Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_256_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     real *           vdwioffsetptr2;
90     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
92     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
103     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
104     __m256           dummy_mask,cutoff_mask;
105     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
106     __m256           one     = _mm256_set1_ps(1.0);
107     __m256           two     = _mm256_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_ps(fr->ic->epsfac);
120     charge           = mdatoms->chargeA;
121     krf              = _mm256_set1_ps(fr->ic->k_rf);
122     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
123     crf              = _mm256_set1_ps(fr->ic->c_rf);
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
131     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
132     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
133     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
134
135     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
136     rcutoff_scalar   = fr->ic->rcoulomb;
137     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
138     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
139
140     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
141     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147     j_coord_offsetC = 0;
148     j_coord_offsetD = 0;
149     j_coord_offsetE = 0;
150     j_coord_offsetF = 0;
151     j_coord_offsetG = 0;
152     j_coord_offsetH = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     for(iidx=0;iidx<4*DIM;iidx++)
158     {
159         scratch[iidx] = 0.0;
160     }
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
179
180         fix0             = _mm256_setzero_ps();
181         fiy0             = _mm256_setzero_ps();
182         fiz0             = _mm256_setzero_ps();
183         fix1             = _mm256_setzero_ps();
184         fiy1             = _mm256_setzero_ps();
185         fiz1             = _mm256_setzero_ps();
186         fix2             = _mm256_setzero_ps();
187         fiy2             = _mm256_setzero_ps();
188         fiz2             = _mm256_setzero_ps();
189
190         /* Reset potential sums */
191         velecsum         = _mm256_setzero_ps();
192         vvdwsum          = _mm256_setzero_ps();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             jnrC             = jjnr[jidx+2];
202             jnrD             = jjnr[jidx+3];
203             jnrE             = jjnr[jidx+4];
204             jnrF             = jjnr[jidx+5];
205             jnrG             = jjnr[jidx+6];
206             jnrH             = jjnr[jidx+7];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209             j_coord_offsetC  = DIM*jnrC;
210             j_coord_offsetD  = DIM*jnrD;
211             j_coord_offsetE  = DIM*jnrE;
212             j_coord_offsetF  = DIM*jnrF;
213             j_coord_offsetG  = DIM*jnrG;
214             j_coord_offsetH  = DIM*jnrH;
215
216             /* load j atom coordinates */
217             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
218                                                  x+j_coord_offsetC,x+j_coord_offsetD,
219                                                  x+j_coord_offsetE,x+j_coord_offsetF,
220                                                  x+j_coord_offsetG,x+j_coord_offsetH,
221                                                  &jx0,&jy0,&jz0);
222
223             /* Calculate displacement vector */
224             dx00             = _mm256_sub_ps(ix0,jx0);
225             dy00             = _mm256_sub_ps(iy0,jy0);
226             dz00             = _mm256_sub_ps(iz0,jz0);
227             dx10             = _mm256_sub_ps(ix1,jx0);
228             dy10             = _mm256_sub_ps(iy1,jy0);
229             dz10             = _mm256_sub_ps(iz1,jz0);
230             dx20             = _mm256_sub_ps(ix2,jx0);
231             dy20             = _mm256_sub_ps(iy2,jy0);
232             dz20             = _mm256_sub_ps(iz2,jz0);
233
234             /* Calculate squared distance and things based on it */
235             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
236             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
237             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
238
239             rinv00           = avx256_invsqrt_f(rsq00);
240             rinv10           = avx256_invsqrt_f(rsq10);
241             rinv20           = avx256_invsqrt_f(rsq20);
242
243             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
244             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
245             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
246
247             /* Load parameters for j particles */
248             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
249                                                                  charge+jnrC+0,charge+jnrD+0,
250                                                                  charge+jnrE+0,charge+jnrF+0,
251                                                                  charge+jnrG+0,charge+jnrH+0);
252             vdwjidx0A        = 2*vdwtype[jnrA+0];
253             vdwjidx0B        = 2*vdwtype[jnrB+0];
254             vdwjidx0C        = 2*vdwtype[jnrC+0];
255             vdwjidx0D        = 2*vdwtype[jnrD+0];
256             vdwjidx0E        = 2*vdwtype[jnrE+0];
257             vdwjidx0F        = 2*vdwtype[jnrF+0];
258             vdwjidx0G        = 2*vdwtype[jnrG+0];
259             vdwjidx0H        = 2*vdwtype[jnrH+0];
260
261             fjx0             = _mm256_setzero_ps();
262             fjy0             = _mm256_setzero_ps();
263             fjz0             = _mm256_setzero_ps();
264
265             /**************************
266              * CALCULATE INTERACTIONS *
267              **************************/
268
269             if (gmx_mm256_any_lt(rsq00,rcutoff2))
270             {
271
272             /* Compute parameters for interactions between i and j atoms */
273             qq00             = _mm256_mul_ps(iq0,jq0);
274             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
275                                             vdwioffsetptr0+vdwjidx0B,
276                                             vdwioffsetptr0+vdwjidx0C,
277                                             vdwioffsetptr0+vdwjidx0D,
