Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_256_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
75     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
84     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
85     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
86     real             rswitch_scalar,d_scalar;
87     __m256           dummy_mask,cutoff_mask;
88     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
89     __m256           one     = _mm256_set1_ps(1.0);
90     __m256           two     = _mm256_set1_ps(2.0);
91     x                = xx[0];
92     f                = ff[0];
93
94     nri              = nlist->nri;
95     iinr             = nlist->iinr;
96     jindex           = nlist->jindex;
97     jjnr             = nlist->jjnr;
98     shiftidx         = nlist->shift;
99     gid              = nlist->gid;
100     shiftvec         = fr->shift_vec[0];
101     fshift           = fr->fshift[0];
102     facel            = _mm256_set1_ps(fr->epsfac);
103     charge           = mdatoms->chargeA;
104     krf              = _mm256_set1_ps(fr->ic->k_rf);
105     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
106     crf              = _mm256_set1_ps(fr->ic->c_rf);
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
112     rcutoff_scalar   = fr->rcoulomb;
113     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
114     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
115
116     rswitch_scalar   = fr->rvdw_switch;
117     rswitch          = _mm256_set1_ps(rswitch_scalar);
118     /* Setup switch parameters */
119     d_scalar         = rcutoff_scalar-rswitch_scalar;
120     d                = _mm256_set1_ps(d_scalar);
121     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
122     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
123     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
124     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
125     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
126     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132     j_coord_offsetC = 0;
133     j_coord_offsetD = 0;
134     j_coord_offsetE = 0;
135     j_coord_offsetF = 0;
136     j_coord_offsetG = 0;
137     j_coord_offsetH = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
163
164         fix0             = _mm256_setzero_ps();
165         fiy0             = _mm256_setzero_ps();
166         fiz0             = _mm256_setzero_ps();
167
168         /* Load parameters for i particles */
169         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
170         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
171
172         /* Reset potential sums */
173         velecsum         = _mm256_setzero_ps();
174         vvdwsum          = _mm256_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             jnrE             = jjnr[jidx+4];
186             jnrF             = jjnr[jidx+5];
187             jnrG             = jjnr[jidx+6];
188             jnrH             = jjnr[jidx+7];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193             j_coord_offsetE  = DIM*jnrE;
194             j_coord_offsetF  = DIM*jnrF;
195             j_coord_offsetG  = DIM*jnrG;
196             j_coord_offsetH  = DIM*jnrH;
197
198             /* load j atom coordinates */
199             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                                  x+j_coord_offsetC,x+j_coord_offsetD,
201                                                  x+j_coord_offsetE,x+j_coord_offsetF,
202                                                  x+j_coord_offsetG,x+j_coord_offsetH,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm256_sub_ps(ix0,jx0);
207             dy00             = _mm256_sub_ps(iy0,jy0);
208             dz00             = _mm256_sub_ps(iz0,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
212
213             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
214
215             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
219                                                                  charge+jnrC+0,charge+jnrD+0,
220                                                                  charge+jnrE+0,charge+jnrF+0,
221                                                                  charge+jnrG+0,charge+jnrH+0);
222             vdwjidx0A        = 2*vdwtype[jnrA+0];
223             vdwjidx0B        = 2*vdwtype[jnrB+0];
224             vdwjidx0C        = 2*vdwtype[jnrC+0];
225             vdwjidx0D        = 2*vdwtype[jnrD+0];
226             vdwjidx0E        = 2*vdwtype[jnrE+0];
227             vdwjidx0F        = 2*vdwtype[jnrF+0];
228             vdwjidx0G        = 2*vdwtype[jnrG+0];
229             vdwjidx0H        = 2*vdwtype[jnrH+0];
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             if (gmx_mm256_any_lt(rsq00,rcutoff2))
236             {
237
238             r00              = _mm256_mul_ps(rsq00,rinv00);
239
240             /* Compute parameters for interactions between i and j atoms */
241             qq00             = _mm256_mul_ps(iq0,jq0);
242             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
243                                             vdwioffsetptr0+vdwjidx0B,
244                                             vdwioffsetptr0+vdwjidx0C,
245                                             vdwioffsetptr0+vdwjidx0D,
246                                             vdwioffsetptr0+vdwjidx0E,
247                                             vdwioffsetptr0+vdwjidx0F,
248                                             vdwioffsetptr0+vdwjidx0G,
249                                             vdwioffsetptr0+vdwjidx0H,
250                                             &c6_00,&c12_00);
251
252             /* REACTION-FIELD ELECTROSTATICS */
253             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
254             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
255
256             /* LENNARD-JONES DISPERSION/REPULSION */
257
258             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
259             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
260             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
