Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_avx_256_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     real *           vdwioffsetptr2;
90     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     real *           vdwioffsetptr3;
92     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
94     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
106     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
107     __m256           dummy_mask,cutoff_mask;
108     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
109     __m256           one     = _mm256_set1_ps(1.0);
110     __m256           two     = _mm256_set1_ps(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm256_set1_ps(fr->ic->epsfac);
123     charge           = mdatoms->chargeA;
124     krf              = _mm256_set1_ps(fr->ic->k_rf);
125     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
126     crf              = _mm256_set1_ps(fr->ic->c_rf);
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
134     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
135     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
136     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
137
138     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
139     rcutoff_scalar   = fr->ic->rcoulomb;
140     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
141     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
142
143     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
144     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150     j_coord_offsetC = 0;
151     j_coord_offsetD = 0;
152     j_coord_offsetE = 0;
153     j_coord_offsetF = 0;
154     j_coord_offsetG = 0;
155     j_coord_offsetH = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     for(iidx=0;iidx<4*DIM;iidx++)
161     {
162         scratch[iidx] = 0.0;
163     }
164
165     /* Start outer loop over neighborlists */
166     for(iidx=0; iidx<nri; iidx++)
167     {
168         /* Load shift vector for this list */
169         i_shift_offset   = DIM*shiftidx[iidx];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
181                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
182
183         fix0             = _mm256_setzero_ps();
184         fiy0             = _mm256_setzero_ps();
185         fiz0             = _mm256_setzero_ps();
186         fix1             = _mm256_setzero_ps();
187         fiy1             = _mm256_setzero_ps();
188         fiz1             = _mm256_setzero_ps();
189         fix2             = _mm256_setzero_ps();
190         fiy2             = _mm256_setzero_ps();
191         fiz2             = _mm256_setzero_ps();
192         fix3             = _mm256_setzero_ps();
193         fiy3             = _mm256_setzero_ps();
194         fiz3             = _mm256_setzero_ps();
195
196         /* Reset potential sums */
197         velecsum         = _mm256_setzero_ps();
198         vvdwsum          = _mm256_setzero_ps();
199
200         /* Start inner kernel loop */
201         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
202         {
203
204             /* Get j neighbor index, and coordinate index */
205             jnrA             = jjnr[jidx];
206             jnrB             = jjnr[jidx+1];
207             jnrC             = jjnr[jidx+2];
208             jnrD             = jjnr[jidx+3];
209             jnrE             = jjnr[jidx+4];
210             jnrF             = jjnr[jidx+5];
211             jnrG             = jjnr[jidx+6];
212             jnrH             = jjnr[jidx+7];
213             j_coord_offsetA  = DIM*jnrA;
214             j_coord_offsetB  = DIM*jnrB;
215             j_coord_offsetC  = DIM*jnrC;
216             j_coord_offsetD  = DIM*jnrD;
217             j_coord_offsetE  = DIM*jnrE;
218             j_coord_offsetF  = DIM*jnrF;
219             j_coord_offsetG  = DIM*jnrG;
220             j_coord_offsetH  = DIM*jnrH;
221
222             /* load j atom coordinates */
223             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
224                                                  x+j_coord_offsetC,x+j_coord_offsetD,
225                                                  x+j_coord_offsetE,x+j_coord_offsetF,
226                                                  x+j_coord_offsetG,x+j_coord_offsetH,
227                                                  &jx0,&jy0,&jz0);
228
229             /* Calculate displacement vector */
230             dx00             = _mm256_sub_ps(ix0,jx0);
231             dy00             = _mm256_sub_ps(iy0,jy0);
232             dz00             = _mm256_sub_ps(iz0,jz0);
233             dx10             = _mm256_sub_ps(ix1,jx0);
234             dy10             = _mm256_sub_ps(iy1,jy0);
235             dz10             = _mm256_sub_ps(iz1,jz0);
236             dx20             = _mm256_sub_ps(ix2,jx0);
237             dy20             = _mm256_sub_ps(iy2,jy0);
238             dz20             = _mm256_sub_ps(iz2,jz0);
239             dx30             = _mm256_sub_ps(ix3,jx0);
240             dy30             = _mm256_sub_ps(iy3,jy0);
241             dz30             = _mm256_sub_ps(iz3,jz0);
242
243             /* Calculate squared distance and things based on it */
244             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
245             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
246             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
247             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
248
249             rinv10           = avx256_invsqrt_f(rsq10);
250             rinv20           = avx256_invsqrt_f(rsq20);
251             rinv30           = avx256_invsqrt_f(rsq30);
252
253             rinvsq00         = avx256_inv_f(rsq00);
254             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
255             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
256             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
257
258             /* Load parameters for j particles */
259             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
260                                                                  charge+jnrC+0,charge+jnrD+0,
261                                                                  charge+jnrE+0,charge+jnrF+0,
262                                                                  charge+jnrG+0,charge+jnrH+0);
263             vdwjidx0A        = 2*vdwtype[jnrA+0];
264             vdwjidx0B        = 2*vdwtype[jnrB+0];
265             vdwjidx0C        = 2*vdwtype[jnrC+0];
266             vdwjidx0D        = 2*vdwtype[jnrD+0];
267             vdwjidx0E        = 2*vdwtype[jnrE+0];
268             vdwjidx0F        = 2*vdwtype[jnrF+0];
269             vdwjidx0G        = 2*vdwtype[jnrG+0];
270             vdwjidx0H        = 2*vdwtype[jnrH+0];
271
272             fjx0             = _mm256_setzero_ps();
273             fjy0             = _mm256_setzero_ps();
274             fjz0             = _mm256_setzero_ps();
275
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             if (gmx_mm256_any_lt(rsq00,rcutoff2))
281             {
282
283             /* Compute parameters for interactions between i and j atoms */
284             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
285                                             vdwioffsetptr0+vdwjidx0B,
286                                             vdwioffsetptr0+vdwjidx0C,
287                                             vdwioffsetptr0+vdwjidx0D,
288                                             vdwioffsetptr0+vdwjidx0E,