278                                             vdwioffsetptr0+vdwjidx0E,
279                                             vdwioffsetptr0+vdwjidx0F,
280                                             vdwioffsetptr0+vdwjidx0G,
281                                             vdwioffsetptr0+vdwjidx0H,
282                                             &c6_00,&c12_00);
283
284             /* REACTION-FIELD ELECTROSTATICS */
285             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
286             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
287
288             /* LENNARD-JONES DISPERSION/REPULSION */
289
290             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
291             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
292             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
293             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
294                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
295             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
296
297             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velec            = _mm256_and_ps(velec,cutoff_mask);
301             velecsum         = _mm256_add_ps(velecsum,velec);
302             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
303             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
304
305             fscal            = _mm256_add_ps(felec,fvdw);
306
307             fscal            = _mm256_and_ps(fscal,cutoff_mask);
308
309             /* Calculate temporary vectorial force */
310             tx               = _mm256_mul_ps(fscal,dx00);
311             ty               = _mm256_mul_ps(fscal,dy00);
312             tz               = _mm256_mul_ps(fscal,dz00);
313
314             /* Update vectorial force */
315             fix0             = _mm256_add_ps(fix0,tx);
316             fiy0             = _mm256_add_ps(fiy0,ty);
317             fiz0             = _mm256_add_ps(fiz0,tz);
318
319             fjx0             = _mm256_add_ps(fjx0,tx);
320             fjy0             = _mm256_add_ps(fjy0,ty);
321             fjz0             = _mm256_add_ps(fjz0,tz);
322
323             }
324
325             /**************************
326              * CALCULATE INTERACTIONS *
327              **************************/
328
329             if (gmx_mm256_any_lt(rsq10,rcutoff2))
330             {
331
332             /* Compute parameters for interactions between i and j atoms */
333             qq10             = _mm256_mul_ps(iq1,jq0);
334
335             /* REACTION-FIELD ELECTROSTATICS */
336             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
337             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
338
339             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velec            = _mm256_and_ps(velec,cutoff_mask);
343             velecsum         = _mm256_add_ps(velecsum,velec);
344
345             fscal            = felec;
346
347             fscal            = _mm256_and_ps(fscal,cutoff_mask);
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm256_mul_ps(fscal,dx10);
351             ty               = _mm256_mul_ps(fscal,dy10);
352             tz               = _mm256_mul_ps(fscal,dz10);
353
354             /* Update vectorial force */
355             fix1             = _mm256_add_ps(fix1,tx);
356             fiy1             = _mm256_add_ps(fiy1,ty);
357             fiz1             = _mm256_add_ps(fiz1,tz);
358
359             fjx0             = _mm256_add_ps(fjx0,tx);
360             fjy0             = _mm256_add_ps(fjy0,ty);
361             fjz0             = _mm256_add_ps(fjz0,tz);
362
363             }
364
365             /**************************
366              * CALCULATE INTERACTIONS *
367              **************************/
368
369             if (gmx_mm256_any_lt(rsq20,rcutoff2))
370             {
371
372             /* Compute parameters for interactions between i and j atoms */
373             qq20             = _mm256_mul_ps(iq2,jq0);
374
375             /* REACTION-FIELD ELECTROSTATICS */
376             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
377             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
378
379             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
380
381             /* Update potential sum for this i atom from the interaction with this j atom. */
382             velec            = _mm256_and_ps(velec,cutoff_mask);
383             velecsum         = _mm256_add_ps(velecsum,velec);
384
385             fscal            = felec;
386
387             fscal            = _mm256_and_ps(fscal,cutoff_mask);
388
389             /* Calculate temporary vectorial force */
390             tx               = _mm256_mul_ps(fscal,dx20);
391             ty               = _mm256_mul_ps(fscal,dy20);
392             tz               = _mm256_mul_ps(fscal,dz20);
393
394             /* Update vectorial force */
395             fix2             = _mm256_add_ps(fix2,tx);
396             fiy2             = _mm256_add_ps(fiy2,ty);
397             fiz2             = _mm256_add_ps(fiz2,tz);
398
399             fjx0             = _mm256_add_ps(fjx0,tx);
400             fjy0             = _mm256_add_ps(fjy0,ty);
401             fjz0             = _mm256_add_ps(fjz0,tz);
402
403             }
404
405             fjptrA             = f+j_coord_offsetA;
406             fjptrB             = f+j_coord_offsetB;
407             fjptrC             = f+j_coord_offsetC;
408             fjptrD             = f+j_coord_offsetD;
409             fjptrE             = f+j_coord_offsetE;
410             fjptrF             = f+j_coord_offsetF;
411             fjptrG             = f+j_coord_offsetG;
412             fjptrH             = f+j_coord_offsetH;
413
414             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
415
416             /* Inner loop uses 129 flops */
417         }
418
419         if(jidx<j_index_end)
420         {
421
422             /* Get j neighbor index, and coordinate index */
423             jnrlistA         = jjnr[jidx];
424             jnrlistB         = jjnr[jidx+1];
425             jnrlistC         = jjnr[jidx+2];
426             jnrlistD         = jjnr[jidx+3];
427             jnrlistE         = jjnr[jidx+4];
428             jnrlistF         = jjnr[jidx+5];
429             jnrlistG         = jjnr[jidx+6];
430             jnrlistH         = jjnr[jidx+7];
431             /* Sign of each element will be negative for non-real atoms.