261             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
262             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
263
264             d                = _mm256_sub_ps(r00,rswitch);
265             d                = _mm256_max_ps(d,_mm256_setzero_ps());
266             d2               = _mm256_mul_ps(d,d);
267             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
268
269             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
270
271             /* Evaluate switch function */
272             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
273             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
274             vvdw             = _mm256_mul_ps(vvdw,sw);
275             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
276
277             /* Update potential sum for this i atom from the interaction with this j atom. */
278             velec            = _mm256_and_ps(velec,cutoff_mask);
279             velecsum         = _mm256_add_ps(velecsum,velec);
280             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
281             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
282
283             fscal            = _mm256_add_ps(felec,fvdw);
284
285             fscal            = _mm256_and_ps(fscal,cutoff_mask);
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm256_mul_ps(fscal,dx00);
289             ty               = _mm256_mul_ps(fscal,dy00);
290             tz               = _mm256_mul_ps(fscal,dz00);
291
292             /* Update vectorial force */
293             fix0             = _mm256_add_ps(fix0,tx);
294             fiy0             = _mm256_add_ps(fiy0,ty);
295             fiz0             = _mm256_add_ps(fiz0,tz);
296
297             fjptrA             = f+j_coord_offsetA;
298             fjptrB             = f+j_coord_offsetB;
299             fjptrC             = f+j_coord_offsetC;
300             fjptrD             = f+j_coord_offsetD;
301             fjptrE             = f+j_coord_offsetE;
302             fjptrF             = f+j_coord_offsetF;
303             fjptrG             = f+j_coord_offsetG;
304             fjptrH             = f+j_coord_offsetH;
305             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
306
307             }
308
309             /* Inner loop uses 70 flops */
310         }
311
312         if(jidx<j_index_end)
313         {
314
315             /* Get j neighbor index, and coordinate index */
316             jnrlistA         = jjnr[jidx];
317             jnrlistB         = jjnr[jidx+1];
318             jnrlistC         = jjnr[jidx+2];
319             jnrlistD         = jjnr[jidx+3];
320             jnrlistE         = jjnr[jidx+4];
321             jnrlistF         = jjnr[jidx+5];
322             jnrlistG         = jjnr[jidx+6];
323             jnrlistH         = jjnr[jidx+7];
324             /* Sign of each element will be negative for non-real atoms.
325              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
326              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
327              */
328             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
329                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
330                                             
331             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
332             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
333             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
334             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
335             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
336             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
337             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
338             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
339             j_coord_offsetA  = DIM*jnrA;
340             j_coord_offsetB  = DIM*jnrB;
341             j_coord_offsetC  = DIM*jnrC;
342             j_coord_offsetD  = DIM*jnrD;
343             j_coord_offsetE  = DIM*jnrE;
344             j_coord_offsetF  = DIM*jnrF;
345             j_coord_offsetG  = DIM*jnrG;
346             j_coord_offsetH  = DIM*jnrH;
347
348             /* load j atom coordinates */
349             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
350                                                  x+j_coord_offsetC,x+j_coord_offsetD,
351                                                  x+j_coord_offsetE,x+j_coord_offsetF,
352                                                  x+j_coord_offsetG,x+j_coord_offsetH,
353                                                  &jx0,&jy0,&jz0);
354
355             /* Calculate displacement vector */
356             dx00             = _mm256_sub_ps(ix0,jx0);
357             dy00             = _mm256_sub_ps(iy0,jy0);
358             dz00             = _mm256_sub_ps(iz0,jz0);
359
360             /* Calculate squared distance and things based on it */
361             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
362
363             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
364
365             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
366
367             /* Load parameters for j particles */
368             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
369                                                                  charge+jnrC+0,charge+jnrD+0,
370                                                                  charge+jnrE+0,charge+jnrF+0,
371                                                                  charge+jnrG+0,charge+jnrH+0);
372             vdwjidx0A        = 2*vdwtype[jnrA+0];
373             vdwjidx0B        = 2*vdwtype[jnrB+0];
374             vdwjidx0C        = 2*vdwtype[jnrC+0];
375             vdwjidx0D        = 2*vdwtype[jnrD+0];
376             vdwjidx0E        = 2*vdwtype[jnrE+0];
377             vdwjidx0F        = 2*vdwtype[jnrF+0];
378             vdwjidx0G        = 2*vdwtype[jnrG+0];
379             vdwjidx0H        = 2*vdwtype[jnrH+0];
380
381             /**************************
382              * CALCULATE INTERACTIONS *
