Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_avx_256_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     real *           vdwioffsetptr1;
75     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     real *           vdwioffsetptr2;
77     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     real *           vdwioffsetptr3;
79     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
81     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
83     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
84     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
85     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
86     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
93     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
94     __m256           dummy_mask,cutoff_mask;
95     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
96     __m256           one     = _mm256_set1_ps(1.0);
97     __m256           two     = _mm256_set1_ps(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = _mm256_set1_ps(fr->epsfac);
110     charge           = mdatoms->chargeA;
111     krf              = _mm256_set1_ps(fr->ic->k_rf);
112     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
113     crf              = _mm256_set1_ps(fr->ic->c_rf);
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117
118     /* Setup water-specific parameters */
119     inr              = nlist->iinr[0];
120     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
121     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
122     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
123     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
124
125     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
126     rcutoff_scalar   = fr->rcoulomb;
127     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
128     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
129
130     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
131     rvdw             = _mm256_set1_ps(fr->rvdw);
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139     j_coord_offsetE = 0;
140     j_coord_offsetF = 0;
141     j_coord_offsetG = 0;
142     j_coord_offsetH = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
169
170         fix0             = _mm256_setzero_ps();
171         fiy0             = _mm256_setzero_ps();
172         fiz0             = _mm256_setzero_ps();
173         fix1             = _mm256_setzero_ps();
174         fiy1             = _mm256_setzero_ps();
175         fiz1             = _mm256_setzero_ps();
176         fix2             = _mm256_setzero_ps();
177         fiy2             = _mm256_setzero_ps();
178         fiz2             = _mm256_setzero_ps();
179         fix3             = _mm256_setzero_ps();
180         fiy3             = _mm256_setzero_ps();
181         fiz3             = _mm256_setzero_ps();
182
183         /* Reset potential sums */
184         velecsum         = _mm256_setzero_ps();
185         vvdwsum          = _mm256_setzero_ps();
186
187         /* Start inner kernel loop */
188         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
189         {
190
191             /* Get j neighbor index, and coordinate index */
192             jnrA             = jjnr[jidx];
193             jnrB             = jjnr[jidx+1];
194             jnrC             = jjnr[jidx+2];
195             jnrD             = jjnr[jidx+3];
196             jnrE             = jjnr[jidx+4];
197             jnrF             = jjnr[jidx+5];
198             jnrG             = jjnr[jidx+6];
199             jnrH             = jjnr[jidx+7];
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202             j_coord_offsetC  = DIM*jnrC;
203             j_coord_offsetD  = DIM*jnrD;
204             j_coord_offsetE  = DIM*jnrE;
205             j_coord_offsetF  = DIM*jnrF;
206             j_coord_offsetG  = DIM*jnrG;
207             j_coord_offsetH  = DIM*jnrH;
208
209             /* load j atom coordinates */
210             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
211                                                  x+j_coord_offsetC,x+j_coord_offsetD,
212                                                  x+j_coord_offsetE,x+j_coord_offsetF,
213                                                  x+j_coord_offsetG,x+j_coord_offsetH,
214                                                  &jx0,&jy0,&jz0);
215
216             /* Calculate displacement vector */
217             dx00             = _mm256_sub_ps(ix0,jx0);
218             dy00             = _mm256_sub_ps(iy0,jy0);
219             dz00             = _mm256_sub_ps(iz0,jz0);
220             dx10             = _mm256_sub_ps(ix1,jx0);
221             dy10             = _mm256_sub_ps(iy1,jy0);
222             dz10             = _mm256_sub_ps(iz1,jz0);
223             dx20             = _mm256_sub_ps(ix2,jx0);
224             dy20             = _mm256_sub_ps(iy2,jy0);
225             dz20             = _mm256_sub_ps(iz2,jz0);
226             dx30             = _mm256_sub_ps(ix3,jx0);
227             dy30             = _mm256_sub_ps(iy3,jy0);
228             dz30             = _mm256_sub_ps(iz3,jz0);
229
230             /* Calculate squared distance and things based on it */
231             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
232             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
233             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
234             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
235
236             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
237             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
238             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
239
240             rinvsq00         = gmx_mm256_inv_ps(rsq00);
241             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
242             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
243             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
244
245             /* Load parameters for j particles */
246             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
247                                                                  charge+jnrC+0,charge+jnrD+0,
248                                                                  charge+jnrE+0,charge+jnrF+0,
249                                                                  charge+jnrG+0,charge+jnrH+0);
250             vdwjidx0A        = 2*vdwtype[jnrA+0];
251             vdwjidx0B        = 2*vdwtype[jnrB+0];
252             vdwjidx0C        = 2*vdwtype[jnrC+0];
253             vdwjidx0D        = 2*vdwtype[jnrD+0];
254             vdwjidx0E        = 2*vdwtype[jnrE+0];
255             vdwjidx0F        = 2*vdwtype[jnrF+0];
256             vdwjidx0G        = 2*vdwtype[jnrG+0];
257             vdwjidx0H        = 2*vdwtype[jnrH+0];
258
259             fjx0             = _mm256_setzero_ps();
260             fjy0             = _mm256_setzero_ps();
261             fjz0             = _mm256_setzero_ps();
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             if (gmx_mm256_any_lt(rsq00,rcutoff2))
268             {
269
270             /* Compute parameters for interactions between i and j atoms */
271             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
272                                             vdwioffsetptr0+vdwjidx0B,
273                                             vdwioffsetptr0+vdwjidx0C,
274                                             vdwioffsetptr0+vdwjidx0D,
275                                             vdwioffsetptr0+vdwjidx0E,
276                                             vdwioffsetptr0+vdwjidx0F,