289                                             vdwioffsetptr0+vdwjidx0F,
290                                             vdwioffsetptr0+vdwjidx0G,
291                                             vdwioffsetptr0+vdwjidx0H,
292                                             &c6_00,&c12_00);
293
294             /* LENNARD-JONES DISPERSION/REPULSION */
295
296             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
297             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
298             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
299             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
300                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
301             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
302
303             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
307             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
308
309             fscal            = fvdw;
310
311             fscal            = _mm256_and_ps(fscal,cutoff_mask);
312
313             /* Calculate temporary vectorial force */
314             tx               = _mm256_mul_ps(fscal,dx00);
315             ty               = _mm256_mul_ps(fscal,dy00);
316             tz               = _mm256_mul_ps(fscal,dz00);
317
318             /* Update vectorial force */
319             fix0             = _mm256_add_ps(fix0,tx);
320             fiy0             = _mm256_add_ps(fiy0,ty);
321             fiz0             = _mm256_add_ps(fiz0,tz);
322
323             fjx0             = _mm256_add_ps(fjx0,tx);
324             fjy0             = _mm256_add_ps(fjy0,ty);
325             fjz0             = _mm256_add_ps(fjz0,tz);
326
327             }
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             if (gmx_mm256_any_lt(rsq10,rcutoff2))
334             {
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq10             = _mm256_mul_ps(iq1,jq0);
338
339             /* REACTION-FIELD ELECTROSTATICS */
340             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
341             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
342
343             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velec            = _mm256_and_ps(velec,cutoff_mask);
347             velecsum         = _mm256_add_ps(velecsum,velec);
348
349             fscal            = felec;
350
351             fscal            = _mm256_and_ps(fscal,cutoff_mask);
352
353             /* Calculate temporary vectorial force */
354             tx               = _mm256_mul_ps(fscal,dx10);
355             ty               = _mm256_mul_ps(fscal,dy10);
356             tz               = _mm256_mul_ps(fscal,dz10);
357
358             /* Update vectorial force */
359             fix1             = _mm256_add_ps(fix1,tx);
360             fiy1             = _mm256_add_ps(fiy1,ty);
361             fiz1             = _mm256_add_ps(fiz1,tz);
362
363             fjx0             = _mm256_add_ps(fjx0,tx);
364             fjy0             = _mm256_add_ps(fjy0,ty);
365             fjz0             = _mm256_add_ps(fjz0,tz);
366
367             }
368
369             /**************************
370              * CALCULATE INTERACTIONS *
371              **************************/
372
373             if (gmx_mm256_any_lt(rsq20,rcutoff2))
374             {
375
376             /* Compute parameters for interactions between i and j atoms */
377             qq20             = _mm256_mul_ps(iq2,jq0);
378
379             /* REACTION-FIELD ELECTROSTATICS */
380             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
381             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
382
383             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
384
385             /* Update potential sum for this i atom from the interaction with this j atom. */
386             velec            = _mm256_and_ps(velec,cutoff_mask);
387             velecsum         = _mm256_add_ps(velecsum,velec);
388
389             fscal            = felec;
390
391             fscal            = _mm256_and_ps(fscal,cutoff_mask);
392
393             /* Calculate temporary vectorial force */
394             tx               = _mm256_mul_ps(fscal,dx20);
395             ty               = _mm256_mul_ps(fscal,dy20);
396             tz               = _mm256_mul_ps(fscal,dz20);
397
398             /* Update vectorial force */
399             fix2             = _mm256_add_ps(fix2,tx);
400             fiy2             = _mm256_add_ps(fiy2,ty);
401             fiz2             = _mm256_add_ps(fiz2,tz);
402
403             fjx0             = _mm256_add_ps(fjx0,tx);
404             fjy0             = _mm256_add_ps(fjy0,ty);
405             fjz0             = _mm256_add_ps(fjz0,tz);
406
407             }
408
409             /**************************
410              * CALCULATE INTERACTIONS *
411              **************************/
412
413             if (gmx_mm256_any_lt(rsq30,rcutoff2))
414             {
415
416             /* Compute parameters for interactions between i and j atoms */
417             qq30             = _mm256_mul_ps(iq3,jq0);
418
419             /* REACTION-FIELD ELECTROSTATICS */
420             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
421             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
422
423             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
424
425             /* Update potential sum for this i atom from the interaction with this j atom. */
426             velec            = _mm256_and_ps(velec,cutoff_mask);
427             velecsum         = _mm256_add_ps(velecsum,velec);
428
429             fscal            = felec;
430
431             fscal            = _mm256_and_ps(fscal,cutoff_mask);
432
433             /* Calculate temporary vectorial force */
434             tx               = _mm256_mul_ps(fscal,dx30);
435             ty               = _mm256_mul_ps(fscal,dy30);
436             tz               = _mm256_mul_ps(fscal,dz30);
437
438             /* Update vectorial force */
439             fix3             = _mm256_add_ps(fix3,tx);
440             fiy3             = _mm256_add_ps(fiy3,ty);
441             fiz3             = _mm256_add_ps(fiz3,tz);
442
443             fjx0             = _mm256_add_ps(fjx0,tx);
444             fjy0             = _mm256_add_ps(fjy0,ty);
445             fjz0             = _mm256_add_ps(fjz0,tz);
446
447             }
448
449             fjptrA             = f+j_coord_offsetA;
450             fjptrB             = f+j_coord_offsetB;
451             fjptrC             = f+j_coord_offsetC;
452             fjptrD             = f+j_coord_offsetD;
453             fjptrE             = f+j_coord_offsetE;
454             fjptrF             = f+j_coord_offsetF;
455             fjptrG             = f+j_coord_offsetG;
456             fjptrH             = f+j_coord_offsetH;
457
458             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
459
460             /* Inner loop uses 152 flops */
461         }
462
463         if(jidx<j_index_end)
464         {
465
466             /* Get j neighbor index, and coordinate index */
467             jnrlistA         = jjnr[jidx];
468             jnrlistB         = jjnr[jidx+1];
469             jnrlistC         = jjnr[jidx+2];
470             jnrlistD         = jjnr[jidx+3];
471             jnrlistE         = jjnr[jidx+4];
472             jnrlistF         = jjnr[jidx+5];
473             jnrlistG         = jjnr[jidx+6];
474             jnrlistH         = jjnr[jidx+7];
475             /* Sign of each element will be negative for non-real atoms.