383              **************************/
384
385             if (gmx_mm256_any_lt(rsq00,rcutoff2))
386             {
387
388             r00              = _mm256_mul_ps(rsq00,rinv00);
389             r00              = _mm256_andnot_ps(dummy_mask,r00);
390
391             /* Compute parameters for interactions between i and j atoms */
392             qq00             = _mm256_mul_ps(iq0,jq0);
393             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
394                                             vdwioffsetptr0+vdwjidx0B,
395                                             vdwioffsetptr0+vdwjidx0C,
396                                             vdwioffsetptr0+vdwjidx0D,
397                                             vdwioffsetptr0+vdwjidx0E,
398                                             vdwioffsetptr0+vdwjidx0F,
399                                             vdwioffsetptr0+vdwjidx0G,
400                                             vdwioffsetptr0+vdwjidx0H,
401                                             &c6_00,&c12_00);
402
403             /* REACTION-FIELD ELECTROSTATICS */
404             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
405             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
406
407             /* LENNARD-JONES DISPERSION/REPULSION */
408
409             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
410             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
411             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
412             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
413             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
414
415             d                = _mm256_sub_ps(r00,rswitch);
416             d                = _mm256_max_ps(d,_mm256_setzero_ps());
417             d2               = _mm256_mul_ps(d,d);
418             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
419
420             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
421
422             /* Evaluate switch function */
423             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
424             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
425             vvdw             = _mm256_mul_ps(vvdw,sw);
426             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
427
428             /* Update potential sum for this i atom from the interaction with this j atom. */
429             velec            = _mm256_and_ps(velec,cutoff_mask);
430             velec            = _mm256_andnot_ps(dummy_mask,velec);
431             velecsum         = _mm256_add_ps(velecsum,velec);
432             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
433             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
434             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
435
436             fscal            = _mm256_add_ps(felec,fvdw);
437
438             fscal            = _mm256_and_ps(fscal,cutoff_mask);
439
440             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
441
442             /* Calculate temporary vectorial force */
443             tx               = _mm256_mul_ps(fscal,dx00);
444             ty               = _mm256_mul_ps(fscal,dy00);
445             tz               = _mm256_mul_ps(fscal,dz00);
446
447             /* Update vectorial force */
448             fix0             = _mm256_add_ps(fix0,tx);
449             fiy0             = _mm256_add_ps(fiy0,ty);
450             fiz0             = _mm256_add_ps(fiz0,tz);
451
452             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
453             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
454             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
455             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
456             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
457             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
458             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
459             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
460             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
461
462             }
463
464             /* Inner loop uses 71 flops */
465         }
466
467         /* End of innermost loop */
468
469         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
470                                                  f+i_coord_offset,fshift+i_shift_offset);
471
472         ggid                        = gid[iidx];
473         /* Update potential energies */
474         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
475         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
476
477         /* Increment number of inner iterations */
478         inneriter                  += j_index_end - j_index_start;
479
480         /* Outer loop uses 9 flops */
481     }
482
483     /* Increment number of outer iterations */
484     outeriter        += nri;
485
486     /* Update outer/inner flops */
487
488     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*71);
489 }
490 /*
491  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_256_single
492  * Electrostatics interaction: ReactionField
493  * VdW interaction:            LennardJones
494  * Geometry:                   Particle-Particle
495  * Calculate force/pot:        Force
496  */
497 void
498 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_256_single
499                     (t_nblist * gmx_restrict                nlist,
500                      rvec * gmx_restrict                    xx,
501                      rvec * gmx_restrict                    ff,
502                      t_forcerec * gmx_restrict              fr,
503                      t_mdatoms * gmx_restrict               mdatoms,
504                      nb_kernel_data_t * gmx_restrict        kernel_data,
505                      t_nrnb * gmx_restrict                  nrnb)
506 {
507     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
508      * just 0 for non-waters.
509      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
510      * jnr indices corresponding to data put in the four positions in the SIMD register.