277                                             vdwioffsetptr0+vdwjidx0G,
278                                             vdwioffsetptr0+vdwjidx0H,
279                                             &c6_00,&c12_00);
280
281             /* LENNARD-JONES DISPERSION/REPULSION */
282
283             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
284             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
285             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
286             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
287                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
288             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
289
290             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
291
292             /* Update potential sum for this i atom from the interaction with this j atom. */
293             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
294             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
295
296             fscal            = fvdw;
297
298             fscal            = _mm256_and_ps(fscal,cutoff_mask);
299
300             /* Calculate temporary vectorial force */
301             tx               = _mm256_mul_ps(fscal,dx00);
302             ty               = _mm256_mul_ps(fscal,dy00);
303             tz               = _mm256_mul_ps(fscal,dz00);
304
305             /* Update vectorial force */
306             fix0             = _mm256_add_ps(fix0,tx);
307             fiy0             = _mm256_add_ps(fiy0,ty);
308             fiz0             = _mm256_add_ps(fiz0,tz);
309
310             fjx0             = _mm256_add_ps(fjx0,tx);
311             fjy0             = _mm256_add_ps(fjy0,ty);
312             fjz0             = _mm256_add_ps(fjz0,tz);
313
314             }
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             if (gmx_mm256_any_lt(rsq10,rcutoff2))
321             {
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq10             = _mm256_mul_ps(iq1,jq0);
325
326             /* REACTION-FIELD ELECTROSTATICS */
327             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
328             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
329
330             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
331
332             /* Update potential sum for this i atom from the interaction with this j atom. */
333             velec            = _mm256_and_ps(velec,cutoff_mask);
334             velecsum         = _mm256_add_ps(velecsum,velec);
335
336             fscal            = felec;
337
338             fscal            = _mm256_and_ps(fscal,cutoff_mask);
339
340             /* Calculate temporary vectorial force */
341             tx               = _mm256_mul_ps(fscal,dx10);
342             ty               = _mm256_mul_ps(fscal,dy10);
343             tz               = _mm256_mul_ps(fscal,dz10);
344
345             /* Update vectorial force */
346             fix1             = _mm256_add_ps(fix1,tx);
347             fiy1             = _mm256_add_ps(fiy1,ty);
348             fiz1             = _mm256_add_ps(fiz1,tz);
349
350             fjx0             = _mm256_add_ps(fjx0,tx);
351             fjy0             = _mm256_add_ps(fjy0,ty);
352             fjz0             = _mm256_add_ps(fjz0,tz);
353
354             }
355
356             /**************************
357              * CALCULATE INTERACTIONS *
358              **************************/
359
360             if (gmx_mm256_any_lt(rsq20,rcutoff2))
361             {
362
363             /* Compute parameters for interactions between i and j atoms */
364             qq20             = _mm256_mul_ps(iq2,jq0);
365
366             /* REACTION-FIELD ELECTROSTATICS */
367             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
368             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
369
370             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velec            = _mm256_and_ps(velec,cutoff_mask);
374             velecsum         = _mm256_add_ps(velecsum,velec);
375
376             fscal            = felec;
377
378             fscal            = _mm256_and_ps(fscal,cutoff_mask);
379
380             /* Calculate temporary vectorial force */
381             tx               = _mm256_mul_ps(fscal,dx20);
382             ty               = _mm256_mul_ps(fscal,dy20);
383             tz               = _mm256_mul_ps(fscal,dz20);
384
385             /* Update vectorial force */
386             fix2             = _mm256_add_ps(fix2,tx);
387             fiy2             = _mm256_add_ps(fiy2,ty);
388             fiz2             = _mm256_add_ps(fiz2,tz);
389
390             fjx0             = _mm256_add_ps(fjx0,tx);
391             fjy0             = _mm256_add_ps(fjy0,ty);
392             fjz0             = _mm256_add_ps(fjz0,tz);
393
394             }
395
396             /**************************
397              * CALCULATE INTERACTIONS *
398              **************************/
399
400             if (gmx_mm256_any_lt(rsq30,rcutoff2))
401             {
402
403             /* Compute parameters for interactions between i and j atoms */
404             qq30             = _mm256_mul_ps(iq3,jq0);
405
406             /* REACTION-FIELD ELECTROSTATICS */
407             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
408             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
409
410             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
411
412             /* Update potential sum for this i atom from the interaction with this j atom. */
413             velec            = _mm256_and_ps(velec,cutoff_mask);
414             velecsum         = _mm256_add_ps(velecsum,velec);
415
416             fscal            = felec;
417
418             fscal            = _mm256_and_ps(fscal,cutoff_mask);
419
420             /* Calculate temporary vectorial force */
421             tx               = _mm256_mul_ps(fscal,dx30);
422             ty               = _mm256_mul_ps(fscal,dy30);
423             tz               = _mm256_mul_ps(fscal,dz30);
424
425             /* Update vectorial force */
426             fix3             = _mm256_add_ps(fix3,tx);
427             fiy3             = _mm256_add_ps(fiy3,ty);
428             fiz3             = _mm256_add_ps(fiz3,tz);
429
430             fjx0             = _mm256_add_ps(fjx0,tx);
431             fjy0             = _mm256_add_ps(fjy0,ty);
432             fjz0             = _mm256_add_ps(fjz0,tz);
433
434             }
435
436             fjptrA             = f+j_coord_offsetA;
437             fjptrB             = f+j_coord_offsetB;
438             fjptrC             = f+j_coord_offsetC;
439             fjptrD             = f+j_coord_offsetD;
440             fjptrE             = f+j_coord_offsetE;
441             fjptrF             = f+j_coord_offsetF;
442             fjptrG             = f+j_coord_offsetG;
443             fjptrH             = f+j_coord_offsetH;
444
445             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
446
447             /* Inner loop uses 152 flops */
448         }
449
450         if(jidx<j_index_end)
451         {
452
453             /* Get j neighbor index, and coordinate index */
454             jnrlistA         = jjnr[jidx];
455             jnrlistB         = jjnr[jidx+1];
456             jnrlistC         = jjnr[jidx+2];
457             jnrlistD         = jjnr[jidx+3];
458             jnrlistE         = jjnr[jidx+4];
459             jnrlistF         = jjnr[jidx+5];
460             jnrlistG         = jjnr[jidx+6];
461             jnrlistH         = jjnr[jidx+7];
462             /* Sign of each element will be negative for non-real atoms.
