Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_avx_256_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
107     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
108     __m256           dummy_mask,cutoff_mask;
109     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
110     __m256           one     = _mm256_set1_ps(1.0);
111     __m256           two     = _mm256_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_ps(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     krf              = _mm256_set1_ps(fr->ic->k_rf);
126     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
127     crf              = _mm256_set1_ps(fr->ic->c_rf);
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
135     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
136     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
137     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
138
139     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
140     rcutoff_scalar   = fr->rcoulomb;
141     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
142     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
143
144     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
145     rvdw             = _mm256_set1_ps(fr->rvdw);
146
147     /* Avoid stupid compiler warnings */
148     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
149     j_coord_offsetA = 0;
150     j_coord_offsetB = 0;
151     j_coord_offsetC = 0;
152     j_coord_offsetD = 0;
153     j_coord_offsetE = 0;
154     j_coord_offsetF = 0;
155     j_coord_offsetG = 0;
156     j_coord_offsetH = 0;
157
158     outeriter        = 0;
159     inneriter        = 0;
160
161     for(iidx=0;iidx<4*DIM;iidx++)
162     {
163         scratch[iidx] = 0.0;
164     }
165
166     /* Start outer loop over neighborlists */
167     for(iidx=0; iidx<nri; iidx++)
168     {
169         /* Load shift vector for this list */
170         i_shift_offset   = DIM*shiftidx[iidx];
171
172         /* Load limits for loop over neighbors */
173         j_index_start    = jindex[iidx];
174         j_index_end      = jindex[iidx+1];
175
176         /* Get outer coordinate index */
177         inr              = iinr[iidx];
178         i_coord_offset   = DIM*inr;
179
180         /* Load i particle coords and add shift vector */
181         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
182                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
183
184         fix0             = _mm256_setzero_ps();
185         fiy0             = _mm256_setzero_ps();
186         fiz0             = _mm256_setzero_ps();
187         fix1             = _mm256_setzero_ps();
188         fiy1             = _mm256_setzero_ps();
189         fiz1             = _mm256_setzero_ps();
190         fix2             = _mm256_setzero_ps();
191         fiy2             = _mm256_setzero_ps();
192         fiz2             = _mm256_setzero_ps();
193         fix3             = _mm256_setzero_ps();
194         fiy3             = _mm256_setzero_ps();
195         fiz3             = _mm256_setzero_ps();
196
197         /* Reset potential sums */
198         velecsum         = _mm256_setzero_ps();
199         vvdwsum          = _mm256_setzero_ps();
200
201         /* Start inner kernel loop */
202         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
203         {
204
205             /* Get j neighbor index, and coordinate index */
206             jnrA             = jjnr[jidx];
207             jnrB             = jjnr[jidx+1];
208             jnrC             = jjnr[jidx+2];
209             jnrD             = jjnr[jidx+3];
210             jnrE             = jjnr[jidx+4];
211             jnrF             = jjnr[jidx+5];
212             jnrG             = jjnr[jidx+6];
213             jnrH             = jjnr[jidx+7];
214             j_coord_offsetA  = DIM*jnrA;
215             j_coord_offsetB  = DIM*jnrB;
216             j_coord_offsetC  = DIM*jnrC;
217             j_coord_offsetD  = DIM*jnrD;
218             j_coord_offsetE  = DIM*jnrE;
219             j_coord_offsetF  = DIM*jnrF;
220             j_coord_offsetG  = DIM*jnrG;
221             j_coord_offsetH  = DIM*jnrH;
222
223             /* load j atom coordinates */
224             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
225                                                  x+j_coord_offsetC,x+j_coord_offsetD,
226                                                  x+j_coord_offsetE,x+j_coord_offsetF,
227                                                  x+j_coord_offsetG,x+j_coord_offsetH,
228                                                  &jx0,&jy0,&jz0);
229
230             /* Calculate displacement vector */
231             dx00             = _mm256_sub_ps(ix0,jx0);
232             dy00             = _mm256_sub_ps(iy0,jy0);
233             dz00             = _mm256_sub_ps(iz0,jz0);
234             dx10             = _mm256_sub_ps(ix1,jx0);
235             dy10             = _mm256_sub_ps(iy1,jy0);
236             dz10             = _mm256_sub_ps(iz1,jz0);
237             dx20             = _mm256_sub_ps(ix2,jx0);
238             dy20             = _mm256_sub_ps(iy2,jy0);
239             dz20             = _mm256_sub_ps(iz2,jz0);
240             dx30             = _mm256_sub_ps(ix3,jx0);
241             dy30             = _mm256_sub_ps(iy3,jy0);
242             dz30             = _mm256_sub_ps(iz3,jz0);
243
244             /* Calculate squared distance and things based on it */
245             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
246             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
247             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
248             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
249
250             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
251             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
252             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
253
254             rinvsq00         = gmx_mm256_inv_ps(rsq00);
255             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
256             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
257             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
258
259             /* Load parameters for j particles */
260             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
261                                                                  charge+jnrC+0,charge+jnrD+0,
262                                                                  charge+jnrE+0,charge+jnrF+0,
263                                                                  charge+jnrG+0,charge+jnrH+0);
264             vdwjidx0A        = 2*vdwtype[jnrA+0];
265             vdwjidx0B        = 2*vdwtype[jnrB+0];
266             vdwjidx0C        = 2*vdwtype[jnrC+0];
267             vdwjidx0D        = 2*vdwtype[jnrD+0];
268             vdwjidx0E        = 2*vdwtype[jnrE+0];
269             vdwjidx0F        = 2*vdwtype[jnrF+0];
270             vdwjidx0G        = 2*vdwtype[jnrG+0];
271             vdwjidx0H        = 2*vdwtype[jnrH+0];
272
273             fjx0             = _mm256_setzero_ps();
274             fjy0             = _mm256_setzero_ps();
275             fjz0             = _mm256_setzero_ps();
276
277             /**************************
278              * CALCULATE INTERACTIONS *
279              **************************/
280
281             if (gmx_mm256_any_lt(rsq00,rcutoff2))
282             {
283
284             /* Compute parameters for interactions between i and j atoms */
285             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
286                                             vdwioffsetptr0+vdwjidx0B,
287                                             vdwioffsetptr0+vdwjidx0C,
288                                             vdwioffsetptr0+vdwjidx0D,
289                                             vdwioffsetptr0+vdwjidx0E,