511      */
512     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
513     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
514     int              jnrA,jnrB,jnrC,jnrD;
515     int              jnrE,jnrF,jnrG,jnrH;
516     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
517     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
518     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
519     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
520     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
521     real             rcutoff_scalar;
522     real             *shiftvec,*fshift,*x,*f;
523     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
524     real             scratch[4*DIM];
525     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
526     real *           vdwioffsetptr0;
527     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
528     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
529     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
530     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
531     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
532     real             *charge;
533     int              nvdwtype;
534     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
535     int              *vdwtype;
536     real             *vdwparam;
537     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
538     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
539     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
540     real             rswitch_scalar,d_scalar;
541     __m256           dummy_mask,cutoff_mask;
542     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
543     __m256           one     = _mm256_set1_ps(1.0);
544     __m256           two     = _mm256_set1_ps(2.0);
545     x                = xx[0];
546     f                = ff[0];
547
548     nri              = nlist->nri;
549     iinr             = nlist->iinr;
550     jindex           = nlist->jindex;
551     jjnr             = nlist->jjnr;
552     shiftidx         = nlist->shift;
553     gid              = nlist->gid;
554     shiftvec         = fr->shift_vec[0];
555     fshift           = fr->fshift[0];
556     facel            = _mm256_set1_ps(fr->epsfac);
557     charge           = mdatoms->chargeA;
558     krf              = _mm256_set1_ps(fr->ic->k_rf);
559     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
560     crf              = _mm256_set1_ps(fr->ic->c_rf);
561     nvdwtype         = fr->ntype;
562     vdwparam         = fr->nbfp;
563     vdwtype          = mdatoms->typeA;
564
565     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
566     rcutoff_scalar   = fr->rcoulomb;
567     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
568     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
569
570     rswitch_scalar   = fr->rvdw_switch;
571     rswitch          = _mm256_set1_ps(rswitch_scalar);
572     /* Setup switch parameters */
573     d_scalar         = rcutoff_scalar-rswitch_scalar;
574     d                = _mm256_set1_ps(d_scalar);
575     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
576     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
577     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
578     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
579     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
580     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
581
582     /* Avoid stupid compiler warnings */
583     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
584     j_coord_offsetA = 0;
585     j_coord_offsetB = 0;
586     j_coord_offsetC = 0;
587     j_coord_offsetD = 0;
588     j_coord_offsetE = 0;
589     j_coord_offsetF = 0;
590     j_coord_offsetG = 0;
591     j_coord_offsetH = 0;
592
593     outeriter        = 0;
594     inneriter        = 0;
595
596     for(iidx=0;iidx<4*DIM;iidx++)
597     {
598         scratch[iidx] = 0.0;
599     }
600
601     /* Start outer loop over neighborlists */
602     for(iidx=0; iidx<nri; iidx++)
603     {
604         /* Load shift vector for this list */
605         i_shift_offset   = DIM*shiftidx[iidx];
606
607         /* Load limits for loop over neighbors */
608         j_index_start    = jindex[iidx];
609         j_index_end      = jindex[iidx+1];
610
611         /* Get outer coordinate index */
612         inr              = iinr[iidx];
613         i_coord_offset   = DIM*inr;
614
615         /* Load i particle coords and add shift vector */
616         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
617
618         fix0             = _mm256_setzero_ps();
619         fiy0             = _mm256_setzero_ps();
620         fiz0             = _mm256_setzero_ps();
621
622         /* Load parameters for i particles */
623         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
624         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
625
626         /* Start inner kernel loop */
627         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
628         {
629
630             /* Get j neighbor index, and coordinate index */
631             jnrA             = jjnr[jidx];
632             jnrB             = jjnr[jidx+1];
633             jnrC             = jjnr[jidx+2];
634             jnrD             = jjnr[jidx+3];
635             jnrE             = jjnr[jidx+4];
636             jnrF             = jjnr[jidx+5];
637             jnrG             = jjnr[jidx+6];
638             jnrH             = jjnr[jidx+7];
639             j_coord_offsetA  = DIM*jnrA;
640             j_coord_offsetB  = DIM*jnrB;
641             j_coord_offsetC  = DIM*jnrC;
642             j_coord_offsetD  = DIM*jnrD;
643             j_coord_offsetE  = DIM*jnrE;
644             j_coord_offsetF  = DIM*jnrF;
645             j_coord_offsetG  = DIM*jnrG;
646             j_coord_offsetH  = DIM*jnrH;