476              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
477              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
478              */
479             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
480                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
481                                             
482             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
483             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
484             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
485             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
486             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
487             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
488             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
489             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
490             j_coord_offsetA  = DIM*jnrA;
491             j_coord_offsetB  = DIM*jnrB;
492             j_coord_offsetC  = DIM*jnrC;
493             j_coord_offsetD  = DIM*jnrD;
494             j_coord_offsetE  = DIM*jnrE;
495             j_coord_offsetF  = DIM*jnrF;
496             j_coord_offsetG  = DIM*jnrG;
497             j_coord_offsetH  = DIM*jnrH;
498
499             /* load j atom coordinates */
500             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
501                                                  x+j_coord_offsetC,x+j_coord_offsetD,
502                                                  x+j_coord_offsetE,x+j_coord_offsetF,
503                                                  x+j_coord_offsetG,x+j_coord_offsetH,
504                                                  &jx0,&jy0,&jz0);
505
506             /* Calculate displacement vector */
507             dx00             = _mm256_sub_ps(ix0,jx0);
508             dy00             = _mm256_sub_ps(iy0,jy0);
509             dz00             = _mm256_sub_ps(iz0,jz0);
510             dx10             = _mm256_sub_ps(ix1,jx0);
511             dy10             = _mm256_sub_ps(iy1,jy0);
512             dz10             = _mm256_sub_ps(iz1,jz0);
513             dx20             = _mm256_sub_ps(ix2,jx0);
514             dy20             = _mm256_sub_ps(iy2,jy0);
515             dz20             = _mm256_sub_ps(iz2,jz0);
516             dx30             = _mm256_sub_ps(ix3,jx0);
517             dy30             = _mm256_sub_ps(iy3,jy0);
518             dz30             = _mm256_sub_ps(iz3,jz0);
519
520             /* Calculate squared distance and things based on it */
521             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
522             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
523             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
524             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
525
526             rinv10           = avx256_invsqrt_f(rsq10);
527             rinv20           = avx256_invsqrt_f(rsq20);
528             rinv30           = avx256_invsqrt_f(rsq30);
529
530             rinvsq00         = avx256_inv_f(rsq00);
531             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
532             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
533             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
534
535             /* Load parameters for j particles */
536             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
537                                                                  charge+jnrC+0,charge+jnrD+0,
538                                                                  charge+jnrE+0,charge+jnrF+0,
539                                                                  charge+jnrG+0,charge+jnrH+0);
540             vdwjidx0A        = 2*vdwtype[jnrA+0];
541             vdwjidx0B        = 2*vdwtype[jnrB+0];
542             vdwjidx0C        = 2*vdwtype[jnrC+0];
543             vdwjidx0D        = 2*vdwtype[jnrD+0];
544             vdwjidx0E        = 2*vdwtype[jnrE+0];
545             vdwjidx0F        = 2*vdwtype[jnrF+0];
546             vdwjidx0G        = 2*vdwtype[jnrG+0];
547             vdwjidx0H        = 2*vdwtype[jnrH+0];
548
549             fjx0             = _mm256_setzero_ps();
550             fjy0             = _mm256_setzero_ps();
551             fjz0             = _mm256_setzero_ps();
552
553             /**************************
554              * CALCULATE INTERACTIONS *
555              **************************/
556
557             if (gmx_mm256_any_lt(rsq00,rcutoff2))
558             {
559
560             /* Compute parameters for interactions between i and j atoms */
561             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
562                                             vdwioffsetptr0+vdwjidx0B,
563                                             vdwioffsetptr0+vdwjidx0C,
564                                             vdwioffsetptr0+vdwjidx0D,
565                                             vdwioffsetptr0+vdwjidx0E,
566                                             vdwioffsetptr0+vdwjidx0F,
567                                             vdwioffsetptr0+vdwjidx0G,
568                                             vdwioffsetptr0+vdwjidx0H,
569                                             &c6_00,&c12_00);
570
571             /* LENNARD-JONES DISPERSION/REPULSION */
572
573             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
574             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
575             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
576             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
577                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
578             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
579
580             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
581
582             /* Update potential sum for this i atom from the interaction with this j atom. */
583             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
584             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
585             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
586
587             fscal            = fvdw;
588
589             fscal            = _mm256_and_ps(fscal,cutoff_mask);
590
591             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
592
593             /* Calculate temporary vectorial force */
594             tx               = _mm256_mul_ps(fscal,dx00);
595             ty               = _mm256_mul_ps(fscal,dy00);
596             tz               = _mm256_mul_ps(fscal,dz00);
597
598             /* Update vectorial force */
599             fix0             = _mm256_add_ps(fix0,tx);
600             fiy0             = _mm256_add_ps(fiy0,ty);
601             fiz0             = _mm256_add_ps(fiz0,tz);
602
603             fjx0             = _mm256_add_ps(fjx0,tx);
604             fjy0             = _mm256_add_ps(fjy0,ty);
605             fjz0             = _mm256_add_ps(fjz0,tz);
606
607             }
608
609             /**************************
610              * CALCULATE INTERACTIONS *
611              **************************/
612
613             if (gmx_mm256_any_lt(rsq10,rcutoff2))
614             {
615
616             /* Compute parameters for interactions between i and j atoms */
617             qq10             = _mm256_mul_ps(iq1,jq0);
618
619             /* REACTION-FIELD ELECTROSTATICS */
620             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