290                                             vdwioffsetptr0+vdwjidx0F,
291                                             vdwioffsetptr0+vdwjidx0G,
292                                             vdwioffsetptr0+vdwjidx0H,
293                                             &c6_00,&c12_00);
294
295             /* LENNARD-JONES DISPERSION/REPULSION */
296
297             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
298             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
299             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
300             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
301                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
302             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
303
304             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
305
306             /* Update potential sum for this i atom from the interaction with this j atom. */
307             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
308             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
309
310             fscal            = fvdw;
311
312             fscal            = _mm256_and_ps(fscal,cutoff_mask);
313
314             /* Calculate temporary vectorial force */
315             tx               = _mm256_mul_ps(fscal,dx00);
316             ty               = _mm256_mul_ps(fscal,dy00);
317             tz               = _mm256_mul_ps(fscal,dz00);
318
319             /* Update vectorial force */
320             fix0             = _mm256_add_ps(fix0,tx);
321             fiy0             = _mm256_add_ps(fiy0,ty);
322             fiz0             = _mm256_add_ps(fiz0,tz);
323
324             fjx0             = _mm256_add_ps(fjx0,tx);
325             fjy0             = _mm256_add_ps(fjy0,ty);
326             fjz0             = _mm256_add_ps(fjz0,tz);
327
328             }
329
330             /**************************
331              * CALCULATE INTERACTIONS *
332              **************************/
333
334             if (gmx_mm256_any_lt(rsq10,rcutoff2))
335             {
336
337             /* Compute parameters for interactions between i and j atoms */
338             qq10             = _mm256_mul_ps(iq1,jq0);
339
340             /* REACTION-FIELD ELECTROSTATICS */
341             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
342             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
343
344             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velec            = _mm256_and_ps(velec,cutoff_mask);
348             velecsum         = _mm256_add_ps(velecsum,velec);
349
350             fscal            = felec;
351
352             fscal            = _mm256_and_ps(fscal,cutoff_mask);
353
354             /* Calculate temporary vectorial force */
355             tx               = _mm256_mul_ps(fscal,dx10);
356             ty               = _mm256_mul_ps(fscal,dy10);
357             tz               = _mm256_mul_ps(fscal,dz10);
358
359             /* Update vectorial force */
360             fix1             = _mm256_add_ps(fix1,tx);
361             fiy1             = _mm256_add_ps(fiy1,ty);
362             fiz1             = _mm256_add_ps(fiz1,tz);
363
364             fjx0             = _mm256_add_ps(fjx0,tx);
365             fjy0             = _mm256_add_ps(fjy0,ty);
366             fjz0             = _mm256_add_ps(fjz0,tz);
367
368             }
369
370             /**************************
371              * CALCULATE INTERACTIONS *
372              **************************/
373
374             if (gmx_mm256_any_lt(rsq20,rcutoff2))
375             {
376
377             /* Compute parameters for interactions between i and j atoms */
378             qq20             = _mm256_mul_ps(iq2,jq0);
379
380             /* REACTION-FIELD ELECTROSTATICS */
381             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
382             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
383
384             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
385
386             /* Update potential sum for this i atom from the interaction with this j atom. */
387             velec            = _mm256_and_ps(velec,cutoff_mask);
388             velecsum         = _mm256_add_ps(velecsum,velec);
389
390             fscal            = felec;
391
392             fscal            = _mm256_and_ps(fscal,cutoff_mask);
393
394             /* Calculate temporary vectorial force */
395             tx               = _mm256_mul_ps(fscal,dx20);
396             ty               = _mm256_mul_ps(fscal,dy20);
397             tz               = _mm256_mul_ps(fscal,dz20);
398
399             /* Update vectorial force */
400             fix2             = _mm256_add_ps(fix2,tx);
401             fiy2             = _mm256_add_ps(fiy2,ty);
402             fiz2             = _mm256_add_ps(fiz2,tz);
403
404             fjx0             = _mm256_add_ps(fjx0,tx);
405             fjy0             = _mm256_add_ps(fjy0,ty);
406             fjz0             = _mm256_add_ps(fjz0,tz);
407
408             }
409
410             /**************************
411              * CALCULATE INTERACTIONS *
412              **************************/
413
414             if (gmx_mm256_any_lt(rsq30,rcutoff2))
415             {
416
417             /* Compute parameters for interactions between i and j atoms */
418             qq30             = _mm256_mul_ps(iq3,jq0);
419
420             /* REACTION-FIELD ELECTROSTATICS */
421             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
422             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
423
424             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
425
426             /* Update potential sum for this i atom from the interaction with this j atom. */
427             velec            = _mm256_and_ps(velec,cutoff_mask);
428             velecsum         = _mm256_add_ps(velecsum,velec);
429
430             fscal            = felec;
431
432             fscal            = _mm256_and_ps(fscal,cutoff_mask);
433
434             /* Calculate temporary vectorial force */
435             tx               = _mm256_mul_ps(fscal,dx30);
436             ty               = _mm256_mul_ps(fscal,dy30);
437             tz               = _mm256_mul_ps(fscal,dz30);
438
439             /* Update vectorial force */
440             fix3             = _mm256_add_ps(fix3,tx);
441             fiy3             = _mm256_add_ps(fiy3,ty);
442             fiz3             = _mm256_add_ps(fiz3,tz);
443
444             fjx0             = _mm256_add_ps(fjx0,tx);
445             fjy0             = _mm256_add_ps(fjy0,ty);
446             fjz0             = _mm256_add_ps(fjz0,tz);
447
448             }
449
450             fjptrA             = f+j_coord_offsetA;
451             fjptrB             = f+j_coord_offsetB;
452             fjptrC             = f+j_coord_offsetC;
453             fjptrD             = f+j_coord_offsetD;
454             fjptrE             = f+j_coord_offsetE;
455             fjptrF             = f+j_coord_offsetF;
456             fjptrG             = f+j_coord_offsetG;
457             fjptrH             = f+j_coord_offsetH;
458
459             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
460
461             /* Inner loop uses 152 flops */
462         }
463
464         if(jidx<j_index_end)
465         {
466
467             /* Get j neighbor index, and coordinate index */
468             jnrlistA         = jjnr[jidx];
469             jnrlistB         = jjnr[jidx+1];
470             jnrlistC         = jjnr[jidx+2];
471             jnrlistD         = jjnr[jidx+3];
472             jnrlistE         = jjnr[jidx+4];
473             jnrlistF         = jjnr[jidx+5];
474             jnrlistG         = jjnr[jidx+6];
475             jnrlistH         = jjnr[jidx+7];
476             /* Sign of each element will be negative for non-real atoms.
