM;iidx++)
613     {
614         scratch[iidx] = 0.0;
615     }
616
617     /* Start outer loop over neighborlists */
618     for(iidx=0; iidx<nri; iidx++)
619     {
620         /* Load shift vector for this list */
621         i_shift_offset   = DIM*shiftidx[iidx];
622
623         /* Load limits for loop over neighbors */
624         j_index_start    = jindex[iidx];
625         j_index_end      = jindex[iidx+1];
626
627         /* Get outer coordinate index */
628         inr              = iinr[iidx];
629         i_coord_offset   = DIM*inr;
630
631         /* Load i particle coords and add shift vector */
632         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
633
634         fix0             = _mm256_setzero_ps();
635         fiy0             = _mm256_setzero_ps();
636         fiz0             = _mm256_setzero_ps();
637
638         /* Load parameters for i particles */
639         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
640         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
641
642         /* Start inner kernel loop */
643         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
644         {
645
646             /* Get j neighbor index, and coordinate index */
647             jnrA             = jjnr[jidx];
648             jnrB             = jjnr[jidx+1];
649             jnrC             = jjnr[jidx+2];
650             jnrD             = jjnr[jidx+3];
651             jnrE             = jjnr[jidx+4];
652             jnrF             = jjnr[jidx+5];
653             jnrG             = jjnr[jidx+6];
654             jnrH             = jjnr[jidx+7];
655             j_coord_offsetA  = DIM*jnrA;
656             j_coord_offsetB  = DIM*jnrB;
657             j_coord_offsetC  = DIM*jnrC;
658             j_coord_offsetD  = DIM*jnrD;
659             j_coord_offsetE  = DIM*jnrE;
660             j_coord_offsetF  = DIM*jnrF;
661             j_coord_offsetG  = DIM*jnrG;
662             j_coord_offsetH  = DIM*jnrH;
663
664             /* load j atom coordinates */
665             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
666                                                  x+j_coord_offsetC,x+j_coord_offsetD,
667                                                  x+j_coord_offsetE,x+j_coord_offsetF,
668                                                  x+j_coord_offsetG,x+j_coord_offsetH,
669                                                  &jx0,&jy0,&jz0);
670
671             /* Calculate displacement vector */
672             dx00             = _mm256_sub_ps(ix0,jx0);
673             dy00             = _mm256_sub_ps(iy0,jy0);
674             dz00             = _mm256_sub_ps(iz0,jz0);
675
676             /* Calculate squared distance and things based on it */
677             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
678
679             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
680
681             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
682
683             /* Load parameters for j particles */
684             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
685                                                                  charge+jnrC+0,charge+jnrD+0,
686                                                                  charge+jnrE+0,charge+jnrF+0,
687                                                                  charge+jnrG+0,charge+jnrH+0);
688             vdwjidx0A        = 2*vdwtype[jnrA+0];
689             vdwjidx0B        = 2*vdwtype[jnrB+0];
690             vdwjidx0C        = 2*vdwtype[jnrC+0];
691             vdwjidx0D        = 2*vdwtype[jnrD+0];
692             vdwjidx0E        = 2*vdwtype[jnrE+0];
693             vdwjidx0F        = 2*vdwtype[jnrF+0];
694             vdwjidx0G        = 2*vdwtype[jnrG+0];
695             vdwjidx0H        = 2*vdwtype[jnrH+0];
696
697             /**************************
698              * CALCULATE INTERACTIONS *
699              **************************/
700
701             if (gmx_mm256_any_lt(rsq00,rcutoff2))
702             {
703
704             r00              = _mm256_mul_ps(rsq00,rinv00);
705
706             /* Compute parameters for interactions between i and j atoms */
707             qq00             = _mm256_mul_ps(iq0,jq0);
708             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
709                                             vdwioffsetptr0+vdwjidx0B,
710                                             vdwioffsetptr0+vdwjidx0C,
711                                             vdwioffsetptr0+vdwjidx0D,
712                                             vdwioffsetptr0+vdwjidx0E,
713                                             vdwioffsetptr0+vdwjidx0F,
714                                             vdwioffsetptr0+vdwjidx0G,
715                                             vdwioffsetptr0+vdwjidx0H,
716                                             &c6_00,&c12_00);
717
718             /* REACTION-FIELD ELECTROSTATICS */
719             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
720
721             /* LENNARD-JONES DISPERSION/REPULSION */
722
723             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
724             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
725             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
726             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
727             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
728
729             d                = _mm256_sub_ps(r00,rswitch);
730             d                = _mm256_max_ps(d,_mm256_setzero_ps());
731             d2               = _mm256_mul_ps(d,d);
732             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
733
734             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
735
736             /* Evaluate switch function */
737             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
738             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
739             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
740
741             fscal            = _mm256_add_ps(felec,fvdw);
742
743             fscal            = _mm256_and_ps(fscal,cutoff_mask);
744
745             /* Calculate temporary vectorial force */
746             tx               = _mm256_mul_ps(fscal,dx00);
747             ty               = _mm256_mul_ps(fscal,dy00);
748             tz               = _mm256_mul_ps(fscal,dz00);
749
750             /* Update vectorial force */
751             fix0             = _mm256_add_ps(fix0,tx);
752             fiy0             = _mm256_add_ps(fiy0,ty);
753             fiz0             = _mm256_add_ps(fiz0,tz);
754
755             fjptrA             = f+j_coord_offsetA;
756             fjptrB             = f+j_coord_offsetB;
757             fjptrC             = f+j_coord_offsetC;
758             fjptrD             = f+j_coord_offsetD;
759             fjptrE             = f+j_coord_offsetE;
760             fjptrF             = f+j_coord_offsetF;
761             fjptrG             = f+j_coord_offsetG;
762             fjptrH             = f+j_coord_offsetH;
763             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
764
765             }
766
767             /* Inner loop uses 61 flops */
768         }
769
770         if(jidx<j_index_end)
771         {
772
773             /* Get j neighbor index, and coordinate index */
774             jnrlistA         = jjnr[jidx];
775             jnrlistB         = jjnr[jidx+1];
776             jnrlistC         = jjnr[jidx+2];
777             jnrlistD         = jjnr[jidx+3];
778             jnrlistE         = jjnr[jidx+4];
779             jnrlistF         = jjnr[jidx+5];
780             jnrlistG         = jjnr[jidx+6];
781             jnrlistH         = jjnr[jidx+7];
782             /* Sign of each element will be negative for non-real atoms.