621             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
622
623             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
624
625             /* Update potential sum for this i atom from the interaction with this j atom. */
626             velec            = _mm256_and_ps(velec,cutoff_mask);
627             velec            = _mm256_andnot_ps(dummy_mask,velec);
628             velecsum         = _mm256_add_ps(velecsum,velec);
629
630             fscal            = felec;
631
632             fscal            = _mm256_and_ps(fscal,cutoff_mask);
633
634             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
635
636             /* Calculate temporary vectorial force */
637             tx               = _mm256_mul_ps(fscal,dx10);
638             ty               = _mm256_mul_ps(fscal,dy10);
639             tz               = _mm256_mul_ps(fscal,dz10);
640
641             /* Update vectorial force */
642             fix1             = _mm256_add_ps(fix1,tx);
643             fiy1             = _mm256_add_ps(fiy1,ty);
644             fiz1             = _mm256_add_ps(fiz1,tz);
645
646             fjx0             = _mm256_add_ps(fjx0,tx);
647             fjy0             = _mm256_add_ps(fjy0,ty);
648             fjz0             = _mm256_add_ps(fjz0,tz);
649
650             }
651
652             /**************************
653              * CALCULATE INTERACTIONS *
654              **************************/
655
656             if (gmx_mm256_any_lt(rsq20,rcutoff2))
657             {
658
659             /* Compute parameters for interactions between i and j atoms */
660             qq20             = _mm256_mul_ps(iq2,jq0);
661
662             /* REACTION-FIELD ELECTROSTATICS */
663             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
664             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
665
666             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
667
668             /* Update potential sum for this i atom from the interaction with this j atom. */
669             velec            = _mm256_and_ps(velec,cutoff_mask);
670             velec            = _mm256_andnot_ps(dummy_mask,velec);
671             velecsum         = _mm256_add_ps(velecsum,velec);
672
673             fscal            = felec;
674
675             fscal            = _mm256_and_ps(fscal,cutoff_mask);
676
677             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
678
679             /* Calculate temporary vectorial force */
680             tx               = _mm256_mul_ps(fscal,dx20);
681             ty               = _mm256_mul_ps(fscal,dy20);
682             tz               = _mm256_mul_ps(fscal,dz20);
683
684             /* Update vectorial force */
685             fix2             = _mm256_add_ps(fix2,tx);
686             fiy2             = _mm256_add_ps(fiy2,ty);
687             fiz2             = _mm256_add_ps(fiz2,tz);
688
689             fjx0             = _mm256_add_ps(fjx0,tx);
690             fjy0             = _mm256_add_ps(fjy0,ty);
691             fjz0             = _mm256_add_ps(fjz0,tz);
692
693             }
694
695             /**************************
696              * CALCULATE INTERACTIONS *
697              **************************/
698
699             if (gmx_mm256_any_lt(rsq30,rcutoff2))
700             {
701
702             /* Compute parameters for interactions between i and j atoms */
703             qq30             = _mm256_mul_ps(iq3,jq0);
704
705             /* REACTION-FIELD ELECTROSTATICS */
706             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
707             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
708
709             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
710
711             /* Update potential sum for this i atom from the interaction with this j atom. */
712             velec            = _mm256_and_ps(velec,cutoff_mask);
713             velec            = _mm256_andnot_ps(dummy_mask,velec);
714             velecsum         = _mm256_add_ps(velecsum,velec);
715
716             fscal            = felec;
717
718             fscal            = _mm256_and_ps(fscal,cutoff_mask);
719
720             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
721
722             /* Calculate temporary vectorial force */
723             tx               = _mm256_mul_ps(fscal,dx30);
724             ty               = _mm256_mul_ps(fscal,dy30);
725             tz               = _mm256_mul_ps(fscal,dz30);
726
727             /* Update vectorial force */
728             fix3             = _mm256_add_ps(fix3,tx);
729             fiy3             = _mm256_add_ps(fiy3,ty);
730             fiz3             = _mm256_add_ps(fiz3,tz);
731
732             fjx0             = _mm256_add_ps(fjx0,tx);
733             fjy0             = _mm256_add_ps(fjy0,ty);
734             fjz0             = _mm256_add_ps(fjz0,tz);
735
736             }
737
738             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
739             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
740             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
741             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
742             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
743             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
744             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
745             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
746
747             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
748
749             /* Inner loop uses 152 flops */
750         }
751
752         /* End of innermost loop */
753
754         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
755                                                  f+i_coord_offset,fshift+i_shift_offset);
756
757         ggid                        = gid[iidx];
758         /* Update potential energies */
759         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
760         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
761
762         /* Increment number of inner iterations */
763         inneriter                  += j_index_end - j_index_start;
764
765         /* Outer loop uses 26 flops */
766     }
767
768     /* Increment number of outer iterations */
769     outeriter        += nri;
770
771     /* Update outer/inner flops */
772
773     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*152);
774 }
775 /*
776  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_avx_256_single
777  * Electrostatics interaction: ReactionField
778  * VdW interaction:            LennardJones
779  * Geometry:                   Water4-Particle
780  * Calculate force/pot:        Force
781  */
782 void
783 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_avx_256_single
784                     (t_nblist                    * gmx_restrict       nlist,
785                      rvec                        * gmx_restrict          xx,
786                      rvec                        * gmx_restrict          ff,
787                      struct t_forcerec           * gmx_restrict          fr,
788                      t_mdatoms                   * gmx_restrict     mdatoms,
789                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
790                      t_nrnb                      * gmx_restrict        nrnb)
791 {
792     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
793      * just 0 for non-waters.