432              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
433              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
434              */
435             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
436                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
437                                             
438             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
439             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
440             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
441             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
442             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
443             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
444             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
445             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
446             j_coord_offsetA  = DIM*jnrA;
447             j_coord_offsetB  = DIM*jnrB;
448             j_coord_offsetC  = DIM*jnrC;
449             j_coord_offsetD  = DIM*jnrD;
450             j_coord_offsetE  = DIM*jnrE;
451             j_coord_offsetF  = DIM*jnrF;
452             j_coord_offsetG  = DIM*jnrG;
453             j_coord_offsetH  = DIM*jnrH;
454
455             /* load j atom coordinates */
456             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
457                                                  x+j_coord_offsetC,x+j_coord_offsetD,
458                                                  x+j_coord_offsetE,x+j_coord_offsetF,
459                                                  x+j_coord_offsetG,x+j_coord_offsetH,
460                                                  &jx0,&jy0,&jz0);
461
462             /* Calculate displacement vector */
463             dx00             = _mm256_sub_ps(ix0,jx0);
464             dy00             = _mm256_sub_ps(iy0,jy0);
465             dz00             = _mm256_sub_ps(iz0,jz0);
466             dx10             = _mm256_sub_ps(ix1,jx0);
467             dy10             = _mm256_sub_ps(iy1,jy0);
468             dz10             = _mm256_sub_ps(iz1,jz0);
469             dx20             = _mm256_sub_ps(ix2,jx0);
470             dy20             = _mm256_sub_ps(iy2,jy0);
471             dz20             = _mm256_sub_ps(iz2,jz0);
472
473             /* Calculate squared distance and things based on it */
474             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
475             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
476             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
477
478             rinv00           = avx256_invsqrt_f(rsq00);
479             rinv10           = avx256_invsqrt_f(rsq10);
480             rinv20           = avx256_invsqrt_f(rsq20);
481
482             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
483             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
484             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
485
486             /* Load parameters for j particles */
487             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
488                                                                  charge+jnrC+0,charge+jnrD+0,
489                                                                  charge+jnrE+0,charge+jnrF+0,
490                                                                  charge+jnrG+0,charge+jnrH+0);
491             vdwjidx0A        = 2*vdwtype[jnrA+0];
492             vdwjidx0B        = 2*vdwtype[jnrB+0];
493             vdwjidx0C        = 2*vdwtype[jnrC+0];
494             vdwjidx0D        = 2*vdwtype[jnrD+0];
495             vdwjidx0E        = 2*vdwtype[jnrE+0];
496             vdwjidx0F        = 2*vdwtype[jnrF+0];
497             vdwjidx0G        = 2*vdwtype[jnrG+0];
498             vdwjidx0H        = 2*vdwtype[jnrH+0];
499
500             fjx0             = _mm256_setzero_ps();
501             fjy0             = _mm256_setzero_ps();
502             fjz0             = _mm256_setzero_ps();
503
504             /**************************
505              * CALCULATE INTERACTIONS *
506              **************************/
507
508             if (gmx_mm256_any_lt(rsq00,rcutoff2))
509             {
510
511             /* Compute parameters for interactions between i and j atoms */
512             qq00             = _mm256_mul_ps(iq0,jq0);
513             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
514                                             vdwioffsetptr0+vdwjidx0B,
515                                             vdwioffsetptr0+vdwjidx0C,
516                                             vdwioffsetptr0+vdwjidx0D,
517                                             vdwioffsetptr0+vdwjidx0E,
518                                             vdwioffsetptr0+vdwjidx0F,
519                                             vdwioffsetptr0+vdwjidx0G,
520                                             vdwioffsetptr0+vdwjidx0H,
521                                             &c6_00,&c12_00);
522
523             /* REACTION-FIELD ELECTROSTATICS */
524             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
525             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
526
527             /* LENNARD-JONES DISPERSION/REPULSION */
528
529             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
530             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
531             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
532             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
533                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
534             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
535
536             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
537
538             /* Update potential sum for this i atom from the interaction with this j atom. */
539             velec            = _mm256_and_ps(velec,cutoff_mask);
540             velec            = _mm256_andnot_ps(dummy_mask,velec);
541             velecsum         = _mm256_add_ps(velecsum,velec);
542             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
543             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
544             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
545
546             fscal            = _mm256_add_ps(felec,fvdw);
547
548             fscal            = _mm256_and_ps(fscal,cutoff_mask);
549
550             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
551
552             /* Calculate temporary vectorial force */
553             tx               = _mm256_mul_ps(fscal,dx00);
554             ty               = _mm256_mul_ps(fscal,dy00);