647
648             /* load j atom coordinates */
649             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
650                                                  x+j_coord_offsetC,x+j_coord_offsetD,
651                                                  x+j_coord_offsetE,x+j_coord_offsetF,
652                                                  x+j_coord_offsetG,x+j_coord_offsetH,
653                                                  &jx0,&jy0,&jz0);
654
655             /* Calculate displacement vector */
656             dx00             = _mm256_sub_ps(ix0,jx0);
657             dy00             = _mm256_sub_ps(iy0,jy0);
658             dz00             = _mm256_sub_ps(iz0,jz0);
659
660             /* Calculate squared distance and things based on it */
661             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
662
663             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
664
665             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
666
667             /* Load parameters for j particles */
668             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
669                                                                  charge+jnrC+0,charge+jnrD+0,
670                                                                  charge+jnrE+0,charge+jnrF+0,
671                                                                  charge+jnrG+0,charge+jnrH+0);
672             vdwjidx0A        = 2*vdwtype[jnrA+0];
673             vdwjidx0B        = 2*vdwtype[jnrB+0];
674             vdwjidx0C        = 2*vdwtype[jnrC+0];
675             vdwjidx0D        = 2*vdwtype[jnrD+0];
676             vdwjidx0E        = 2*vdwtype[jnrE+0];
677             vdwjidx0F        = 2*vdwtype[jnrF+0];
678             vdwjidx0G        = 2*vdwtype[jnrG+0];
679             vdwjidx0H        = 2*vdwtype[jnrH+0];
680
681             /**************************
682              * CALCULATE INTERACTIONS *
683              **************************/
684
685             if (gmx_mm256_any_lt(rsq00,rcutoff2))
686             {
687
688             r00              = _mm256_mul_ps(rsq00,rinv00);
689
690             /* Compute parameters for interactions between i and j atoms */
691             qq00             = _mm256_mul_ps(iq0,jq0);
692             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
693                                             vdwioffsetptr0+vdwjidx0B,
694                                             vdwioffsetptr0+vdwjidx0C,
695                                             vdwioffsetptr0+vdwjidx0D,
696                                             vdwioffsetptr0+vdwjidx0E,
697                                             vdwioffsetptr0+vdwjidx0F,
698                                             vdwioffsetptr0+vdwjidx0G,
699                                             vdwioffsetptr0+vdwjidx0H,
700                                             &c6_00,&c12_00);
701
702             /* REACTION-FIELD ELECTROSTATICS */
703             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
704
705             /* LENNARD-JONES DISPERSION/REPULSION */
706
707             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
708             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
709             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
710             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
711             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
712
713             d                = _mm256_sub_ps(r00,rswitch);
714             d                = _mm256_max_ps(d,_mm256_setzero_ps());
715             d2               = _mm256_mul_ps(d,d);
716             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
717
718             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
719
720             /* Evaluate switch function */
721             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
722             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
723             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
724
725             fscal            = _mm256_add_ps(felec,fvdw);
726
727             fscal            = _mm256_and_ps(fscal,cutoff_mask);
728
729             /* Calculate temporary vectorial force */
730             tx               = _mm256_mul_ps(fscal,dx00);
731             ty               = _mm256_mul_ps(fscal,dy00);
732             tz               = _mm256_mul_ps(fscal,dz00);
733
734             /* Update vectorial force */
735             fix0             = _mm256_add_ps(fix0,tx);
736             fiy0             = _mm256_add_ps(fiy0,ty);
737             fiz0             = _mm256_add_ps(fiz0,tz);
738
739             fjptrA             = f+j_coord_offsetA;
740             fjptrB             = f+j_coord_offsetB;
741             fjptrC             = f+j_coord_offsetC;
742             fjptrD             = f+j_coord_offsetD;
743             fjptrE             = f+j_coord_offsetE;
744             fjptrF             = f+j_coord_offsetF;
745             fjptrG             = f+j_coord_offsetG;
746             fjptrH             = f+j_coord_offsetH;
747             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
748
749             }
750
751             /* Inner loop uses 61 flops */
752         }
753
754         if(jidx<j_index_end)
755         {
756
757             /* Get j neighbor index, and coordinate index */
758             jnrlistA         = jjnr[jidx];
759             jnrlistB         = jjnr[jidx+1];
760             jnrlistC         = jjnr[jidx+2];
761             jnrlistD         = jjnr[jidx+3];
762             jnrlistE         = jjnr[jidx+4];
763             jnrlistF         = jjnr[jidx+5];
764             jnrlistG         = jjnr[jidx+6];
765             jnrlistH         = jjnr[jidx+7];
766             /* Sign of each element will be negative for non-real atoms.