794      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
795      * jnr indices corresponding to data put in the four positions in the SIMD register.
796      */
797     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
798     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
799     int              jnrA,jnrB,jnrC,jnrD;
800     int              jnrE,jnrF,jnrG,jnrH;
801     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
802     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
803     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
804     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
805     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
806     real             rcutoff_scalar;
807     real             *shiftvec,*fshift,*x,*f;
808     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
809     real             scratch[4*DIM];
810     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
811     real *           vdwioffsetptr0;
812     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
813     real *           vdwioffsetptr1;
814     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
815     real *           vdwioffsetptr2;
816     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
817     real *           vdwioffsetptr3;
818     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
819     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
820     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
821     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
822     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
823     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
824     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
825     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
826     real             *charge;
827     int              nvdwtype;
828     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
829     int              *vdwtype;
830     real             *vdwparam;
831     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
832     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
833     __m256           dummy_mask,cutoff_mask;
834     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
835     __m256           one     = _mm256_set1_ps(1.0);
836     __m256           two     = _mm256_set1_ps(2.0);
837     x                = xx[0];
838     f                = ff[0];
839
840     nri              = nlist->nri;
841     iinr             = nlist->iinr;
842     jindex           = nlist->jindex;
843     jjnr             = nlist->jjnr;
844     shiftidx         = nlist->shift;
845     gid              = nlist->gid;
846     shiftvec         = fr->shift_vec[0];
847     fshift           = fr->fshift[0];
848     facel            = _mm256_set1_ps(fr->ic->epsfac);
849     charge           = mdatoms->chargeA;
850     krf              = _mm256_set1_ps(fr->ic->k_rf);
851     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
852     crf              = _mm256_set1_ps(fr->ic->c_rf);
853     nvdwtype         = fr->ntype;
854     vdwparam         = fr->nbfp;
855     vdwtype          = mdatoms->typeA;
856
857     /* Setup water-specific parameters */
858     inr              = nlist->iinr[0];
859     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
860     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
861     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
862     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
863
864     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
865     rcutoff_scalar   = fr->ic->rcoulomb;
866     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
867     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
868
869     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
870     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
871
872     /* Avoid stupid compiler warnings */
873     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
874     j_coord_offsetA = 0;
875     j_coord_offsetB = 0;
876     j_coord_offsetC = 0;
877     j_coord_offsetD = 0;
878     j_coord_offsetE = 0;
879     j_coord_offsetF = 0;
880     j_coord_offsetG = 0;
881     j_coord_offsetH = 0;
882
883     outeriter        = 0;
884     inneriter        = 0;
885
886     for(iidx=0;iidx<4*DIM;iidx++)
887     {
888         scratch[iidx] = 0.0;
889     }
890
891     /* Start outer loop over neighborlists */
892     for(iidx=0; iidx<nri; iidx++)
893     {
894         /* Load shift vector for this list */
895         i_shift_offset   = DIM*shiftidx[iidx];
896
897         /* Load limits for loop over neighbors */
898         j_index_start    = jindex[iidx];
899         j_index_end      = jindex[iidx+1];
900
901         /* Get outer coordinate index */
902         inr              = iinr[iidx];
903         i_coord_offset   = DIM*inr;
904
905         /* Load i particle coords and add shift vector */
906         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
907                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
908
909         fix0             = _mm256_setzero_ps();
910         fiy0             = _mm256_setzero_ps();
911         fiz0             = _mm256_setzero_ps();
912         fix1             = _mm256_setzero_ps();
913         fiy1             = _mm256_setzero_ps();
914         fiz1             = _mm256_setzero_ps();
915         fix2             = _mm256_setzero_ps();
916         fiy2             = _mm256_setzero_ps();
917         fiz2             = _mm256_setzero_ps();
918         fix3             = _mm256_setzero_ps();
919         fiy3             = _mm256_setzero_ps();
920         fiz3             = _mm256_setzero_ps();
921
922         /* Start inner kernel loop */
923         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
924         {
925
926             /* Get j neighbor index, and coordinate index */
927             jnrA             = jjnr[jidx];
928             jnrB             = jjnr[jidx+1];
929             jnrC             = jjnr[jidx+2];
930             jnrD             = jjnr[jidx+3];
931             jnrE             = jjnr[jidx+4];
932             jnrF             = jjnr[jidx+5];
933             jnrG             = jjnr[jidx+6];
934             jnrH             = jjnr[jidx+7];
935             j_coord_offsetA  = DIM*jnrA;
936             j_coord_offsetB  = DIM*jnrB;
937             j_coord_offsetC  = DIM*jnrC;
938             j_coord_offsetD  = DIM*jnrD;
939             j_coord_offsetE  = DIM*jnrE;
940             j_coord_offsetF  = DIM*jnrF;
941             j_coord_offsetG  = DIM*jnrG;
942             j_coord_offsetH  = DIM*jnrH;
943
944             /* load j atom coordinates */
945             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
946                                                  x+j_coord_offsetC,x+j_coord_offsetD,
947                                                  x+j_coord_offsetE,x+j_coord_offsetF,
948                                                  x+j_coord_offsetG,x+j_coord_offsetH,
949                                                  &jx0,&jy0,&jz0);
950
951             /* Calculate displacement vector */
952             dx00             = _mm256_sub_ps(ix0,jx0);
953             dy00             = _mm256_sub_ps(iy0,jy0);
954             dz00             = _mm256_sub_ps(iz0,jz0);
955             dx10             = _mm256_sub_ps(ix1,jx0);