555             tz               = _mm256_mul_ps(fscal,dz00);
556
557             /* Update vectorial force */
558             fix0             = _mm256_add_ps(fix0,tx);
559             fiy0             = _mm256_add_ps(fiy0,ty);
560             fiz0             = _mm256_add_ps(fiz0,tz);
561
562             fjx0             = _mm256_add_ps(fjx0,tx);
563             fjy0             = _mm256_add_ps(fjy0,ty);
564             fjz0             = _mm256_add_ps(fjz0,tz);
565
566             }
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             if (gmx_mm256_any_lt(rsq10,rcutoff2))
573             {
574
575             /* Compute parameters for interactions between i and j atoms */
576             qq10             = _mm256_mul_ps(iq1,jq0);
577
578             /* REACTION-FIELD ELECTROSTATICS */
579             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
580             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
581
582             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
583
584             /* Update potential sum for this i atom from the interaction with this j atom. */
585             velec            = _mm256_and_ps(velec,cutoff_mask);
586             velec            = _mm256_andnot_ps(dummy_mask,velec);
587             velecsum         = _mm256_add_ps(velecsum,velec);
588
589             fscal            = felec;
590
591             fscal            = _mm256_and_ps(fscal,cutoff_mask);
592
593             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
594
595             /* Calculate temporary vectorial force */
596             tx               = _mm256_mul_ps(fscal,dx10);
597             ty               = _mm256_mul_ps(fscal,dy10);
598             tz               = _mm256_mul_ps(fscal,dz10);
599
600             /* Update vectorial force */
601             fix1             = _mm256_add_ps(fix1,tx);
602             fiy1             = _mm256_add_ps(fiy1,ty);
603             fiz1             = _mm256_add_ps(fiz1,tz);
604
605             fjx0             = _mm256_add_ps(fjx0,tx);
606             fjy0             = _mm256_add_ps(fjy0,ty);
607             fjz0             = _mm256_add_ps(fjz0,tz);
608
609             }
610
611             /**************************
612              * CALCULATE INTERACTIONS *
613              **************************/
614
615             if (gmx_mm256_any_lt(rsq20,rcutoff2))
616             {
617
618             /* Compute parameters for interactions between i and j atoms */
619             qq20             = _mm256_mul_ps(iq2,jq0);
620
621             /* REACTION-FIELD ELECTROSTATICS */
622             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
623             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
624
625             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
626
627             /* Update potential sum for this i atom from the interaction with this j atom. */
628             velec            = _mm256_and_ps(velec,cutoff_mask);
629             velec            = _mm256_andnot_ps(dummy_mask,velec);
630             velecsum         = _mm256_add_ps(velecsum,velec);
631
632             fscal            = felec;
633
634             fscal            = _mm256_and_ps(fscal,cutoff_mask);
635
636             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
637
638             /* Calculate temporary vectorial force */
639             tx               = _mm256_mul_ps(fscal,dx20);
640             ty               = _mm256_mul_ps(fscal,dy20);
641             tz               = _mm256_mul_ps(fscal,dz20);
642
643             /* Update vectorial force */
644             fix2             = _mm256_add_ps(fix2,tx);
645             fiy2             = _mm256_add_ps(fiy2,ty);
646             fiz2             = _mm256_add_ps(fiz2,tz);
647
648             fjx0             = _mm256_add_ps(fjx0,tx);
649             fjy0             = _mm256_add_ps(fjy0,ty);
650             fjz0             = _mm256_add_ps(fjz0,tz);
651
652             }
653
654             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
655             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
656             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
657             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
658             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
659             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
660             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
661             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
662
663             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
664
665             /* Inner loop uses 129 flops */
666         }
667
668         /* End of innermost loop */
669
670         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
671                                                  f+i_coord_offset,fshift+i_shift_offset);
672
673         ggid                        = gid[iidx];
674         /* Update potential energies */
675         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
676         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
677
678         /* Increment number of inner iterations */
679         inneriter                  += j_index_end - j_index_start;
680
681         /* Outer loop uses 20 flops */
682     }
683
684     /* Increment number of outer iterations */
685     outeriter        += nri;
686
687     /* Update outer/inner flops */
688
689     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*129);
690 }
691 /*
692  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_256_single
693  * Electrostatics interaction: ReactionField
694  * VdW interaction:            LennardJones
695  * Geometry:                   Water3-Particle
696  * Calculate force/pot:        Force
697  */
698 void
699 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_256_single
700                     (t_nblist                    * gmx_restrict       nlist,
701                      rvec                        * gmx_restrict          xx,
702                      rvec                        * gmx_restrict          ff,
703                      struct t_forcerec           * gmx_restrict          fr,
704                      t_mdatoms                   * gmx_restrict     mdatoms,
705                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
706                      t_nrnb                      * gmx_restrict        nrnb)
707 {
708     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
709      * just 0 for non-waters.
710      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
711      * jnr indices corresponding to data put in the four positions in the SIMD register.