463              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
464              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
465              */
466             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
467                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
468                                             
469             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
470             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
471             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
472             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
473             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
474             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
475             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
476             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
477             j_coord_offsetA  = DIM*jnrA;
478             j_coord_offsetB  = DIM*jnrB;
479             j_coord_offsetC  = DIM*jnrC;
480             j_coord_offsetD  = DIM*jnrD;
481             j_coord_offsetE  = DIM*jnrE;
482             j_coord_offsetF  = DIM*jnrF;
483             j_coord_offsetG  = DIM*jnrG;
484             j_coord_offsetH  = DIM*jnrH;
485
486             /* load j atom coordinates */
487             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
488                                                  x+j_coord_offsetC,x+j_coord_offsetD,
489                                                  x+j_coord_offsetE,x+j_coord_offsetF,
490                                                  x+j_coord_offsetG,x+j_coord_offsetH,
491                                                  &jx0,&jy0,&jz0);
492
493             /* Calculate displacement vector */
494             dx00             = _mm256_sub_ps(ix0,jx0);
495             dy00             = _mm256_sub_ps(iy0,jy0);
496             dz00             = _mm256_sub_ps(iz0,jz0);
497             dx10             = _mm256_sub_ps(ix1,jx0);
498             dy10             = _mm256_sub_ps(iy1,jy0);
499             dz10             = _mm256_sub_ps(iz1,jz0);
500             dx20             = _mm256_sub_ps(ix2,jx0);
501             dy20             = _mm256_sub_ps(iy2,jy0);
502             dz20             = _mm256_sub_ps(iz2,jz0);
503             dx30             = _mm256_sub_ps(ix3,jx0);
504             dy30             = _mm256_sub_ps(iy3,jy0);
505             dz30             = _mm256_sub_ps(iz3,jz0);
506
507             /* Calculate squared distance and things based on it */
508             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
509             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
510             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
511             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
512
513             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
514             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
515             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
516
517             rinvsq00         = gmx_mm256_inv_ps(rsq00);
518             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
519             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
520             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
521
522             /* Load parameters for j particles */
523             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
524                                                                  charge+jnrC+0,charge+jnrD+0,
525                                                                  charge+jnrE+0,charge+jnrF+0,
526                                                                  charge+jnrG+0,charge+jnrH+0);
527             vdwjidx0A        = 2*vdwtype[jnrA+0];
528             vdwjidx0B        = 2*vdwtype[jnrB+0];
529             vdwjidx0C        = 2*vdwtype[jnrC+0];
530             vdwjidx0D        = 2*vdwtype[jnrD+0];
531             vdwjidx0E        = 2*vdwtype[jnrE+0];
532             vdwjidx0F        = 2*vdwtype[jnrF+0];
533             vdwjidx0G        = 2*vdwtype[jnrG+0];
534             vdwjidx0H        = 2*vdwtype[jnrH+0];
535
536             fjx0             = _mm256_setzero_ps();
537             fjy0             = _mm256_setzero_ps();
538             fjz0             = _mm256_setzero_ps();
539
540             /**************************
541              * CALCULATE INTERACTIONS *
542              **************************/
543
544             if (gmx_mm256_any_lt(rsq00,rcutoff2))
545             {
546
547             /* Compute parameters for interactions between i and j atoms */
548             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
549                                             vdwioffsetptr0+vdwjidx0B,
550                                             vdwioffsetptr0+vdwjidx0C,
551                                             vdwioffsetptr0+vdwjidx0D,
552                                             vdwioffsetptr0+vdwjidx0E,
553                                             vdwioffsetptr0+vdwjidx0F,
554                                             vdwioffsetptr0+vdwjidx0G,
555                                             vdwioffsetptr0+vdwjidx0H,
556                                             &c6_00,&c12_00);
557
558             /* LENNARD-JONES DISPERSION/REPULSION */
559
560             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
561             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
562             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
563             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
564                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
565             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
566
567             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
568
569             /* Update potential sum for this i atom from the interaction with this j atom. */
570             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
571             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
572             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
573
574             fscal            = fvdw;
575
576             fscal            = _mm256_and_ps(fscal,cutoff_mask);
577
578             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
579
580             /* Calculate temporary vectorial force */
581             tx               = _mm256_mul_ps(fscal,dx00);
582             ty               = _mm256_mul_ps(fscal,dy00);
583             tz               = _mm256_mul_ps(fscal,dz00);
584
585             /* Update vectorial force */
586             fix0             = _mm256_add_ps(fix0,tx);
587             fiy0             = _mm256_add_ps(fiy0,ty);
588             fiz0             = _mm256_add_ps(fiz0,tz);
589
590             fjx0             = _mm256_add_ps(fjx0,tx);
591             fjy0             = _mm256_add_ps(fjy0,ty);
592             fjz0             = _mm256_add_ps(fjz0,tz);
593
594             }
595
596             /**************************
597              * CALCULATE INTERACTIONS *
598              **************************/
599
600             if (gmx_mm256_any_lt(rsq10,rcutoff2))
601             {
602
603             /* Compute parameters for interactions between i and j atoms */
604             qq10             = _mm256_mul_ps(iq1,jq0);
605
606             /* REACTION-FIELD ELECTROSTATICS */