477              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
478              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
479              */
480             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
481                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
482                                             
483             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
484             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
485             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
486             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
487             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
488             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
489             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
490             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
491             j_coord_offsetA  = DIM*jnrA;
492             j_coord_offsetB  = DIM*jnrB;
493             j_coord_offsetC  = DIM*jnrC;
494             j_coord_offsetD  = DIM*jnrD;
495             j_coord_offsetE  = DIM*jnrE;
496             j_coord_offsetF  = DIM*jnrF;
497             j_coord_offsetG  = DIM*jnrG;
498             j_coord_offsetH  = DIM*jnrH;
499
500             /* load j atom coordinates */
501             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
502                                                  x+j_coord_offsetC,x+j_coord_offsetD,
503                                                  x+j_coord_offsetE,x+j_coord_offsetF,
504                                                  x+j_coord_offsetG,x+j_coord_offsetH,
505                                                  &jx0,&jy0,&jz0);
506
507             /* Calculate displacement vector */
508             dx00             = _mm256_sub_ps(ix0,jx0);
509             dy00             = _mm256_sub_ps(iy0,jy0);
510             dz00             = _mm256_sub_ps(iz0,jz0);
511             dx10             = _mm256_sub_ps(ix1,jx0);
512             dy10             = _mm256_sub_ps(iy1,jy0);
513             dz10             = _mm256_sub_ps(iz1,jz0);
514             dx20             = _mm256_sub_ps(ix2,jx0);
515             dy20             = _mm256_sub_ps(iy2,jy0);
516             dz20             = _mm256_sub_ps(iz2,jz0);
517             dx30             = _mm256_sub_ps(ix3,jx0);
518             dy30             = _mm256_sub_ps(iy3,jy0);
519             dz30             = _mm256_sub_ps(iz3,jz0);
520
521             /* Calculate squared distance and things based on it */
522             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
523             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
524             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
525             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
526
527             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
528             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
529             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
530
531             rinvsq00         = gmx_mm256_inv_ps(rsq00);
532             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
533             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
534             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
535
536             /* Load parameters for j particles */
537             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
538                                                                  charge+jnrC+0,charge+jnrD+0,
539                                                                  charge+jnrE+0,charge+jnrF+0,
540                                                                  charge+jnrG+0,charge+jnrH+0);
541             vdwjidx0A        = 2*vdwtype[jnrA+0];
542             vdwjidx0B        = 2*vdwtype[jnrB+0];
543             vdwjidx0C        = 2*vdwtype[jnrC+0];
544             vdwjidx0D        = 2*vdwtype[jnrD+0];
545             vdwjidx0E        = 2*vdwtype[jnrE+0];
546             vdwjidx0F        = 2*vdwtype[jnrF+0];
547             vdwjidx0G        = 2*vdwtype[jnrG+0];
548             vdwjidx0H        = 2*vdwtype[jnrH+0];
549
550             fjx0             = _mm256_setzero_ps();
551             fjy0             = _mm256_setzero_ps();
552             fjz0             = _mm256_setzero_ps();
553
554             /**************************
555              * CALCULATE INTERACTIONS *
556              **************************/
557
558             if (gmx_mm256_any_lt(rsq00,rcutoff2))
559             {
560
561             /* Compute parameters for interactions between i and j atoms */
562             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
563                                             vdwioffsetptr0+vdwjidx0B,
564                                             vdwioffsetptr0+vdwjidx0C,
565                                             vdwioffsetptr0+vdwjidx0D,
566                                             vdwioffsetptr0+vdwjidx0E,
567                                             vdwioffsetptr0+vdwjidx0F,
568                                             vdwioffsetptr0+vdwjidx0G,
569                                             vdwioffsetptr0+vdwjidx0H,
570                                             &c6_00,&c12_00);
571
572             /* LENNARD-JONES DISPERSION/REPULSION */
573
574             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
575             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
576             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
577             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
578                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
579             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
580
581             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
582
583             /* Update potential sum for this i atom from the interaction with this j atom. */
584             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
585             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
586             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
587
588             fscal            = fvdw;
589
590             fscal            = _mm256_and_ps(fscal,cutoff_mask);
591
592             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
593
594             /* Calculate temporary vectorial force */
595             tx               = _mm256_mul_ps(fscal,dx00);
596             ty               = _mm256_mul_ps(fscal,dy00);
597             tz               = _mm256_mul_ps(fscal,dz00);
598
599             /* Update vectorial force */
600             fix0             = _mm256_add_ps(fix0,tx);
601             fiy0             = _mm256_add_ps(fiy0,ty);
602             fiz0             = _mm256_add_ps(fiz0,tz);
603
604             fjx0             = _mm256_add_ps(fjx0,tx);
605             fjy0             = _mm256_add_ps(fjy0,ty);
606             fjz0             = _mm256_add_ps(fjz0,tz);
607
608             }
609
610             /**************************
611              * CALCULATE INTERACTIONS *
612              **************************/
613
614             if (gmx_mm256_any_lt(rsq10,rcutoff2))
615             {
616
617             /* Compute parameters for interactions between i and j atoms */
618             qq10             = _mm256_mul_ps(iq1,jq0);
619
620             /* REACTION-FIELD ELECTROSTATICS */
621             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