712      */
713     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
714     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
715     int              jnrA,jnrB,jnrC,jnrD;
716     int              jnrE,jnrF,jnrG,jnrH;
717     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
718     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
719     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
720     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
721     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
722     real             rcutoff_scalar;
723     real             *shiftvec,*fshift,*x,*f;
724     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
725     real             scratch[4*DIM];
726     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
727     real *           vdwioffsetptr0;
728     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
729     real *           vdwioffsetptr1;
730     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
731     real *           vdwioffsetptr2;
732     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
733     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
734     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
735     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
736     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
737     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
738     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
739     real             *charge;
740     int              nvdwtype;
741     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
742     int              *vdwtype;
743     real             *vdwparam;
744     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
745     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
746     __m256           dummy_mask,cutoff_mask;
747     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
748     __m256           one     = _mm256_set1_ps(1.0);
749     __m256           two     = _mm256_set1_ps(2.0);
750     x                = xx[0];
751     f                = ff[0];
752
753     nri              = nlist->nri;
754     iinr             = nlist->iinr;
755     jindex           = nlist->jindex;
756     jjnr             = nlist->jjnr;
757     shiftidx         = nlist->shift;
758     gid              = nlist->gid;
759     shiftvec         = fr->shift_vec[0];
760     fshift           = fr->fshift[0];
761     facel            = _mm256_set1_ps(fr->ic->epsfac);
762     charge           = mdatoms->chargeA;
763     krf              = _mm256_set1_ps(fr->ic->k_rf);
764     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
765     crf              = _mm256_set1_ps(fr->ic->c_rf);
766     nvdwtype         = fr->ntype;
767     vdwparam         = fr->nbfp;
768     vdwtype          = mdatoms->typeA;
769
770     /* Setup water-specific parameters */
771     inr              = nlist->iinr[0];
772     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
773     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
774     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
775     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
776
777     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
778     rcutoff_scalar   = fr->ic->rcoulomb;
779     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
780     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
781
782     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
783     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
784
785     /* Avoid stupid compiler warnings */
786     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
787     j_coord_offsetA = 0;
788     j_coord_offsetB = 0;
789     j_coord_offsetC = 0;
790     j_coord_offsetD = 0;
791     j_coord_offsetE = 0;
792     j_coord_offsetF = 0;
793     j_coord_offsetG = 0;
794     j_coord_offsetH = 0;
795
796     outeriter        = 0;
797     inneriter        = 0;
798
799     for(iidx=0;iidx<4*DIM;iidx++)
800     {
801         scratch[iidx] = 0.0;
802     }
803
804     /* Start outer loop over neighborlists */
805     for(iidx=0; iidx<nri; iidx++)
806     {
807         /* Load shift vector for this list */
808         i_shift_offset   = DIM*shiftidx[iidx];
809
810         /* Load limits for loop over neighbors */
811         j_index_start    = jindex[iidx];
812         j_index_end      = jindex[iidx+1];
813
814         /* Get outer coordinate index */
815         inr              = iinr[iidx];
816         i_coord_offset   = DIM*inr;
817
818         /* Load i particle coords and add shift vector */
819         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
820                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
821
822         fix0             = _mm256_setzero_ps();
823         fiy0             = _mm256_setzero_ps();
824         fiz0             = _mm256_setzero_ps();
825         fix1             = _mm256_setzero_ps();
826         fiy1             = _mm256_setzero_ps();
827         fiz1             = _mm256_setzero_ps();
828         fix2             = _mm256_setzero_ps();
829         fiy2             = _mm256_setzero_ps();
830         fiz2             = _mm256_setzero_ps();
831
832         /* Start inner kernel loop */
833         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
834         {
835
836             /* Get j neighbor index, and coordinate index */
837             jnrA             = jjnr[jidx];
838             jnrB             = jjnr[jidx+1];
839             jnrC             = jjnr[jidx+2];
840             jnrD             = jjnr[jidx+3];
841             jnrE             = jjnr[jidx+4];
842             jnrF             = jjnr[jidx+5];
843             jnrG             = jjnr[jidx+6];
844             jnrH             = jjnr[jidx+7];
845             j_coord_offsetA  = DIM*jnrA;
846             j_coord_offsetB  = DIM*jnrB;
847             j_coord_offsetC  = DIM*jnrC;
848             j_coord_offsetD  = DIM*jnrD;
849             j_coord_offsetE  = DIM*jnrE;
850             j_coord_offsetF  = DIM*jnrF;
851             j_coord_offsetG  = DIM*jnrG;
852             j_coord_offsetH  = DIM*jnrH;
853
854             /* load j atom coordinates */
855             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
856                                                  x+j_coord_offsetC,x+j_coord_offsetD,
857                                                  x+j_coord_offsetE,x+j_coord_offsetF,