607             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
608             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
609
610             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
611
612             /* Update potential sum for this i atom from the interaction with this j atom. */
613             velec            = _mm256_and_ps(velec,cutoff_mask);
614             velec            = _mm256_andnot_ps(dummy_mask,velec);
615             velecsum         = _mm256_add_ps(velecsum,velec);
616
617             fscal            = felec;
618
619             fscal            = _mm256_and_ps(fscal,cutoff_mask);
620
621             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
622
623             /* Calculate temporary vectorial force */
624             tx               = _mm256_mul_ps(fscal,dx10);
625             ty               = _mm256_mul_ps(fscal,dy10);
626             tz               = _mm256_mul_ps(fscal,dz10);
627
628             /* Update vectorial force */
629             fix1             = _mm256_add_ps(fix1,tx);
630             fiy1             = _mm256_add_ps(fiy1,ty);
631             fiz1             = _mm256_add_ps(fiz1,tz);
632
633             fjx0             = _mm256_add_ps(fjx0,tx);
634             fjy0             = _mm256_add_ps(fjy0,ty);
635             fjz0             = _mm256_add_ps(fjz0,tz);
636
637             }
638
639             /**************************
640              * CALCULATE INTERACTIONS *
641              **************************/
642
643             if (gmx_mm256_any_lt(rsq20,rcutoff2))
644             {
645
646             /* Compute parameters for interactions between i and j atoms */
647             qq20             = _mm256_mul_ps(iq2,jq0);
648
649             /* REACTION-FIELD ELECTROSTATICS */
650             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
651             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
652
653             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
654
655             /* Update potential sum for this i atom from the interaction with this j atom. */
656             velec            = _mm256_and_ps(velec,cutoff_mask);
657             velec            = _mm256_andnot_ps(dummy_mask,velec);
658             velecsum         = _mm256_add_ps(velecsum,velec);
659
660             fscal            = felec;
661
662             fscal            = _mm256_and_ps(fscal,cutoff_mask);
663
664             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
665
666             /* Calculate temporary vectorial force */
667             tx               = _mm256_mul_ps(fscal,dx20);
668             ty               = _mm256_mul_ps(fscal,dy20);
669             tz               = _mm256_mul_ps(fscal,dz20);
670
671             /* Update vectorial force */
672             fix2             = _mm256_add_ps(fix2,tx);
673             fiy2             = _mm256_add_ps(fiy2,ty);
674             fiz2             = _mm256_add_ps(fiz2,tz);
675
676             fjx0             = _mm256_add_ps(fjx0,tx);
677             fjy0             = _mm256_add_ps(fjy0,ty);
678             fjz0             = _mm256_add_ps(fjz0,tz);
679
680             }
681
682             /**************************
683              * CALCULATE INTERACTIONS *
684              **************************/
685
686             if (gmx_mm256_any_lt(rsq30,rcutoff2))
687             {
688
689             /* Compute parameters for interactions between i and j atoms */
690             qq30             = _mm256_mul_ps(iq3,jq0);
691
692             /* REACTION-FIELD ELECTROSTATICS */
693             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
694             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
695
696             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
697
698             /* Update potential sum for this i atom from the interaction with this j atom. */
699             velec            = _mm256_and_ps(velec,cutoff_mask);
700             velec            = _mm256_andnot_ps(dummy_mask,velec);
701             velecsum         = _mm256_add_ps(velecsum,velec);
702
703             fscal            = felec;
704
705             fscal            = _mm256_and_ps(fscal,cutoff_mask);
706
707             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
708
709             /* Calculate temporary vectorial force */
710             tx               = _mm256_mul_ps(fscal,dx30);
711             ty               = _mm256_mul_ps(fscal,dy30);
712             tz               = _mm256_mul_ps(fscal,dz30);
713
714             /* Update vectorial force */
715             fix3             = _mm256_add_ps(fix3,tx);
716             fiy3             = _mm256_add_ps(fiy3,ty);
717             fiz3             = _mm256_add_ps(fiz3,tz);
718
719             fjx0             = _mm256_add_ps(fjx0,tx);
720             fjy0             = _mm256_add_ps(fjy0,ty);
721             fjz0             = _mm256_add_ps(fjz0,tz);
722
723             }
724
725             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
726             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
727             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
728             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
729             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
730             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
731             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
732             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
733
734             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
735
736             /* Inner loop uses 152 flops */
737         }
738
739         /* End of innermost loop */
740
741         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
742                                                  f+i_coord_offset,fshift+i_shift_offset);
743
744         ggid                        = gid[iidx];
745         /* Update potential energies */
746         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
747         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
748
749         /* Increment number of inner iterations */
750         inneriter                  += j_index_end - j_index_start;
751
752         /* Outer loop uses 26 flops */
753     }
754
755     /* Increment number of outer iterations */
756     outeriter        += nri;
757
758     /* Update outer/inner flops */
759
760     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*152);
761 }
762 /*
763  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_avx_256_single
764  * Electrostatics interaction: ReactionField
765  * VdW interaction:            LennardJones
766  * Geometry:                   Water4-Particle
767  * Calculate force/pot:        Force
768  */
769 void
770 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_avx_256_single
771                     (t_nblist * gmx_restrict                nlist,
772                      rvec * gmx_restrict                    xx,
773                      rvec * gmx_restrict                    ff,
774                      t_forcerec * gmx_restrict              fr,
775                      t_mdatoms * gmx_restrict               mdatoms,
776                      nb_kernel_data_t * gmx_restrict        kernel_data,
777                      t_nrnb * gmx_restrict                  nrnb)
778 {
779     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
780      * just 0 for non-waters.