622             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
623
624             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
625
626             /* Update potential sum for this i atom from the interaction with this j atom. */
627             velec            = _mm256_and_ps(velec,cutoff_mask);
628             velec            = _mm256_andnot_ps(dummy_mask,velec);
629             velecsum         = _mm256_add_ps(velecsum,velec);
630
631             fscal            = felec;
632
633             fscal            = _mm256_and_ps(fscal,cutoff_mask);
634
635             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
636
637             /* Calculate temporary vectorial force */
638             tx               = _mm256_mul_ps(fscal,dx10);
639             ty               = _mm256_mul_ps(fscal,dy10);
640             tz               = _mm256_mul_ps(fscal,dz10);
641
642             /* Update vectorial force */
643             fix1             = _mm256_add_ps(fix1,tx);
644             fiy1             = _mm256_add_ps(fiy1,ty);
645             fiz1             = _mm256_add_ps(fiz1,tz);
646
647             fjx0             = _mm256_add_ps(fjx0,tx);
648             fjy0             = _mm256_add_ps(fjy0,ty);
649             fjz0             = _mm256_add_ps(fjz0,tz);
650
651             }
652
653             /**************************
654              * CALCULATE INTERACTIONS *
655              **************************/
656
657             if (gmx_mm256_any_lt(rsq20,rcutoff2))
658             {
659
660             /* Compute parameters for interactions between i and j atoms */
661             qq20             = _mm256_mul_ps(iq2,jq0);
662
663             /* REACTION-FIELD ELECTROSTATICS */
664             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
665             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
666
667             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
668
669             /* Update potential sum for this i atom from the interaction with this j atom. */
670             velec            = _mm256_and_ps(velec,cutoff_mask);
671             velec            = _mm256_andnot_ps(dummy_mask,velec);
672             velecsum         = _mm256_add_ps(velecsum,velec);
673
674             fscal            = felec;
675
676             fscal            = _mm256_and_ps(fscal,cutoff_mask);
677
678             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
679
680             /* Calculate temporary vectorial force */
681             tx               = _mm256_mul_ps(fscal,dx20);
682             ty               = _mm256_mul_ps(fscal,dy20);
683             tz               = _mm256_mul_ps(fscal,dz20);
684
685             /* Update vectorial force */
686             fix2             = _mm256_add_ps(fix2,tx);
687             fiy2             = _mm256_add_ps(fiy2,ty);
688             fiz2             = _mm256_add_ps(fiz2,tz);
689
690             fjx0             = _mm256_add_ps(fjx0,tx);
691             fjy0             = _mm256_add_ps(fjy0,ty);
692             fjz0             = _mm256_add_ps(fjz0,tz);
693
694             }
695
696             /**************************
697              * CALCULATE INTERACTIONS *
698              **************************/
699
700             if (gmx_mm256_any_lt(rsq30,rcutoff2))
701             {
702
703             /* Compute parameters for interactions between i and j atoms */
704             qq30             = _mm256_mul_ps(iq3,jq0);
705
706             /* REACTION-FIELD ELECTROSTATICS */
707             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
708             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
709
710             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
711
712             /* Update potential sum for this i atom from the interaction with this j atom. */
713             velec            = _mm256_and_ps(velec,cutoff_mask);
714             velec            = _mm256_andnot_ps(dummy_mask,velec);
715             velecsum         = _mm256_add_ps(velecsum,velec);
716
717             fscal            = felec;
718
719             fscal            = _mm256_and_ps(fscal,cutoff_mask);
720
721             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
722
723             /* Calculate temporary vectorial force */
724             tx               = _mm256_mul_ps(fscal,dx30);
725             ty               = _mm256_mul_ps(fscal,dy30);
726             tz               = _mm256_mul_ps(fscal,dz30);
727
728             /* Update vectorial force */
729             fix3             = _mm256_add_ps(fix3,tx);
730             fiy3             = _mm256_add_ps(fiy3,ty);
731             fiz3             = _mm256_add_ps(fiz3,tz);
732
733             fjx0             = _mm256_add_ps(fjx0,tx);
734             fjy0             = _mm256_add_ps(fjy0,ty);
735             fjz0             = _mm256_add_ps(fjz0,tz);
736
737             }
738
739             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
740             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
741             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
742             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
743             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
744             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
745             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
746             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
747
748             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
749
750             /* Inner loop uses 152 flops */
751         }
752
753         /* End of innermost loop */
754
755         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
756                                                  f+i_coord_offset,fshift+i_shift_offset);
757
758         ggid                        = gid[iidx];
759         /* Update potential energies */
760         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
761         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
762
763         /* Increment number of inner iterations */
764         inneriter                  += j_index_end - j_index_start;
765
766         /* Outer loop uses 26 flops */
767     }
768
769     /* Increment number of outer iterations */
770     outeriter        += nri;
771
772     /* Update outer/inner flops */
773
774     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*152);
775 }
776 /*
777  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_avx_256_single
778  * Electrostatics interaction: ReactionField
779  * VdW interaction:            LennardJones
780  * Geometry:                   Water4-Particle
781  * Calculate force/pot:        Force
782  */
783 void
784 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_avx_256_single
785                     (t_nblist                    * gmx_restrict       nlist,
786                      rvec                        * gmx_restrict          xx,
787                      rvec                        * gmx_restrict          ff,
788                      t_forcerec                  * gmx_restrict          fr,
789                      t_mdatoms                   * gmx_restrict     mdatoms,
790                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
791                      t_nrnb                      * gmx_restrict        nrnb)
792 {
793     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
794      * just 0 for non-waters.