767              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
768              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
769              */
770             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
771                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
772                                             
773             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
774             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
775             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
776             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
777             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
778             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
779             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
780             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
781             j_coord_offsetA  = DIM*jnrA;
782             j_coord_offsetB  = DIM*jnrB;
783             j_coord_offsetC  = DIM*jnrC;
784             j_coord_offsetD  = DIM*jnrD;
785             j_coord_offsetE  = DIM*jnrE;
786             j_coord_offsetF  = DIM*jnrF;
787             j_coord_offsetG  = DIM*jnrG;
788             j_coord_offsetH  = DIM*jnrH;
789
790             /* load j atom coordinates */
791             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
792                                                  x+j_coord_offsetC,x+j_coord_offsetD,
793                                                  x+j_coord_offsetE,x+j_coord_offsetF,
794                                                  x+j_coord_offsetG,x+j_coord_offsetH,
795                                                  &jx0,&jy0,&jz0);
796
797             /* Calculate displacement vector */
798             dx00             = _mm256_sub_ps(ix0,jx0);
799             dy00             = _mm256_sub_ps(iy0,jy0);
800             dz00             = _mm256_sub_ps(iz0,jz0);
801
802             /* Calculate squared distance and things based on it */
803             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
804
805             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
806
807             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
808
809             /* Load parameters for j particles */
810             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
811                                                                  charge+jnrC+0,charge+jnrD+0,
812                                                                  charge+jnrE+0,charge+jnrF+0,
813                                                                  charge+jnrG+0,charge+jnrH+0);
814             vdwjidx0A        = 2*vdwtype[jnrA+0];
815             vdwjidx0B        = 2*vdwtype[jnrB+0];
816             vdwjidx0C        = 2*vdwtype[jnrC+0];
817             vdwjidx0D        = 2*vdwtype[jnrD+0];
818             vdwjidx0E        = 2*vdwtype[jnrE+0];
819             vdwjidx0F        = 2*vdwtype[jnrF+0];
820             vdwjidx0G        = 2*vdwtype[jnrG+0];
821             vdwjidx0H        = 2*vdwtype[jnrH+0];
822
823             /**************************
824              * CALCULATE INTERACTIONS *
825              **************************/
826
827             if (gmx_mm256_any_lt(rsq00,rcutoff2))
828             {
829
830             r00              = _mm256_mul_ps(rsq00,rinv00);
831             r00              = _mm256_andnot_ps(dummy_mask,r00);
832
833             /* Compute parameters for interactions between i and j atoms */
834             qq00             = _mm256_mul_ps(iq0,jq0);
835             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
836                                             vdwioffsetptr0+vdwjidx0B,
837                                             vdwioffsetptr0+vdwjidx0C,
838                                             vdwioffsetptr0+vdwjidx0D,
839                                             vdwioffsetptr0+vdwjidx0E,
840                                             vdwioffsetptr0+vdwjidx0F,
841                                             vdwioffsetptr0+vdwjidx0G,
842                                             vdwioffsetptr0+vdwjidx0H,
843                                             &c6_00,&c12_00);
844
845             /* REACTION-FIELD ELECTROSTATICS */
846             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
847
848             /* LENNARD-JONES DISPERSION/REPULSION */
849
850             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
851             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
852             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
853             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
854             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
855
856             d                = _mm256_sub_ps(r00,rswitch);
857             d                = _mm256_max_ps(d,_mm256_setzero_ps());
858             d2               = _mm256_mul_ps(d,d);
859             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
860
861             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
862
863             /* Evaluate switch function */
864             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
865             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
866             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
867
868             fscal            = _mm256_add_ps(felec,fvdw);
869
870             fscal            = _mm256_and_ps(fscal,cutoff_mask);
871
872             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
873
874             /* Calculate temporary vectorial force */
875             tx               = _mm256_mul_ps(fscal,dx00);
876             ty               = _mm256_mul_ps(fscal,dy00);
877             tz               = _mm256_mul_ps(fscal,dz00);
878
879             /* Update vectorial force */
880             fix0             = _mm256_add_ps(fix0,tx);
881             fiy0             = _mm256_add_ps(fiy0,ty);
882             fiz0             = _mm256_add_ps(fiz0,tz);
883
884             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
885             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
886             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
887             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
888             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
889             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
890             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
891             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
892             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
893
894             }
895
896             /* Inner loop uses 62 flops */
897         }
898
899         /* End of innermost loop */
900
901         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
902                                                  f+i_coord_offset,fshift+i_shift_offset);
903
904         /* Increment number of inner iterations */
905         inneriter                  += j_index_end - j_index_start;
906
907         /* Outer loop uses 7 flops */
908     }
909
910     /* Increment number of outer iterations */
911     outeriter        += nri;
912
913     /* Update outer/inner flops */
914
915     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
916 }