858                                                  x+j_coord_offsetG,x+j_coord_offsetH,
859                                                  &jx0,&jy0,&jz0);
860
861             /* Calculate displacement vector */
862             dx00             = _mm256_sub_ps(ix0,jx0);
863             dy00             = _mm256_sub_ps(iy0,jy0);
864             dz00             = _mm256_sub_ps(iz0,jz0);
865             dx10             = _mm256_sub_ps(ix1,jx0);
866             dy10             = _mm256_sub_ps(iy1,jy0);
867             dz10             = _mm256_sub_ps(iz1,jz0);
868             dx20             = _mm256_sub_ps(ix2,jx0);
869             dy20             = _mm256_sub_ps(iy2,jy0);
870             dz20             = _mm256_sub_ps(iz2,jz0);
871
872             /* Calculate squared distance and things based on it */
873             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
874             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
875             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
876
877             rinv00           = avx256_invsqrt_f(rsq00);
878             rinv10           = avx256_invsqrt_f(rsq10);
879             rinv20           = avx256_invsqrt_f(rsq20);
880
881             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
882             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
883             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
884
885             /* Load parameters for j particles */
886             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
887                                                                  charge+jnrC+0,charge+jnrD+0,
888                                                                  charge+jnrE+0,charge+jnrF+0,
889                                                                  charge+jnrG+0,charge+jnrH+0);
890             vdwjidx0A        = 2*vdwtype[jnrA+0];
891             vdwjidx0B        = 2*vdwtype[jnrB+0];
892             vdwjidx0C        = 2*vdwtype[jnrC+0];
893             vdwjidx0D        = 2*vdwtype[jnrD+0];
894             vdwjidx0E        = 2*vdwtype[jnrE+0];
895             vdwjidx0F        = 2*vdwtype[jnrF+0];
896             vdwjidx0G        = 2*vdwtype[jnrG+0];
897             vdwjidx0H        = 2*vdwtype[jnrH+0];
898
899             fjx0             = _mm256_setzero_ps();
900             fjy0             = _mm256_setzero_ps();
901             fjz0             = _mm256_setzero_ps();
902
903             /**************************
904              * CALCULATE INTERACTIONS *
905              **************************/
906
907             if (gmx_mm256_any_lt(rsq00,rcutoff2))
908             {
909
910             /* Compute parameters for interactions between i and j atoms */
911             qq00             = _mm256_mul_ps(iq0,jq0);
912             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
913                                             vdwioffsetptr0+vdwjidx0B,
914                                             vdwioffsetptr0+vdwjidx0C,
915                                             vdwioffsetptr0+vdwjidx0D,
916                                             vdwioffsetptr0+vdwjidx0E,
917                                             vdwioffsetptr0+vdwjidx0F,
918                                             vdwioffsetptr0+vdwjidx0G,
919                                             vdwioffsetptr0+vdwjidx0H,
920                                             &c6_00,&c12_00);
921
922             /* REACTION-FIELD ELECTROSTATICS */
923             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
924
925             /* LENNARD-JONES DISPERSION/REPULSION */
926
927             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
928             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
929
930             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
931
932             fscal            = _mm256_add_ps(felec,fvdw);
933
934             fscal            = _mm256_and_ps(fscal,cutoff_mask);
935
936             /* Calculate temporary vectorial force */
937             tx               = _mm256_mul_ps(fscal,dx00);
938             ty               = _mm256_mul_ps(fscal,dy00);
939             tz               = _mm256_mul_ps(fscal,dz00);
940
941             /* Update vectorial force */
942             fix0             = _mm256_add_ps(fix0,tx);
943             fiy0             = _mm256_add_ps(fiy0,ty);
944             fiz0             = _mm256_add_ps(fiz0,tz);
945
946             fjx0             = _mm256_add_ps(fjx0,tx);
947             fjy0             = _mm256_add_ps(fjy0,ty);
948             fjz0             = _mm256_add_ps(fjz0,tz);
949
950             }
951
952             /**************************
953              * CALCULATE INTERACTIONS *
954              **************************/
955
956             if (gmx_mm256_any_lt(rsq10,rcutoff2))
957             {
958
959             /* Compute parameters for interactions between i and j atoms */
960             qq10             = _mm256_mul_ps(iq1,jq0);
961
962             /* REACTION-FIELD ELECTROSTATICS */
963             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
964
965             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
966
967             fscal            = felec;
968
969             fscal            = _mm256_and_ps(fscal,cutoff_mask);
970
971             /* Calculate temporary vectorial force */
972             tx               = _mm256_mul_ps(fscal,dx10);
973             ty               = _mm256_mul_ps(fscal,dy10);
974             tz               = _mm256_mul_ps(fscal,dz10);
975
976             /* Update vectorial force */
977             fix1             = _mm256_add_ps(fix1,tx);
978             fiy1             = _mm256_add_ps(fiy1,ty);
979             fiz1             = _mm256_add_ps(fiz1,tz);
980
981             fjx0             = _mm256_add_ps(fjx0,tx);
982             fjy0             = _mm256_add_ps(fjy0,ty);
983             fjz0             = _mm256_add_ps(fjz0,tz);
984
985             }
986
987             /**************************
988              * CALCULATE INTERACTIONS *
989              **************************/
990
991             if (gmx_mm256_any_lt(rsq20,rcutoff2))
992             {
993
994             /* Compute parameters for interactions between i and j atoms */
995             qq20             = _mm256_mul_ps(iq2,jq0);
996
997             /* REACTION-FIELD ELECTROSTATICS */