781      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
782      * jnr indices corresponding to data put in the four positions in the SIMD register.
783      */
784     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
785     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
786     int              jnrA,jnrB,jnrC,jnrD;
787     int              jnrE,jnrF,jnrG,jnrH;
788     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
789     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
790     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
791     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
792     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
793     real             rcutoff_scalar;
794     real             *shiftvec,*fshift,*x,*f;
795     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
796     real             scratch[4*DIM];
797     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
798     real *           vdwioffsetptr0;
799     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
800     real *           vdwioffsetptr1;
801     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
802     real *           vdwioffsetptr2;
803     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
804     real *           vdwioffsetptr3;
805     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
806     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
807     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
808     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
809     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
810     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
811     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
812     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
813     real             *charge;
814     int              nvdwtype;
815     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
816     int              *vdwtype;
817     real             *vdwparam;
818     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
819     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
820     __m256           dummy_mask,cutoff_mask;
821     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
822     __m256           one     = _mm256_set1_ps(1.0);
823     __m256           two     = _mm256_set1_ps(2.0);
824     x                = xx[0];
825     f                = ff[0];
826
827     nri              = nlist->nri;
828     iinr             = nlist->iinr;
829     jindex           = nlist->jindex;
830     jjnr             = nlist->jjnr;
831     shiftidx         = nlist->shift;
832     gid              = nlist->gid;
833     shiftvec         = fr->shift_vec[0];
834     fshift           = fr->fshift[0];
835     facel            = _mm256_set1_ps(fr->epsfac);
836     charge           = mdatoms->chargeA;
837     krf              = _mm256_set1_ps(fr->ic->k_rf);
838     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
839     crf              = _mm256_set1_ps(fr->ic->c_rf);
840     nvdwtype         = fr->ntype;
841     vdwparam         = fr->nbfp;
842     vdwtype          = mdatoms->typeA;
843
844     /* Setup water-specific parameters */
845     inr              = nlist->iinr[0];
846     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
847     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
848     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
849     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
850
851     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
852     rcutoff_scalar   = fr->rcoulomb;
853     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
854     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
855
856     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
857     rvdw             = _mm256_set1_ps(fr->rvdw);
858
859     /* Avoid stupid compiler warnings */
860     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
861     j_coord_offsetA = 0;
862     j_coord_offsetB = 0;
863     j_coord_offsetC = 0;
864     j_coord_offsetD = 0;
865     j_coord_offsetE = 0;
866     j_coord_offsetF = 0;
867     j_coord_offsetG = 0;
868     j_coord_offsetH = 0;
869
870     outeriter        = 0;
871     inneriter        = 0;
872
873     for(iidx=0;iidx<4*DIM;iidx++)
874     {
875         scratch[iidx] = 0.0;
876     }
877
878     /* Start outer loop over neighborlists */
879     for(iidx=0; iidx<nri; iidx++)
880     {
881         /* Load shift vector for this list */
882         i_shift_offset   = DIM*shiftidx[iidx];
883
884         /* Load limits for loop over neighbors */
885         j_index_start    = jindex[iidx];
886         j_index_end      = jindex[iidx+1];
887
888         /* Get outer coordinate index */
889         inr              = iinr[iidx];
890         i_coord_offset   = DIM*inr;
891
892         /* Load i particle coords and add shift vector */
893         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
894                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
895
896         fix0             = _mm256_setzero_ps();
897         fiy0             = _mm256_setzero_ps();
898         fiz0             = _mm256_setzero_ps();
899         fix1             = _mm256_setzero_ps();
900         fiy1             = _mm256_setzero_ps();
901         fiz1             = _mm256_setzero_ps();
902         fix2             = _mm256_setzero_ps();
903         fiy2             = _mm256_setzero_ps();
904         fiz2             = _mm256_setzero_ps();
905         fix3             = _mm256_setzero_ps();
906         fiy3             = _mm256_setzero_ps();
907         fiz3             = _mm256_setzero_ps();
908
909         /* Start inner kernel loop */
910         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
911         {
912
913             /* Get j neighbor index, and coordinate index */
914             jnrA             = jjnr[jidx];
915             jnrB             = jjnr[jidx+1];
916             jnrC             = jjnr[jidx+2];
917             jnrD             = jjnr[jidx+3];
918             jnrE             = jjnr[jidx+4];
919             jnrF             = jjnr[jidx+5];
920             jnrG             = jjnr[jidx+6];
921             jnrH             = jjnr[jidx+7];
922             j_coord_offsetA  = DIM*jnrA;
923             j_coord_offsetB  = DIM*jnrB;
924             j_coord_offsetC  = DIM*jnrC;
925             j_coord_offsetD  = DIM*jnrD;
926             j_coord_offsetE  = DIM*jnrE;
927             j_coord_offsetF  = DIM*jnrF;
928             j_coord_offsetG  = DIM*jnrG;
929             j_coord_offsetH  = DIM*jnrH;
930
931             /* load j atom coordinates */
932             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
933                                                  x+j_coord_offsetC,x+j_coord_offsetD,
934                                                  x+j_coord_offsetE,x+j_coord_offsetF,
935                                                  x+j_coord_offsetG,x+j_coord_offsetH,
936                                                  &jx0,&jy0,&jz0);
937
938             /* Calculate displacement vector */
939             dx00             = _mm256_sub_ps(ix0,jx0);
940             dy00             = _mm256_sub_ps(iy0,jy0);
941             dz00             = _mm256_sub_ps(iz0,jz0);