795      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
796      * jnr indices corresponding to data put in the four positions in the SIMD register.
797      */
798     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
799     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
800     int              jnrA,jnrB,jnrC,jnrD;
801     int              jnrE,jnrF,jnrG,jnrH;
802     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
803     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
804     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
805     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
806     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
807     real             rcutoff_scalar;
808     real             *shiftvec,*fshift,*x,*f;
809     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
810     real             scratch[4*DIM];
811     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
812     real *           vdwioffsetptr0;
813     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
814     real *           vdwioffsetptr1;
815     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
816     real *           vdwioffsetptr2;
817     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
818     real *           vdwioffsetptr3;
819     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
820     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
821     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
822     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
823     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
824     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
825     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
826     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
827     real             *charge;
828     int              nvdwtype;
829     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
830     int              *vdwtype;
831     real             *vdwparam;
832     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
833     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
834     __m256           dummy_mask,cutoff_mask;
835     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
836     __m256           one     = _mm256_set1_ps(1.0);
837     __m256           two     = _mm256_set1_ps(2.0);
838     x                = xx[0];
839     f                = ff[0];
840
841     nri              = nlist->nri;
842     iinr             = nlist->iinr;
843     jindex           = nlist->jindex;
844     jjnr             = nlist->jjnr;
845     shiftidx         = nlist->shift;
846     gid              = nlist->gid;
847     shiftvec         = fr->shift_vec[0];
848     fshift           = fr->fshift[0];
849     facel            = _mm256_set1_ps(fr->epsfac);
850     charge           = mdatoms->chargeA;
851     krf              = _mm256_set1_ps(fr->ic->k_rf);
852     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
853     crf              = _mm256_set1_ps(fr->ic->c_rf);
854     nvdwtype         = fr->ntype;
855     vdwparam         = fr->nbfp;
856     vdwtype          = mdatoms->typeA;
857
858     /* Setup water-specific parameters */
859     inr              = nlist->iinr[0];
860     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
861     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
862     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
863     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
864
865     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
866     rcutoff_scalar   = fr->rcoulomb;
867     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
868     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
869
870     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
871     rvdw             = _mm256_set1_ps(fr->rvdw);
872
873     /* Avoid stupid compiler warnings */
874     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
875     j_coord_offsetA = 0;
876     j_coord_offsetB = 0;
877     j_coord_offsetC = 0;
878     j_coord_offsetD = 0;
879     j_coord_offsetE = 0;
880     j_coord_offsetF = 0;
881     j_coord_offsetG = 0;
882     j_coord_offsetH = 0;
883
884     outeriter        = 0;
885     inneriter        = 0;
886
887     for(iidx=0;iidx<4*DIM;iidx++)
888     {
889         scratch[iidx] = 0.0;
890     }
891
892     /* Start outer loop over neighborlists */
893     for(iidx=0; iidx<nri; iidx++)
894     {
895         /* Load shift vector for this list */
896         i_shift_offset   = DIM*shiftidx[iidx];
897
898         /* Load limits for loop over neighbors */
899         j_index_start    = jindex[iidx];
900         j_index_end      = jindex[iidx+1];
901
902         /* Get outer coordinate index */
903         inr              = iinr[iidx];
904         i_coord_offset   = DIM*inr;
905
906         /* Load i particle coords and add shift vector */
907         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
908                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
909
910         fix0             = _mm256_setzero_ps();
911         fiy0             = _mm256_setzero_ps();
912         fiz0             = _mm256_setzero_ps();
913         fix1             = _mm256_setzero_ps();
914         fiy1             = _mm256_setzero_ps();
915         fiz1             = _mm256_setzero_ps();
916         fix2             = _mm256_setzero_ps();
917         fiy2             = _mm256_setzero_ps();
918         fiz2             = _mm256_setzero_ps();
919         fix3             = _mm256_setzero_ps();
920         fiy3             = _mm256_setzero_ps();
921         fiz3             = _mm256_setzero_ps();
922
923         /* Start inner kernel loop */
924         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
925         {
926
927             /* Get j neighbor index, and coordinate index */
928             jnrA             = jjnr[jidx];
929             jnrB             = jjnr[jidx+1];
930             jnrC             = jjnr[jidx+2];
931             jnrD             = jjnr[jidx+3];
932             jnrE             = jjnr[jidx+4];
933             jnrF             = jjnr[jidx+5];
934             jnrG             = jjnr[jidx+6];
935             jnrH             = jjnr[jidx+7];
936             j_coord_offsetA  = DIM*jnrA;
937             j_coord_offsetB  = DIM*jnrB;
938             j_coord_offsetC  = DIM*jnrC;
939             j_coord_offsetD  = DIM*jnrD;
940             j_coord_offsetE  = DIM*jnrE;
941             j_coord_offsetF  = DIM*jnrF;
942             j_coord_offsetG  = DIM*jnrG;
943             j_coord_offsetH  = DIM*jnrH;
944
945             /* load j atom coordinates */
946             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
947                                                  x+j_coord_offsetC,x+j_coord_offsetD,
948                                                  x+j_coord_offsetE,x+j_coord_offsetF,
949                                                  x+j_coord_offsetG,x+j_coord_offsetH,
950                                                  &jx0,&jy0,&jz0);
951
952             /* Calculate displacement vector */
953             dx00             = _mm256_sub_ps(ix0,jx0);
954             dy00             = _mm256_sub_ps(iy0,jy0);
955             dz00             = _mm256_sub_ps(iz0,jz0);
956             dx10             = _mm256_sub_ps(ix1,jx0);