998             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
999
1000             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1001
1002             fscal            = felec;
1003
1004             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1005
1006             /* Calculate temporary vectorial force */
1007             tx               = _mm256_mul_ps(fscal,dx20);
1008             ty               = _mm256_mul_ps(fscal,dy20);
1009             tz               = _mm256_mul_ps(fscal,dz20);
1010
1011             /* Update vectorial force */
1012             fix2             = _mm256_add_ps(fix2,tx);
1013             fiy2             = _mm256_add_ps(fiy2,ty);
1014             fiz2             = _mm256_add_ps(fiz2,tz);
1015
1016             fjx0             = _mm256_add_ps(fjx0,tx);
1017             fjy0             = _mm256_add_ps(fjy0,ty);
1018             fjz0             = _mm256_add_ps(fjz0,tz);
1019
1020             }
1021
1022             fjptrA             = f+j_coord_offsetA;
1023             fjptrB             = f+j_coord_offsetB;
1024             fjptrC             = f+j_coord_offsetC;
1025             fjptrD             = f+j_coord_offsetD;
1026             fjptrE             = f+j_coord_offsetE;
1027             fjptrF             = f+j_coord_offsetF;
1028             fjptrG             = f+j_coord_offsetG;
1029             fjptrH             = f+j_coord_offsetH;
1030
1031             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1032
1033             /* Inner loop uses 100 flops */
1034         }
1035
1036         if(jidx<j_index_end)
1037         {
1038
1039             /* Get j neighbor index, and coordinate index */
1040             jnrlistA         = jjnr[jidx];
1041             jnrlistB         = jjnr[jidx+1];
1042             jnrlistC         = jjnr[jidx+2];
1043             jnrlistD         = jjnr[jidx+3];
1044             jnrlistE         = jjnr[jidx+4];
1045             jnrlistF         = jjnr[jidx+5];
1046             jnrlistG         = jjnr[jidx+6];
1047             jnrlistH         = jjnr[jidx+7];
1048             /* Sign of each element will be negative for non-real atoms.
1049              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1050              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1051              */
1052             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1053                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1054                                             
1055             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1056             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1057             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1058             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1059             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1060             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1061             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1062             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1063             j_coord_offsetA  = DIM*jnrA;
1064             j_coord_offsetB  = DIM*jnrB;
1065             j_coord_offsetC  = DIM*jnrC;
1066             j_coord_offsetD  = DIM*jnrD;
1067             j_coord_offsetE  = DIM*jnrE;
1068             j_coord_offsetF  = DIM*jnrF;
1069             j_coord_offsetG  = DIM*jnrG;
1070             j_coord_offsetH  = DIM*jnrH;
1071
1072             /* load j atom coordinates */
1073             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1074                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1075                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1076                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1077                                                  &jx0,&jy0,&jz0);
1078
1079             /* Calculate displacement vector */
1080             dx00             = _mm256_sub_ps(ix0,jx0);
1081             dy00             = _mm256_sub_ps(iy0,jy0);
1082             dz00             = _mm256_sub_ps(iz0,jz0);
1083             dx10             = _mm256_sub_ps(ix1,jx0);
1084             dy10             = _mm256_sub_ps(iy1,jy0);
1085             dz10             = _mm256_sub_ps(iz1,jz0);
1086             dx20             = _mm256_sub_ps(ix2,jx0);
1087             dy20             = _mm256_sub_ps(iy2,jy0);
1088             dz20             = _mm256_sub_ps(iz2,jz0);
1089
1090             /* Calculate squared distance and things based on it */
1091             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1092             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1093             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1094
1095             rinv00           = avx256_invsqrt_f(rsq00);
1096             rinv10           = avx256_invsqrt_f(rsq10);
1097             rinv20           = avx256_invsqrt_f(rsq20);
1098
1099             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1100             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1101             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1102
1103             /* Load parameters for j particles */
1104             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1105                                                                  charge+jnrC+0,charge+jnrD+0,
1106                                                                  charge+jnrE+0,charge+jnrF+0,
1107                                                                  charge+jnrG+0,charge+jnrH+0);
1108             vdwjidx0A        = 2*vdwtype[jnrA+0];
1109             vdwjidx0B        = 2*vdwtype[jnrB+0];
1110             vdwjidx0C        = 2*vdwtype[jnrC+0];
1111             vdwjidx0D        = 2*vdwtype[jnrD+0];
1112             vdwjidx0E        = 2*vdwtype[jnrE+0];
1113             vdwjidx0F        = 2*vdwtype[jnrF+0];
1114             vdwjidx0G        = 2*vdwtype[jnrG+0];
1115             vdwjidx0H        = 2*vdwtype[jnrH+0];
1116
1117             fjx0             = _mm256_setzero_ps();
1118             fjy0             = _mm256_setzero_ps();
1119             fjz0             = _mm256_setzero_ps();
1120
1121             /**************************
1122              * CALCULATE INTERACTIONS *
1123              **************************/
1124
1125             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1126             {