956             dy10             = _mm256_sub_ps(iy1,jy0);
957             dz10             = _mm256_sub_ps(iz1,jz0);
958             dx20             = _mm256_sub_ps(ix2,jx0);
959             dy20             = _mm256_sub_ps(iy2,jy0);
960             dz20             = _mm256_sub_ps(iz2,jz0);
961             dx30             = _mm256_sub_ps(ix3,jx0);
962             dy30             = _mm256_sub_ps(iy3,jy0);
963             dz30             = _mm256_sub_ps(iz3,jz0);
964
965             /* Calculate squared distance and things based on it */
966             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
967             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
968             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
969             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
970
971             rinv10           = avx256_invsqrt_f(rsq10);
972             rinv20           = avx256_invsqrt_f(rsq20);
973             rinv30           = avx256_invsqrt_f(rsq30);
974
975             rinvsq00         = avx256_inv_f(rsq00);
976             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
977             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
978             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
979
980             /* Load parameters for j particles */
981             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
982                                                                  charge+jnrC+0,charge+jnrD+0,
983                                                                  charge+jnrE+0,charge+jnrF+0,
984                                                                  charge+jnrG+0,charge+jnrH+0);
985             vdwjidx0A        = 2*vdwtype[jnrA+0];
986             vdwjidx0B        = 2*vdwtype[jnrB+0];
987             vdwjidx0C        = 2*vdwtype[jnrC+0];
988             vdwjidx0D        = 2*vdwtype[jnrD+0];
989             vdwjidx0E        = 2*vdwtype[jnrE+0];
990             vdwjidx0F        = 2*vdwtype[jnrF+0];
991             vdwjidx0G        = 2*vdwtype[jnrG+0];
992             vdwjidx0H        = 2*vdwtype[jnrH+0];
993
994             fjx0             = _mm256_setzero_ps();
995             fjy0             = _mm256_setzero_ps();
996             fjz0             = _mm256_setzero_ps();
997
998             /**************************
999              * CALCULATE INTERACTIONS *
1000              **************************/
1001
1002             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1003             {
1004
1005             /* Compute parameters for interactions between i and j atoms */
1006             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1007                                             vdwioffsetptr0+vdwjidx0B,
1008                                             vdwioffsetptr0+vdwjidx0C,
1009                                             vdwioffsetptr0+vdwjidx0D,
1010                                             vdwioffsetptr0+vdwjidx0E,
1011                                             vdwioffsetptr0+vdwjidx0F,
1012                                             vdwioffsetptr0+vdwjidx0G,
1013                                             vdwioffsetptr0+vdwjidx0H,
1014                                             &c6_00,&c12_00);
1015
1016             /* LENNARD-JONES DISPERSION/REPULSION */
1017
1018             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1019             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1020
1021             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1022
1023             fscal            = fvdw;
1024
1025             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1026
1027             /* Calculate temporary vectorial force */
1028             tx               = _mm256_mul_ps(fscal,dx00);
1029             ty               = _mm256_mul_ps(fscal,dy00);
1030             tz               = _mm256_mul_ps(fscal,dz00);
1031
1032             /* Update vectorial force */
1033             fix0             = _mm256_add_ps(fix0,tx);
1034             fiy0             = _mm256_add_ps(fiy0,ty);
1035             fiz0             = _mm256_add_ps(fiz0,tz);
1036
1037             fjx0             = _mm256_add_ps(fjx0,tx);
1038             fjy0             = _mm256_add_ps(fjy0,ty);
1039             fjz0             = _mm256_add_ps(fjz0,tz);
1040
1041             }
1042
1043             /**************************
1044              * CALCULATE INTERACTIONS *
1045              **************************/
1046
1047             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1048             {
1049
1050             /* Compute parameters for interactions between i and j atoms */
1051             qq10             = _mm256_mul_ps(iq1,jq0);
1052
1053             /* REACTION-FIELD ELECTROSTATICS */
1054             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1055
1056             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1057
1058             fscal            = felec;
1059
1060             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1061
1062             /* Calculate temporary vectorial force */
1063             tx               = _mm256_mul_ps(fscal,dx10);
1064             ty               = _mm256_mul_ps(fscal,dy10);
1065             tz               = _mm256_mul_ps(fscal,dz10);
1066
1067             /* Update vectorial force */
1068             fix1             = _mm256_add_ps(fix1,tx);
1069             fiy1             = _mm256_add_ps(fiy1,ty);
1070             fiz1             = _mm256_add_ps(fiz1,tz);
1071
1072             fjx0             = _mm256_add_ps(fjx0,tx);
1073             fjy0             = _mm256_add_ps(fjy0,ty);
1074             fjz0             = _mm256_add_ps(fjz0,tz);
1075
1076             }
1077
1078             /**************************
1079              * CALCULATE INTERACTIONS *
1080              **************************/
1081
1082             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1083             {
1084
1085             /* Compute parameters for interactions between i and j atoms */
1086             qq20             = _mm256_mul_ps(iq2,jq0);
1087
1088             /* REACTION-FIELD ELECTROSTATICS */
1089             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1090
1091             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1092
1093             fscal            = felec;
1094
1095             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1096
1097             /* Calculate temporary vectorial force */
1098             tx               = _mm256_mul_ps(fscal,dx20);
1099             ty               = _mm256_mul_ps(fscal,dy20);
1100             tz               = _mm256_mul_ps(fscal,dz20);
1101
1102             /* Update vectorial force */
1103             fix2             = _mm256_add_ps(fix2,tx);
1104             fiy2             = _mm256_add_ps(fiy2,ty);
1105             fiz2             = _mm256_add_ps(fiz2,tz);
1106
1107             fjx0             = _mm256_add_ps(fjx0,tx);
1108             fjy0             = _mm256_add_ps(fjy0,ty);
1109             fjz0             = _mm256_add_ps(fjz0,tz);
1110
1111             }
1112
1113             /**************************
1114              * CALCULATE INTERACTIONS *
1115              **************************/
1116