783              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
784              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
785              */
786             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
787                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
788                                             
789             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
790             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
791             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
792             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
793             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
794             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
795             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
796             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
797             j_coord_offsetA  = DIM*jnrA;
798             j_coord_offsetB  = DIM*jnrB;
799             j_coord_offsetC  = DIM*jnrC;
800             j_coord_offsetD  = DIM*jnrD;
801             j_coord_offsetE  = DIM*jnrE;
802             j_coord_offsetF  = DIM*jnrF;
803             j_coord_offsetG  = DIM*jnrG;
804             j_coord_offsetH  = DIM*jnrH;
805
806             /* load j atom coordinates */
807             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
808                                                  x+j_coord_offsetC,x+j_coord_offsetD,
809                                                  x+j_coord_offsetE,x+j_coord_offsetF,
810                                                  x+j_coord_offsetG,x+j_coord_offsetH,
811                                                  &jx0,&jy0,&jz0);
812
813             /* Calculate displacement vector */
814             dx00             = _mm256_sub_ps(ix0,jx0);
815             dy00             = _mm256_sub_ps(iy0,jy0);
816             dz00             = _mm256_sub_ps(iz0,jz0);
817
818             /* Calculate squared distance and things based on it */
819             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
820
821             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
822
823             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
824
825             /* Load parameters for j particles */
826             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
827                                                                  charge+jnrC+0,charge+jnrD+0,
828                                                                  charge+jnrE+0,charge+jnrF+0,
829                                                                  charge+jnrG+0,charge+jnrH+0);
830             vdwjidx0A        = 2*vdwtype[jnrA+0];
831             vdwjidx0B        = 2*vdwtype[jnrB+0];
832             vdwjidx0C        = 2*vdwtype[jnrC+0];
833             vdwjidx0D        = 2*vdwtype[jnrD+0];
834             vdwjidx0E        = 2*vdwtype[jnrE+0];
835             vdwjidx0F        = 2*vdwtype[jnrF+0];
836             vdwjidx0G        = 2*vdwtype[jnrG+0];
837             vdwjidx0H        = 2*vdwtype[jnrH+0];
838
839             /**************************
840              * CALCULATE INTERACTIONS *
841              **************************/
842
843             if (gmx_mm256_any_lt(rsq00,rcutoff2))
844             {
845
846             r00              = _mm256_mul_ps(rsq00,rinv00);
847             r00              = _mm256_andnot_ps(dummy_mask,r00);
848
849             /* Compute parameters for interactions between i and j atoms */
850             qq00             = _mm256_mul_ps(iq0,jq0);
851             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
852                                             vdwioffsetptr0+vdwjidx0B,
853                                             vdwioffsetptr0+vdwjidx0C,
854                                             vdwioffsetptr0+vdwjidx0D,
855                                             vdwioffsetptr0+vdwjidx0E,
856                                             vdwioffsetptr0+vdwjidx0F,
857                                             vdwioffsetptr0+vdwjidx0G,
858                                             vdwioffsetptr0+vdwjidx0H,
859                                             &c6_00,&c12_00);
860
861             /* REACTION-FIELD ELECTROSTATICS */
862             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
863
864             /* LENNARD-JONES DISPERSION/REPULSION */
865
866             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
867             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
868             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
869             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
870             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
871
872             d                = _mm256_sub_ps(r00,rswitch);
873             d                = _mm256_max_ps(d,_mm256_setzero_ps());
874             d2               = _mm256_mul_ps(d,d);
875             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
876
877             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
878
879             /* Evaluate switch function */
880             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
881             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
882             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
883
884             fscal            = _mm256_add_ps(felec,fvdw);
885
886             fscal            = _mm256_and_ps(fscal,cutoff_mask);
887
888             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
889
890             /* Calculate temporary vectorial force */
891             tx               = _mm256_mul_ps(fscal,dx00);
892             ty               = _mm256_mul_ps(fscal,dy00);
893             tz               = _mm256_mul_ps(fscal,dz00);
894
895             /* Update vectorial force */
896             fix0             = _mm256_add_ps(fix0,tx);
897             fiy0             = _mm256_add_ps(fiy0,ty);
898             fiz0             = _mm256_add_ps(fiz0,tz);
899
900             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
901             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
902             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
903             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
904             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
905             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
906             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
907             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
908             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
909
910             }
911
912             /* Inner loop uses 62 flops */
913         }
914
915         /* End of innermost loop */
916
917         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
918                                                  f+i_coord_offset,fshift+i_shift_offset);
919
920         /* Increment number of inner iterations */
921         inneriter                  += j_index_end - j_index_start;
922
923         /* Outer loop uses 7 flops */
924     }
925
926     /* Increment number of outer iterations */
927     outeriter        += nri;
928
929     /* Update outer/inner flops */
930
931     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
932 }