942             dx10             = _mm256_sub_ps(ix1,jx0);
943             dy10             = _mm256_sub_ps(iy1,jy0);
944             dz10             = _mm256_sub_ps(iz1,jz0);
945             dx20             = _mm256_sub_ps(ix2,jx0);
946             dy20             = _mm256_sub_ps(iy2,jy0);
947             dz20             = _mm256_sub_ps(iz2,jz0);
948             dx30             = _mm256_sub_ps(ix3,jx0);
949             dy30             = _mm256_sub_ps(iy3,jy0);
950             dz30             = _mm256_sub_ps(iz3,jz0);
951
952             /* Calculate squared distance and things based on it */
953             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
954             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
955             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
956             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
957
958             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
959             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
960             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
961
962             rinvsq00         = gmx_mm256_inv_ps(rsq00);
963             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
964             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
965             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
966
967             /* Load parameters for j particles */
968             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
969                                                                  charge+jnrC+0,charge+jnrD+0,
970                                                                  charge+jnrE+0,charge+jnrF+0,
971                                                                  charge+jnrG+0,charge+jnrH+0);
972             vdwjidx0A        = 2*vdwtype[jnrA+0];
973             vdwjidx0B        = 2*vdwtype[jnrB+0];
974             vdwjidx0C        = 2*vdwtype[jnrC+0];
975             vdwjidx0D        = 2*vdwtype[jnrD+0];
976             vdwjidx0E        = 2*vdwtype[jnrE+0];
977             vdwjidx0F        = 2*vdwtype[jnrF+0];
978             vdwjidx0G        = 2*vdwtype[jnrG+0];
979             vdwjidx0H        = 2*vdwtype[jnrH+0];
980
981             fjx0             = _mm256_setzero_ps();
982             fjy0             = _mm256_setzero_ps();
983             fjz0             = _mm256_setzero_ps();
984
985             /**************************
986              * CALCULATE INTERACTIONS *
987              **************************/
988
989             if (gmx_mm256_any_lt(rsq00,rcutoff2))
990             {
991
992             /* Compute parameters for interactions between i and j atoms */
993             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
994                                             vdwioffsetptr0+vdwjidx0B,
995                                             vdwioffsetptr0+vdwjidx0C,
996                                             vdwioffsetptr0+vdwjidx0D,
997                                             vdwioffsetptr0+vdwjidx0E,
998                                             vdwioffsetptr0+vdwjidx0F,
999                                             vdwioffsetptr0+vdwjidx0G,
1000                                             vdwioffsetptr0+vdwjidx0H,
1001                                             &c6_00,&c12_00);
1002
1003             /* LENNARD-JONES DISPERSION/REPULSION */
1004
1005             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1006             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1007
1008             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1009
1010             fscal            = fvdw;
1011
1012             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1013
1014             /* Calculate temporary vectorial force */
1015             tx               = _mm256_mul_ps(fscal,dx00);
1016             ty               = _mm256_mul_ps(fscal,dy00);
1017             tz               = _mm256_mul_ps(fscal,dz00);
1018
1019             /* Update vectorial force */
1020             fix0             = _mm256_add_ps(fix0,tx);
1021             fiy0             = _mm256_add_ps(fiy0,ty);
1022             fiz0             = _mm256_add_ps(fiz0,tz);
1023
1024             fjx0             = _mm256_add_ps(fjx0,tx);
1025             fjy0             = _mm256_add_ps(fjy0,ty);
1026             fjz0             = _mm256_add_ps(fjz0,tz);
1027
1028             }
1029
1030             /**************************
1031              * CALCULATE INTERACTIONS *
1032              **************************/
1033
1034             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1035             {
1036
1037             /* Compute parameters for interactions between i and j atoms */
1038             qq10             = _mm256_mul_ps(iq1,jq0);
1039
1040             /* REACTION-FIELD ELECTROSTATICS */
1041             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1042
1043             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1044
1045             fscal            = felec;
1046
1047             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1048
1049             /* Calculate temporary vectorial force */
1050             tx               = _mm256_mul_ps(fscal,dx10);
1051             ty               = _mm256_mul_ps(fscal,dy10);
1052             tz               = _mm256_mul_ps(fscal,dz10);
1053
1054             /* Update vectorial force */
1055             fix1             = _mm256_add_ps(fix1,tx);
1056             fiy1             = _mm256_add_ps(fiy1,ty);
1057             fiz1             = _mm256_add_ps(fiz1,tz);
1058
1059             fjx0             = _mm256_add_ps(fjx0,tx);
1060             fjy0             = _mm256_add_ps(fjy0,ty);
1061             fjz0             = _mm256_add_ps(fjz0,tz);
1062
1063             }
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1070             {
1071
1072             /* Compute parameters for interactions between i and j atoms */
1073             qq20             = _mm256_mul_ps(iq2,jq0);
1074
1075             /* REACTION-FIELD ELECTROSTATICS */
1076             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1077
1078             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1079
1080             fscal            = felec;
1081
1082             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1083
1084             /* Calculate temporary vectorial force */
1085             tx               = _mm256_mul_ps(fscal,dx20);
1086             ty               = _mm256_mul_ps(fscal,dy20);
1087             tz               = _mm256_mul_ps(fscal,dz20);
1088
1089             /* Update vectorial force */
1090             fix2             = _mm256_add_ps(fix2,tx);
1091             fiy2             = _mm256_add_ps(fiy2,ty);
1092             fiz2             = _mm256_add_ps(fiz2,tz);
1093
1094             fjx0             = _mm256_add_ps(fjx0,tx);
1095             fjy0             = _mm256_add_ps(fjy0,ty);
1096             fjz0             = _mm256_add_ps(fjz0,tz);
1097
1098             }
1099
1100             /**************************
1101              * CALCULATE INTERACTIONS *
1102              **************************/
1103
1104             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1105             {
1106