957             dy10             = _mm256_sub_ps(iy1,jy0);
958             dz10             = _mm256_sub_ps(iz1,jz0);
959             dx20             = _mm256_sub_ps(ix2,jx0);
960             dy20             = _mm256_sub_ps(iy2,jy0);
961             dz20             = _mm256_sub_ps(iz2,jz0);
962             dx30             = _mm256_sub_ps(ix3,jx0);
963             dy30             = _mm256_sub_ps(iy3,jy0);
964             dz30             = _mm256_sub_ps(iz3,jz0);
965
966             /* Calculate squared distance and things based on it */
967             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
968             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
969             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
970             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
971
972             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
973             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
974             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
975
976             rinvsq00         = gmx_mm256_inv_ps(rsq00);
977             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
978             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
979             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
980
981             /* Load parameters for j particles */
982             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
983                                                                  charge+jnrC+0,charge+jnrD+0,
984                                                                  charge+jnrE+0,charge+jnrF+0,
985                                                                  charge+jnrG+0,charge+jnrH+0);
986             vdwjidx0A        = 2*vdwtype[jnrA+0];
987             vdwjidx0B        = 2*vdwtype[jnrB+0];
988             vdwjidx0C        = 2*vdwtype[jnrC+0];
989             vdwjidx0D        = 2*vdwtype[jnrD+0];
990             vdwjidx0E        = 2*vdwtype[jnrE+0];
991             vdwjidx0F        = 2*vdwtype[jnrF+0];
992             vdwjidx0G        = 2*vdwtype[jnrG+0];
993             vdwjidx0H        = 2*vdwtype[jnrH+0];
994
995             fjx0             = _mm256_setzero_ps();
996             fjy0             = _mm256_setzero_ps();
997             fjz0             = _mm256_setzero_ps();
998
999             /**************************
1000              * CALCULATE INTERACTIONS *
1001              **************************/
1002
1003             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1004             {
1005
1006             /* Compute parameters for interactions between i and j atoms */
1007             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1008                                             vdwioffsetptr0+vdwjidx0B,
1009                                             vdwioffsetptr0+vdwjidx0C,
1010                                             vdwioffsetptr0+vdwjidx0D,
1011                                             vdwioffsetptr0+vdwjidx0E,
1012                                             vdwioffsetptr0+vdwjidx0F,
1013                                             vdwioffsetptr0+vdwjidx0G,
1014                                             vdwioffsetptr0+vdwjidx0H,
1015                                             &c6_00,&c12_00);
1016
1017             /* LENNARD-JONES DISPERSION/REPULSION */
1018
1019             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1020             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1021
1022             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1023
1024             fscal            = fvdw;
1025
1026             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1027
1028             /* Calculate temporary vectorial force */
1029             tx               = _mm256_mul_ps(fscal,dx00);
1030             ty               = _mm256_mul_ps(fscal,dy00);
1031             tz               = _mm256_mul_ps(fscal,dz00);
1032
1033             /* Update vectorial force */
1034             fix0             = _mm256_add_ps(fix0,tx);
1035             fiy0             = _mm256_add_ps(fiy0,ty);
1036             fiz0             = _mm256_add_ps(fiz0,tz);
1037
1038             fjx0             = _mm256_add_ps(fjx0,tx);
1039             fjy0             = _mm256_add_ps(fjy0,ty);
1040             fjz0             = _mm256_add_ps(fjz0,tz);
1041
1042             }
1043
1044             /**************************
1045              * CALCULATE INTERACTIONS *
1046              **************************/
1047
1048             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1049             {
1050
1051             /* Compute parameters for interactions between i and j atoms */
1052             qq10             = _mm256_mul_ps(iq1,jq0);
1053
1054             /* REACTION-FIELD ELECTROSTATICS */
1055             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1056
1057             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1058
1059             fscal            = felec;
1060
1061             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1062
1063             /* Calculate temporary vectorial force */
1064             tx               = _mm256_mul_ps(fscal,dx10);
1065             ty               = _mm256_mul_ps(fscal,dy10);
1066             tz               = _mm256_mul_ps(fscal,dz10);
1067
1068             /* Update vectorial force */
1069             fix1             = _mm256_add_ps(fix1,tx);
1070             fiy1             = _mm256_add_ps(fiy1,ty);
1071             fiz1             = _mm256_add_ps(fiz1,tz);
1072
1073             fjx0             = _mm256_add_ps(fjx0,tx);
1074             fjy0             = _mm256_add_ps(fjy0,ty);
1075             fjz0             = _mm256_add_ps(fjz0,tz);
1076
1077             }
1078
1079             /**************************
1080              * CALCULATE INTERACTIONS *
1081              **************************/
1082
1083             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1084             {
1085
1086             /* Compute parameters for interactions between i and j atoms */
1087             qq20             = _mm256_mul_ps(iq2,jq0);
1088
1089             /* REACTION-FIELD ELECTROSTATICS */
1090             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1091
1092             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1093
1094             fscal            = felec;
1095
1096             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1097
1098             /* Calculate temporary vectorial force */
1099             tx               = _mm256_mul_ps(fscal,dx20);
1100             ty               = _mm256_mul_ps(fscal,dy20);
1101             tz               = _mm256_mul_ps(fscal,dz20);
1102
1103             /* Update vectorial force */
1104             fix2             = _mm256_add_ps(fix2,tx);
1105             fiy2             = _mm256_add_ps(fiy2,ty);
1106             fiz2             = _mm256_add_ps(fiz2,tz);
1107
1108             fjx0             = _mm256_add_ps(fjx0,tx);
1109             fjy0             = _mm256_add_ps(fjy0,ty);
1110             fjz0             = _mm256_add_ps(fjz0,tz);
1111
1112             }
1113
1114             /**************************
1115              * CALCULATE INTERACTIONS *
1116              **************************/
1117