1127
1128             /* Compute parameters for interactions between i and j atoms */
1129             qq00             = _mm256_mul_ps(iq0,jq0);
1130             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1131                                             vdwioffsetptr0+vdwjidx0B,
1132                                             vdwioffsetptr0+vdwjidx0C,
1133                                             vdwioffsetptr0+vdwjidx0D,
1134                                             vdwioffsetptr0+vdwjidx0E,
1135                                             vdwioffsetptr0+vdwjidx0F,
1136                                             vdwioffsetptr0+vdwjidx0G,
1137                                             vdwioffsetptr0+vdwjidx0H,
1138                                             &c6_00,&c12_00);
1139
1140             /* REACTION-FIELD ELECTROSTATICS */
1141             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
1142
1143             /* LENNARD-JONES DISPERSION/REPULSION */
1144
1145             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1146             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1147
1148             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1149
1150             fscal            = _mm256_add_ps(felec,fvdw);
1151
1152             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1153
1154             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1155
1156             /* Calculate temporary vectorial force */
1157             tx               = _mm256_mul_ps(fscal,dx00);
1158             ty               = _mm256_mul_ps(fscal,dy00);
1159             tz               = _mm256_mul_ps(fscal,dz00);
1160
1161             /* Update vectorial force */
1162             fix0             = _mm256_add_ps(fix0,tx);
1163             fiy0             = _mm256_add_ps(fiy0,ty);
1164             fiz0             = _mm256_add_ps(fiz0,tz);
1165
1166             fjx0             = _mm256_add_ps(fjx0,tx);
1167             fjy0             = _mm256_add_ps(fjy0,ty);
1168             fjz0             = _mm256_add_ps(fjz0,tz);
1169
1170             }
1171
1172             /**************************
1173              * CALCULATE INTERACTIONS *
1174              **************************/
1175
1176             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1177             {
1178
1179             /* Compute parameters for interactions between i and j atoms */
1180             qq10             = _mm256_mul_ps(iq1,jq0);
1181
1182             /* REACTION-FIELD ELECTROSTATICS */
1183             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1184
1185             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1186
1187             fscal            = felec;
1188
1189             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1190
1191             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1192
1193             /* Calculate temporary vectorial force */
1194             tx               = _mm256_mul_ps(fscal,dx10);
1195             ty               = _mm256_mul_ps(fscal,dy10);
1196             tz               = _mm256_mul_ps(fscal,dz10);
1197
1198             /* Update vectorial force */
1199             fix1             = _mm256_add_ps(fix1,tx);
1200             fiy1             = _mm256_add_ps(fiy1,ty);
1201             fiz1             = _mm256_add_ps(fiz1,tz);
1202
1203             fjx0             = _mm256_add_ps(fjx0,tx);
1204             fjy0             = _mm256_add_ps(fjy0,ty);
1205             fjz0             = _mm256_add_ps(fjz0,tz);
1206
1207             }
1208
1209             /**************************
1210              * CALCULATE INTERACTIONS *
1211              **************************/
1212
1213             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1214             {
1215
1216             /* Compute parameters for interactions between i and j atoms */
1217             qq20             = _mm256_mul_ps(iq2,jq0);
1218
1219             /* REACTION-FIELD ELECTROSTATICS */
1220             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1221
1222             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1223
1224             fscal            = felec;
1225
1226             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1227
1228             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1229
1230             /* Calculate temporary vectorial force */
1231             tx               = _mm256_mul_ps(fscal,dx20);
1232             ty               = _mm256_mul_ps(fscal,dy20);
1233             tz               = _mm256_mul_ps(fscal,dz20);
1234
1235             /* Update vectorial force */
1236             fix2             = _mm256_add_ps(fix2,tx);
1237             fiy2             = _mm256_add_ps(fiy2,ty);
1238             fiz2             = _mm256_add_ps(fiz2,tz);
1239
1240             fjx0             = _mm256_add_ps(fjx0,tx);
1241             fjy0             = _mm256_add_ps(fjy0,ty);
1242             fjz0             = _mm256_add_ps(fjz0,tz);
1243
1244             }
1245
1246             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1247             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1248             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1249             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1250             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1251             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1252             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1253             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1254
1255             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1256
1257             /* Inner loop uses 100 flops */
1258         }
1259
1260         /* End of innermost loop */
1261
1262         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1263                                                  f+i_coord_offset,fshift+i_shift_offset);
1264
1265         /* Increment number of inner iterations */
1266         inneriter                  += j_index_end - j_index_start;
1267
1268         /* Outer loop uses 18 flops */
1269     }
1270
1271     /* Increment number of outer iterations */
1272     outeriter        += nri;
1273
1274     /* Update outer/inner flops */
1275
1276     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*100);
1277 }