1107             /* Compute parameters for interactions between i and j atoms */
1108             qq30             = _mm256_mul_ps(iq3,jq0);
1109
1110             /* REACTION-FIELD ELECTROSTATICS */
1111             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1112
1113             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1114
1115             fscal            = felec;
1116
1117             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1118
1119             /* Calculate temporary vectorial force */
1120             tx               = _mm256_mul_ps(fscal,dx30);
1121             ty               = _mm256_mul_ps(fscal,dy30);
1122             tz               = _mm256_mul_ps(fscal,dz30);
1123
1124             /* Update vectorial force */
1125             fix3             = _mm256_add_ps(fix3,tx);
1126             fiy3             = _mm256_add_ps(fiy3,ty);
1127             fiz3             = _mm256_add_ps(fiz3,tz);
1128
1129             fjx0             = _mm256_add_ps(fjx0,tx);
1130             fjy0             = _mm256_add_ps(fjy0,ty);
1131             fjz0             = _mm256_add_ps(fjz0,tz);
1132
1133             }
1134
1135             fjptrA             = f+j_coord_offsetA;
1136             fjptrB             = f+j_coord_offsetB;
1137             fjptrC             = f+j_coord_offsetC;
1138             fjptrD             = f+j_coord_offsetD;
1139             fjptrE             = f+j_coord_offsetE;
1140             fjptrF             = f+j_coord_offsetF;
1141             fjptrG             = f+j_coord_offsetG;
1142             fjptrH             = f+j_coord_offsetH;
1143
1144             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1145
1146             /* Inner loop uses 123 flops */
1147         }
1148
1149         if(jidx<j_index_end)
1150         {
1151
1152             /* Get j neighbor index, and coordinate index */
1153             jnrlistA         = jjnr[jidx];
1154             jnrlistB         = jjnr[jidx+1];
1155             jnrlistC         = jjnr[jidx+2];
1156             jnrlistD         = jjnr[jidx+3];
1157             jnrlistE         = jjnr[jidx+4];
1158             jnrlistF         = jjnr[jidx+5];
1159             jnrlistG         = jjnr[jidx+6];
1160             jnrlistH         = jjnr[jidx+7];
1161             /* Sign of each element will be negative for non-real atoms.
1162              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1163              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1164              */
1165             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1166                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1167                                             
1168             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1169             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1170             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1171             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1172             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1173             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1174             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1175             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1176             j_coord_offsetA  = DIM*jnrA;
1177             j_coord_offsetB  = DIM*jnrB;
1178             j_coord_offsetC  = DIM*jnrC;
1179             j_coord_offsetD  = DIM*jnrD;
1180             j_coord_offsetE  = DIM*jnrE;
1181             j_coord_offsetF  = DIM*jnrF;
1182             j_coord_offsetG  = DIM*jnrG;
1183             j_coord_offsetH  = DIM*jnrH;
1184
1185             /* load j atom coordinates */
1186             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1187                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1188                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1189                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1190                                                  &jx0,&jy0,&jz0);
1191
1192             /* Calculate displacement vector */
1193             dx00             = _mm256_sub_ps(ix0,jx0);
1194             dy00             = _mm256_sub_ps(iy0,jy0);
1195             dz00             = _mm256_sub_ps(iz0,jz0);
1196             dx10             = _mm256_sub_ps(ix1,jx0);
1197             dy10             = _mm256_sub_ps(iy1,jy0);
1198             dz10             = _mm256_sub_ps(iz1,jz0);
1199             dx20             = _mm256_sub_ps(ix2,jx0);
1200             dy20             = _mm256_sub_ps(iy2,jy0);
1201             dz20             = _mm256_sub_ps(iz2,jz0);
1202             dx30             = _mm256_sub_ps(ix3,jx0);
1203             dy30             = _mm256_sub_ps(iy3,jy0);
1204             dz30             = _mm256_sub_ps(iz3,jz0);
1205
1206             /* Calculate squared distance and things based on it */
1207             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1208             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1209             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1210             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1211
1212             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1213             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1214             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1215
1216             rinvsq00         = gmx_mm256_inv_ps(rsq00);
1217             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1218             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1219             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1220
1221             /* Load parameters for j particles */
1222             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1223                                                                  charge+jnrC+0,charge+jnrD+0,
1224                                                                  charge+jnrE+0,charge+jnrF+0,
1225                                                                  charge+jnrG+0,charge+jnrH+0);
1226             vdwjidx0A        = 2*vdwtype[jnrA+0];
1227             vdwjidx0B        = 2*vdwtype[jnrB+0];
1228             vdwjidx0C        = 2*vdwtype[jnrC+0];
1229             vdwjidx0D        = 2*vdwtype[jnrD+0];
1230             vdwjidx0E        = 2*vdwtype[jnrE+0];
1231             vdwjidx0F        = 2*vdwtype[jnrF+0];
1232             vdwjidx0G        = 2*vdwtype[jnrG+0];
1233             vdwjidx0H        = 2*vdwtype[jnrH+0];
1234
1235             fjx0             = _mm256_setzero_ps();
1236             fjy0             = _mm256_setzero_ps();
1237             fjz0             = _mm256_setzero_ps();
1238
1239             /**************************
1240              * CALCULATE INTERACTIONS *
1241              **************************/
1242
1243             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1244             {
1245
1246             /* Compute parameters for interactions between i and j atoms */
1247             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1248                                             vdwioffsetptr0+vdwjidx0B,
1249                                             vdwioffsetptr0+vdwjidx0C,
1250                                             vdwioffsetptr0+vdwjidx0D,