1118             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1119             {
1120
1121             /* Compute parameters for interactions between i and j atoms */
1122             qq30             = _mm256_mul_ps(iq3,jq0);
1123
1124             /* REACTION-FIELD ELECTROSTATICS */
1125             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1126
1127             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1128
1129             fscal            = felec;
1130
1131             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1132
1133             /* Calculate temporary vectorial force */
1134             tx               = _mm256_mul_ps(fscal,dx30);
1135             ty               = _mm256_mul_ps(fscal,dy30);
1136             tz               = _mm256_mul_ps(fscal,dz30);
1137
1138             /* Update vectorial force */
1139             fix3             = _mm256_add_ps(fix3,tx);
1140             fiy3             = _mm256_add_ps(fiy3,ty);
1141             fiz3             = _mm256_add_ps(fiz3,tz);
1142
1143             fjx0             = _mm256_add_ps(fjx0,tx);
1144             fjy0             = _mm256_add_ps(fjy0,ty);
1145             fjz0             = _mm256_add_ps(fjz0,tz);
1146
1147             }
1148
1149             fjptrA             = f+j_coord_offsetA;
1150             fjptrB             = f+j_coord_offsetB;
1151             fjptrC             = f+j_coord_offsetC;
1152             fjptrD             = f+j_coord_offsetD;
1153             fjptrE             = f+j_coord_offsetE;
1154             fjptrF             = f+j_coord_offsetF;
1155             fjptrG             = f+j_coord_offsetG;
1156             fjptrH             = f+j_coord_offsetH;
1157
1158             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1159
1160             /* Inner loop uses 123 flops */
1161         }
1162
1163         if(jidx<j_index_end)
1164         {
1165
1166             /* Get j neighbor index, and coordinate index */
1167             jnrlistA         = jjnr[jidx];
1168             jnrlistB         = jjnr[jidx+1];
1169             jnrlistC         = jjnr[jidx+2];
1170             jnrlistD         = jjnr[jidx+3];
1171             jnrlistE         = jjnr[jidx+4];
1172             jnrlistF         = jjnr[jidx+5];
1173             jnrlistG         = jjnr[jidx+6];
1174             jnrlistH         = jjnr[jidx+7];
1175             /* Sign of each element will be negative for non-real atoms.
1176              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1177              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1178              */
1179             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1180                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1181                                             
1182             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1183             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1184             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1185             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1186             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1187             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1188             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1189             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1190             j_coord_offsetA  = DIM*jnrA;
1191             j_coord_offsetB  = DIM*jnrB;
1192             j_coord_offsetC  = DIM*jnrC;
1193             j_coord_offsetD  = DIM*jnrD;
1194             j_coord_offsetE  = DIM*jnrE;
1195             j_coord_offsetF  = DIM*jnrF;
1196             j_coord_offsetG  = DIM*jnrG;
1197             j_coord_offsetH  = DIM*jnrH;
1198
1199             /* load j atom coordinates */
1200             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1201                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1202                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1203                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1204                                                  &jx0,&jy0,&jz0);
1205
1206             /* Calculate displacement vector */
1207             dx00             = _mm256_sub_ps(ix0,jx0);
1208             dy00             = _mm256_sub_ps(iy0,jy0);
1209             dz00             = _mm256_sub_ps(iz0,jz0);
1210             dx10             = _mm256_sub_ps(ix1,jx0);
1211             dy10             = _mm256_sub_ps(iy1,jy0);
1212             dz10             = _mm256_sub_ps(iz1,jz0);
1213             dx20             = _mm256_sub_ps(ix2,jx0);
1214             dy20             = _mm256_sub_ps(iy2,jy0);
1215             dz20             = _mm256_sub_ps(iz2,jz0);
1216             dx30             = _mm256_sub_ps(ix3,jx0);
1217             dy30             = _mm256_sub_ps(iy3,jy0);
1218             dz30             = _mm256_sub_ps(iz3,jz0);
1219
1220             /* Calculate squared distance and things based on it */
1221             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1222             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1223             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1224             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1225
1226             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1227             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1228             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1229
1230             rinvsq00         = gmx_mm256_inv_ps(rsq00);
1231             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1232             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1233             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1234
1235             /* Load parameters for j particles */
1236             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1237                                                                  charge+jnrC+0,charge+jnrD+0,
1238                                                                  charge+jnrE+0,charge+jnrF+0,
1239                                                                  charge+jnrG+0,charge+jnrH+0);
1240             vdwjidx0A        = 2*vdwtype[jnrA+0];
1241             vdwjidx0B        = 2*vdwtype[jnrB+0];
1242             vdwjidx0C        = 2*vdwtype[jnrC+0];
1243             vdwjidx0D        = 2*vdwtype[jnrD+0];
1244             vdwjidx0E        = 2*vdwtype[jnrE+0];
1245             vdwjidx0F        = 2*vdwtype[jnrF+0];
1246             vdwjidx0G        = 2*vdwtype[jnrG+0];
1247             vdwjidx0H        = 2*vdwtype[jnrH+0];
1248
1249             fjx0             = _mm256_setzero_ps();
1250             fjy0             = _mm256_setzero_ps();
1251             fjz0             = _mm256_setzero_ps();
1252
1253             /**************************
1254              * CALCULATE INTERACTIONS *
1255              **************************/
1256
1257             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1258             {
1259
1260             /* Compute parameters for interactions between i and j atoms */
1261             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1262                                             vdwioffsetptr0+vdwjidx0B,
1263                                             vdwioffsetptr0+vdwjidx0C,