1117             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1118             {
1119
1120             /* Compute parameters for interactions between i and j atoms */
1121             qq30             = _mm256_mul_ps(iq3,jq0);
1122
1123             /* REACTION-FIELD ELECTROSTATICS */
1124             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1125
1126             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1127
1128             fscal            = felec;
1129
1130             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1131
1132             /* Calculate temporary vectorial force */
1133             tx               = _mm256_mul_ps(fscal,dx30);
1134             ty               = _mm256_mul_ps(fscal,dy30);
1135             tz               = _mm256_mul_ps(fscal,dz30);
1136
1137             /* Update vectorial force */
1138             fix3             = _mm256_add_ps(fix3,tx);
1139             fiy3             = _mm256_add_ps(fiy3,ty);
1140             fiz3             = _mm256_add_ps(fiz3,tz);
1141
1142             fjx0             = _mm256_add_ps(fjx0,tx);
1143             fjy0             = _mm256_add_ps(fjy0,ty);
1144             fjz0             = _mm256_add_ps(fjz0,tz);
1145
1146             }
1147
1148             fjptrA             = f+j_coord_offsetA;
1149             fjptrB             = f+j_coord_offsetB;
1150             fjptrC             = f+j_coord_offsetC;
1151             fjptrD             = f+j_coord_offsetD;
1152             fjptrE             = f+j_coord_offsetE;
1153             fjptrF             = f+j_coord_offsetF;
1154             fjptrG             = f+j_coord_offsetG;
1155             fjptrH             = f+j_coord_offsetH;
1156
1157             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1158
1159             /* Inner loop uses 123 flops */
1160         }
1161
1162         if(jidx<j_index_end)
1163         {
1164
1165             /* Get j neighbor index, and coordinate index */
1166             jnrlistA         = jjnr[jidx];
1167             jnrlistB         = jjnr[jidx+1];
1168             jnrlistC         = jjnr[jidx+2];
1169             jnrlistD         = jjnr[jidx+3];
1170             jnrlistE         = jjnr[jidx+4];
1171             jnrlistF         = jjnr[jidx+5];
1172             jnrlistG         = jjnr[jidx+6];
1173             jnrlistH         = jjnr[jidx+7];
1174             /* Sign of each element will be negative for non-real atoms.
1175              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1176              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1177              */
1178             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1179                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1180                                             
1181             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1182             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1183             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1184             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1185             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1186             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1187             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1188             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1189             j_coord_offsetA  = DIM*jnrA;
1190             j_coord_offsetB  = DIM*jnrB;
1191             j_coord_offsetC  = DIM*jnrC;
1192             j_coord_offsetD  = DIM*jnrD;
1193             j_coord_offsetE  = DIM*jnrE;
1194             j_coord_offsetF  = DIM*jnrF;
1195             j_coord_offsetG  = DIM*jnrG;
1196             j_coord_offsetH  = DIM*jnrH;
1197
1198             /* load j atom coordinates */
1199             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1200                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1201                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1202                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1203                                                  &jx0,&jy0,&jz0);
1204
1205             /* Calculate displacement vector */
1206             dx00             = _mm256_sub_ps(ix0,jx0);
1207             dy00             = _mm256_sub_ps(iy0,jy0);
1208             dz00             = _mm256_sub_ps(iz0,jz0);
1209             dx10             = _mm256_sub_ps(ix1,jx0);
1210             dy10             = _mm256_sub_ps(iy1,jy0);
1211             dz10             = _mm256_sub_ps(iz1,jz0);
1212             dx20             = _mm256_sub_ps(ix2,jx0);
1213             dy20             = _mm256_sub_ps(iy2,jy0);
1214             dz20             = _mm256_sub_ps(iz2,jz0);
1215             dx30             = _mm256_sub_ps(ix3,jx0);
1216             dy30             = _mm256_sub_ps(iy3,jy0);
1217             dz30             = _mm256_sub_ps(iz3,jz0);
1218
1219             /* Calculate squared distance and things based on it */
1220             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1221             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1222             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1223             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1224
1225             rinv10           = avx256_invsqrt_f(rsq10);
1226             rinv20           = avx256_invsqrt_f(rsq20);
1227             rinv30           = avx256_invsqrt_f(rsq30);
1228
1229             rinvsq00         = avx256_inv_f(rsq00);
1230             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1231             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1232             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1233
1234             /* Load parameters for j particles */
1235             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1236                                                                  charge+jnrC+0,charge+jnrD+0,
1237                                                                  charge+jnrE+0,charge+jnrF+0,
1238                                                                  charge+jnrG+0,charge+jnrH+0);
1239             vdwjidx0A        = 2*vdwtype[jnrA+0];
1240             vdwjidx0B        = 2*vdwtype[jnrB+0];
1241             vdwjidx0C        = 2*vdwtype[jnrC+0];
1242             vdwjidx0D        = 2*vdwtype[jnrD+0];
1243             vdwjidx0E        = 2*vdwtype[jnrE+0];
1244             vdwjidx0F        = 2*vdwtype[jnrF+0];
1245             vdwjidx0G        = 2*vdwtype[jnrG+0];
1246             vdwjidx0H        = 2*vdwtype[jnrH+0];
1247
1248             fjx0             = _mm256_setzero_ps();
1249             fjy0             = _mm256_setzero_ps();
1250             fjz0             = _mm256_setzero_ps();
1251
1252             /**************************
1253              * CALCULATE INTERACTIONS *
1254              **************************/
1255
1256             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1257             {
1258
1259             /* Compute parameters for interactions between i and j atoms */
1260             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1261                                             vdwioffsetptr0+vdwjidx0B,
1262                                             vdwioffsetptr0+vdwjidx0C,