1251                                             vdwioffsetptr0+vdwjidx0E,
1252                                             vdwioffsetptr0+vdwjidx0F,
1253                                             vdwioffsetptr0+vdwjidx0G,
1254                                             vdwioffsetptr0+vdwjidx0H,
1255                                             &c6_00,&c12_00);
1256
1257             /* LENNARD-JONES DISPERSION/REPULSION */
1258
1259             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1260             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1261
1262             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1263
1264             fscal            = fvdw;
1265
1266             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1267
1268             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1269
1270             /* Calculate temporary vectorial force */
1271             tx               = _mm256_mul_ps(fscal,dx00);
1272             ty               = _mm256_mul_ps(fscal,dy00);
1273             tz               = _mm256_mul_ps(fscal,dz00);
1274
1275             /* Update vectorial force */
1276             fix0             = _mm256_add_ps(fix0,tx);
1277             fiy0             = _mm256_add_ps(fiy0,ty);
1278             fiz0             = _mm256_add_ps(fiz0,tz);
1279
1280             fjx0             = _mm256_add_ps(fjx0,tx);
1281             fjy0             = _mm256_add_ps(fjy0,ty);
1282             fjz0             = _mm256_add_ps(fjz0,tz);
1283
1284             }
1285
1286             /**************************
1287              * CALCULATE INTERACTIONS *
1288              **************************/
1289
1290             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1291             {
1292
1293             /* Compute parameters for interactions between i and j atoms */
1294             qq10             = _mm256_mul_ps(iq1,jq0);
1295
1296             /* REACTION-FIELD ELECTROSTATICS */
1297             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1298
1299             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1300
1301             fscal            = felec;
1302
1303             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1304
1305             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1306
1307             /* Calculate temporary vectorial force */
1308             tx               = _mm256_mul_ps(fscal,dx10);
1309             ty               = _mm256_mul_ps(fscal,dy10);
1310             tz               = _mm256_mul_ps(fscal,dz10);
1311
1312             /* Update vectorial force */
1313             fix1             = _mm256_add_ps(fix1,tx);
1314             fiy1             = _mm256_add_ps(fiy1,ty);
1315             fiz1             = _mm256_add_ps(fiz1,tz);
1316
1317             fjx0             = _mm256_add_ps(fjx0,tx);
1318             fjy0             = _mm256_add_ps(fjy0,ty);
1319             fjz0             = _mm256_add_ps(fjz0,tz);
1320
1321             }
1322
1323             /**************************
1324              * CALCULATE INTERACTIONS *
1325              **************************/
1326
1327             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1328             {
1329
1330             /* Compute parameters for interactions between i and j atoms */
1331             qq20             = _mm256_mul_ps(iq2,jq0);
1332
1333             /* REACTION-FIELD ELECTROSTATICS */
1334             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1335
1336             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1337
1338             fscal            = felec;
1339
1340             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1341
1342             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1343
1344             /* Calculate temporary vectorial force */
1345             tx               = _mm256_mul_ps(fscal,dx20);
1346             ty               = _mm256_mul_ps(fscal,dy20);
1347             tz               = _mm256_mul_ps(fscal,dz20);
1348
1349             /* Update vectorial force */
1350             fix2             = _mm256_add_ps(fix2,tx);
1351             fiy2             = _mm256_add_ps(fiy2,ty);
1352             fiz2             = _mm256_add_ps(fiz2,tz);
1353
1354             fjx0             = _mm256_add_ps(fjx0,tx);
1355             fjy0             = _mm256_add_ps(fjy0,ty);
1356             fjz0             = _mm256_add_ps(fjz0,tz);
1357
1358             }
1359
1360             /**************************
1361              * CALCULATE INTERACTIONS *
1362              **************************/
1363
1364             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1365             {
1366
1367             /* Compute parameters for interactions between i and j atoms */
1368             qq30             = _mm256_mul_ps(iq3,jq0);
1369
1370             /* REACTION-FIELD ELECTROSTATICS */
1371             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1372
1373             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1374
1375             fscal            = felec;
1376
1377             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1378
1379             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1380
1381             /* Calculate temporary vectorial force */
1382             tx               = _mm256_mul_ps(fscal,dx30);
1383             ty               = _mm256_mul_ps(fscal,dy30);
1384             tz               = _mm256_mul_ps(fscal,dz30);
1385
1386             /* Update vectorial force */
1387             fix3             = _mm256_add_ps(fix3,tx);
1388             fiy3             = _mm256_add_ps(fiy3,ty);
1389             fiz3             = _mm256_add_ps(fiz3,tz);
1390
1391             fjx0             = _mm256_add_ps(fjx0,tx);
1392             fjy0             = _mm256_add_ps(fjy0,ty);
1393             fjz0             = _mm256_add_ps(fjz0,tz);
1394
1395             }
1396
1397             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1398             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1399             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1400             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1401             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1402             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1403             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1404             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1405
1406             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1407
1408             /* Inner loop uses 123 flops */
1409         }
1410
1411         /* End of innermost loop */
1412
1413         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1414                                                  f+i_coord_offset,fshift+i_shift_offset);
1415
1416         /* Increment number of inner iterations */
1417         inneriter                  += j_index_end - j_index_start;
1418
1419         /* Outer loop uses 24 flops */
1420     }
1421
1422     /* Increment number of outer iterations */
1423     outeriter        += nri;
1424
1425     /* Update outer/inner flops */
1426
1427     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*123);
1428 }