1264                                             vdwioffsetptr0+vdwjidx0D,
1265                                             vdwioffsetptr0+vdwjidx0E,
1266                                             vdwioffsetptr0+vdwjidx0F,
1267                                             vdwioffsetptr0+vdwjidx0G,
1268                                             vdwioffsetptr0+vdwjidx0H,
1269                                             &c6_00,&c12_00);
1270
1271             /* LENNARD-JONES DISPERSION/REPULSION */
1272
1273             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1274             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1275
1276             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1277
1278             fscal            = fvdw;
1279
1280             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1281
1282             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1283
1284             /* Calculate temporary vectorial force */
1285             tx               = _mm256_mul_ps(fscal,dx00);
1286             ty               = _mm256_mul_ps(fscal,dy00);
1287             tz               = _mm256_mul_ps(fscal,dz00);
1288
1289             /* Update vectorial force */
1290             fix0             = _mm256_add_ps(fix0,tx);
1291             fiy0             = _mm256_add_ps(fiy0,ty);
1292             fiz0             = _mm256_add_ps(fiz0,tz);
1293
1294             fjx0             = _mm256_add_ps(fjx0,tx);
1295             fjy0             = _mm256_add_ps(fjy0,ty);
1296             fjz0             = _mm256_add_ps(fjz0,tz);
1297
1298             }
1299
1300             /**************************
1301              * CALCULATE INTERACTIONS *
1302              **************************/
1303
1304             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1305             {
1306
1307             /* Compute parameters for interactions between i and j atoms */
1308             qq10             = _mm256_mul_ps(iq1,jq0);
1309
1310             /* REACTION-FIELD ELECTROSTATICS */
1311             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1312
1313             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1314
1315             fscal            = felec;
1316
1317             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1318
1319             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1320
1321             /* Calculate temporary vectorial force */
1322             tx               = _mm256_mul_ps(fscal,dx10);
1323             ty               = _mm256_mul_ps(fscal,dy10);
1324             tz               = _mm256_mul_ps(fscal,dz10);
1325
1326             /* Update vectorial force */
1327             fix1             = _mm256_add_ps(fix1,tx);
1328             fiy1             = _mm256_add_ps(fiy1,ty);
1329             fiz1             = _mm256_add_ps(fiz1,tz);
1330
1331             fjx0             = _mm256_add_ps(fjx0,tx);
1332             fjy0             = _mm256_add_ps(fjy0,ty);
1333             fjz0             = _mm256_add_ps(fjz0,tz);
1334
1335             }
1336
1337             /**************************
1338              * CALCULATE INTERACTIONS *
1339              **************************/
1340
1341             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1342             {
1343
1344             /* Compute parameters for interactions between i and j atoms */
1345             qq20             = _mm256_mul_ps(iq2,jq0);
1346
1347             /* REACTION-FIELD ELECTROSTATICS */
1348             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1349
1350             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1351
1352             fscal            = felec;
1353
1354             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1355
1356             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1357
1358             /* Calculate temporary vectorial force */
1359             tx               = _mm256_mul_ps(fscal,dx20);
1360             ty               = _mm256_mul_ps(fscal,dy20);
1361             tz               = _mm256_mul_ps(fscal,dz20);
1362
1363             /* Update vectorial force */
1364             fix2             = _mm256_add_ps(fix2,tx);
1365             fiy2             = _mm256_add_ps(fiy2,ty);
1366             fiz2             = _mm256_add_ps(fiz2,tz);
1367
1368             fjx0             = _mm256_add_ps(fjx0,tx);
1369             fjy0             = _mm256_add_ps(fjy0,ty);
1370             fjz0             = _mm256_add_ps(fjz0,tz);
1371
1372             }
1373
1374             /**************************
1375              * CALCULATE INTERACTIONS *
1376              **************************/
1377
1378             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1379             {
1380
1381             /* Compute parameters for interactions between i and j atoms */
1382             qq30             = _mm256_mul_ps(iq3,jq0);
1383
1384             /* REACTION-FIELD ELECTROSTATICS */
1385             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1386
1387             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1388
1389             fscal            = felec;
1390
1391             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1392
1393             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1394
1395             /* Calculate temporary vectorial force */
1396             tx               = _mm256_mul_ps(fscal,dx30);
1397             ty               = _mm256_mul_ps(fscal,dy30);
1398             tz               = _mm256_mul_ps(fscal,dz30);
1399
1400             /* Update vectorial force */
1401             fix3             = _mm256_add_ps(fix3,tx);
1402             fiy3             = _mm256_add_ps(fiy3,ty);
1403             fiz3             = _mm256_add_ps(fiz3,tz);
1404
1405             fjx0             = _mm256_add_ps(fjx0,tx);
1406             fjy0             = _mm256_add_ps(fjy0,ty);
1407             fjz0             = _mm256_add_ps(fjz0,tz);
1408
1409             }
1410
1411             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1412             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1413             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1414             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1415             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1416             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1417             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1418             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1419
1420             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1421
1422             /* Inner loop uses 123 flops */
1423         }
1424
1425         /* End of innermost loop */
1426
1427         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1428                                                  f+i_coord_offset,fshift+i_shift_offset);
1429
1430         /* Increment number of inner iterations */
1431         inneriter                  += j_index_end - j_index_start;
1432
1433         /* Outer loop uses 24 flops */
1434     }
1435
1436     /* Increment number of outer iterations */
1437     outeriter        += nri;
1438
1439     /* Update outer/inner flops */
1440
1441     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*123);
1442 }