1263                                             vdwioffsetptr0+vdwjidx0D,
1264                                             vdwioffsetptr0+vdwjidx0E,
1265                                             vdwioffsetptr0+vdwjidx0F,
1266                                             vdwioffsetptr0+vdwjidx0G,
1267                                             vdwioffsetptr0+vdwjidx0H,
1268                                             &c6_00,&c12_00);
1269
1270             /* LENNARD-JONES DISPERSION/REPULSION */
1271
1272             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1273             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1274
1275             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1276
1277             fscal            = fvdw;
1278
1279             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1280
1281             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1282
1283             /* Calculate temporary vectorial force */
1284             tx               = _mm256_mul_ps(fscal,dx00);
1285             ty               = _mm256_mul_ps(fscal,dy00);
1286             tz               = _mm256_mul_ps(fscal,dz00);
1287
1288             /* Update vectorial force */
1289             fix0             = _mm256_add_ps(fix0,tx);
1290             fiy0             = _mm256_add_ps(fiy0,ty);
1291             fiz0             = _mm256_add_ps(fiz0,tz);
1292
1293             fjx0             = _mm256_add_ps(fjx0,tx);
1294             fjy0             = _mm256_add_ps(fjy0,ty);
1295             fjz0             = _mm256_add_ps(fjz0,tz);
1296
1297             }
1298
1299             /**************************
1300              * CALCULATE INTERACTIONS *
1301              **************************/
1302
1303             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1304             {
1305
1306             /* Compute parameters for interactions between i and j atoms */
1307             qq10             = _mm256_mul_ps(iq1,jq0);
1308
1309             /* REACTION-FIELD ELECTROSTATICS */
1310             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1311
1312             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1313
1314             fscal            = felec;
1315
1316             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1317
1318             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1319
1320             /* Calculate temporary vectorial force */
1321             tx               = _mm256_mul_ps(fscal,dx10);
1322             ty               = _mm256_mul_ps(fscal,dy10);
1323             tz               = _mm256_mul_ps(fscal,dz10);
1324
1325             /* Update vectorial force */
1326             fix1             = _mm256_add_ps(fix1,tx);
1327             fiy1             = _mm256_add_ps(fiy1,ty);
1328             fiz1             = _mm256_add_ps(fiz1,tz);
1329
1330             fjx0             = _mm256_add_ps(fjx0,tx);
1331             fjy0             = _mm256_add_ps(fjy0,ty);
1332             fjz0             = _mm256_add_ps(fjz0,tz);
1333
1334             }
1335
1336             /**************************
1337              * CALCULATE INTERACTIONS *
1338              **************************/
1339
1340             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1341             {
1342
1343             /* Compute parameters for interactions between i and j atoms */
1344             qq20             = _mm256_mul_ps(iq2,jq0);
1345
1346             /* REACTION-FIELD ELECTROSTATICS */
1347             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1348
1349             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1350
1351             fscal            = felec;
1352
1353             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1354
1355             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1356
1357             /* Calculate temporary vectorial force */
1358             tx               = _mm256_mul_ps(fscal,dx20);
1359             ty               = _mm256_mul_ps(fscal,dy20);
1360             tz               = _mm256_mul_ps(fscal,dz20);
1361
1362             /* Update vectorial force */
1363             fix2             = _mm256_add_ps(fix2,tx);
1364             fiy2             = _mm256_add_ps(fiy2,ty);
1365             fiz2             = _mm256_add_ps(fiz2,tz);
1366
1367             fjx0             = _mm256_add_ps(fjx0,tx);
1368             fjy0             = _mm256_add_ps(fjy0,ty);
1369             fjz0             = _mm256_add_ps(fjz0,tz);
1370
1371             }
1372
1373             /**************************
1374              * CALCULATE INTERACTIONS *
1375              **************************/
1376
1377             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1378             {
1379
1380             /* Compute parameters for interactions between i and j atoms */
1381             qq30             = _mm256_mul_ps(iq3,jq0);
1382
1383             /* REACTION-FIELD ELECTROSTATICS */
1384             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1385
1386             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1387
1388             fscal            = felec;
1389
1390             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1391
1392             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1393
1394             /* Calculate temporary vectorial force */
1395             tx               = _mm256_mul_ps(fscal,dx30);
1396             ty               = _mm256_mul_ps(fscal,dy30);
1397             tz               = _mm256_mul_ps(fscal,dz30);
1398
1399             /* Update vectorial force */
1400             fix3             = _mm256_add_ps(fix3,tx);
1401             fiy3             = _mm256_add_ps(fiy3,ty);
1402             fiz3             = _mm256_add_ps(fiz3,tz);
1403
1404             fjx0             = _mm256_add_ps(fjx0,tx);
1405             fjy0             = _mm256_add_ps(fjy0,ty);
1406             fjz0             = _mm256_add_ps(fjz0,tz);
1407
1408             }
1409
1410             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1411             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1412             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1413             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1414             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1415             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1416             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1417             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1418
1419             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1420
1421             /* Inner loop uses 123 flops */
1422         }
1423
1424         /* End of innermost loop */
1425
1426         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1427                                                  f+i_coord_offset,fshift+i_shift_offset);
1428
1429         /* Increment number of inner iterations */
1430         inneriter                  += j_index_end - j_index_start;
1431
1432         /* Outer loop uses 24 flops */
1433     }
1434
1435     /* Increment number of outer iterations */
1436     outeriter        += nri;
1437
1438     /* Update outer/inner flops */
1439
1440     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*123);
1441 }