Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_256_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     real *           vdwioffsetptr1;
75     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     real *           vdwioffsetptr2;
77     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
79     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
90     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
91     __m256           dummy_mask,cutoff_mask;
92     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
93     __m256           one     = _mm256_set1_ps(1.0);
94     __m256           two     = _mm256_set1_ps(2.0);
95     x                = xx[0];
96     f                = ff[0];
97
98     nri              = nlist->nri;
99     iinr             = nlist->iinr;
100     jindex           = nlist->jindex;
101     jjnr             = nlist->jjnr;
102     shiftidx         = nlist->shift;
103     gid              = nlist->gid;
104     shiftvec         = fr->shift_vec[0];
105     fshift           = fr->fshift[0];
106     facel            = _mm256_set1_ps(fr->epsfac);
107     charge           = mdatoms->chargeA;
108     krf              = _mm256_set1_ps(fr->ic->k_rf);
109     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
110     crf              = _mm256_set1_ps(fr->ic->c_rf);
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     /* Setup water-specific parameters */
116     inr              = nlist->iinr[0];
117     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
118     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
119     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
120     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
121
122     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
123     rcutoff_scalar   = fr->rcoulomb;
124     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
125     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
126
127     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
128     rvdw             = _mm256_set1_ps(fr->rvdw);
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136     j_coord_offsetE = 0;
137     j_coord_offsetF = 0;
138     j_coord_offsetG = 0;
139     j_coord_offsetH = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
165                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
166
167         fix0             = _mm256_setzero_ps();
168         fiy0             = _mm256_setzero_ps();
169         fiz0             = _mm256_setzero_ps();
170         fix1             = _mm256_setzero_ps();
171         fiy1             = _mm256_setzero_ps();
172         fiz1             = _mm256_setzero_ps();
173         fix2             = _mm256_setzero_ps();
174         fiy2             = _mm256_setzero_ps();
175         fiz2             = _mm256_setzero_ps();
176
177         /* Reset potential sums */
178         velecsum         = _mm256_setzero_ps();
179         vvdwsum          = _mm256_setzero_ps();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             jnrC             = jjnr[jidx+2];
189             jnrD             = jjnr[jidx+3];
190             jnrE             = jjnr[jidx+4];
191             jnrF             = jjnr[jidx+5];
192             jnrG             = jjnr[jidx+6];
193             jnrH             = jjnr[jidx+7];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196             j_coord_offsetC  = DIM*jnrC;
197             j_coord_offsetD  = DIM*jnrD;
198             j_coord_offsetE  = DIM*jnrE;
199             j_coord_offsetF  = DIM*jnrF;
200             j_coord_offsetG  = DIM*jnrG;
201             j_coord_offsetH  = DIM*jnrH;
202
203             /* load j atom coordinates */
204             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
205                                                  x+j_coord_offsetC,x+j_coord_offsetD,
206                                                  x+j_coord_offsetE,x+j_coord_offsetF,
207                                                  x+j_coord_offsetG,x+j_coord_offsetH,
208                                                  &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _mm256_sub_ps(ix0,jx0);
212             dy00             = _mm256_sub_ps(iy0,jy0);
213             dz00             = _mm256_sub_ps(iz0,jz0);
214             dx10             = _mm256_sub_ps(ix1,jx0);
215             dy10             = _mm256_sub_ps(iy1,jy0);
216             dz10             = _mm256_sub_ps(iz1,jz0);
217             dx20             = _mm256_sub_ps(ix2,jx0);
218             dy20             = _mm256_sub_ps(iy2,jy0);
219             dz20             = _mm256_sub_ps(iz2,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
223             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
224             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
225
226             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
227             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
228             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
229
230             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
231             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
232             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
236                                                                  charge+jnrC+0,charge+jnrD+0,
237                                                                  charge+jnrE+0,charge+jnrF+0,
238                                                                  charge+jnrG+0,charge+jnrH+0);
239             vdwjidx0A        = 2*vdwtype[jnrA+0];
240             vdwjidx0B        = 2*vdwtype[jnrB+0];
241             vdwjidx0C        = 2*vdwtype[jnrC+0];
242             vdwjidx0D        = 2*vdwtype[jnrD+0];
243             vdwjidx0E        = 2*vdwtype[jnrE+0];
244             vdwjidx0F        = 2*vdwtype[jnrF+0];
245             vdwjidx0G        = 2*vdwtype[jnrG+0];
246             vdwjidx0H        = 2*vdwtype[jnrH+0];
247
248             fjx0             = _mm256_setzero_ps();
249             fjy0             = _mm256_setzero_ps();
250             fjz0             = _mm256_setzero_ps();
251
252             /**************************
253              * CALCULATE INTERACTIONS *
254              **************************/
255
256             if (gmx_mm256_any_lt(rsq00,rcutoff2))
257             {
258
259             /* Compute parameters for interactions between i and j atoms */
260             qq00             = _mm256_mul_ps(iq0,jq0);
261             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
262                                             vdwioffsetptr0+vdwjidx0B,
263                                             vdwioffsetptr0+vdwjidx0C,
264                                             vdwioffsetptr0+vdwjidx0D,
265                                             vdwioffsetptr0+vdwjidx0E,
266                                             vdwioffsetptr0+vdwjidx0F,
267                                             vdwioffsetptr0+vdwjidx0G,
268                                             vdwioffsetptr0+vdwjidx0H,
269                                             &c6_00,&c12_00);
270
271             /* REACTION-FIELD ELECTROSTATICS */
272             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
273             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
274
275             /* LENNARD-JONES DISPERSION/REPULSION */
276
277             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
278             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
279             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
280             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
281                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
282             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
283
284             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             velec            = _mm256_and_ps(velec,cutoff_mask);
288             velecsum         = _mm256_add_ps(velecsum,velec);
289             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
290             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
291
292             fscal            = _mm256_add_ps(felec,fvdw);
293
294             fscal            = _mm256_and_ps(fscal,cutoff_mask);
295
296             /* Calculate temporary vectorial force */
297             tx               = _mm256_mul_ps(fscal,dx00);
298             ty               = _mm256_mul_ps(fscal,dy00);
299             tz               = _mm256_mul_ps(fscal,dz00);
300
301             /* Update vectorial force */
302             fix0             = _mm256_add_ps(fix0,tx);
303             fiy0             = _mm256_add_ps(fiy0,ty);
304             fiz0             = _mm256_add_ps(fiz0,tz);
305
306             fjx0             = _mm256_add_ps(fjx0,tx);
307             fjy0             = _mm256_add_ps(fjy0,ty);
308             fjz0             = _mm256_add_ps(fjz0,tz);
309
310             }
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             if (gmx_mm256_any_lt(rsq10,rcutoff2))
317             {
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq10             = _mm256_mul_ps(iq1,jq0);
321
322             /* REACTION-FIELD ELECTROSTATICS */
323             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
324             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
325
326             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velec            = _mm256_and_ps(velec,cutoff_mask);
330             velecsum         = _mm256_add_ps(velecsum,velec);
331
332             fscal            = felec;
333
334             fscal            = _mm256_and_ps(fscal,cutoff_mask);
335
336             /* Calculate temporary vectorial force */
337             tx               = _mm256_mul_ps(fscal,dx10);
338             ty               = _mm256_mul_ps(fscal,dy10);
339             tz               = _mm256_mul_ps(fscal,dz10);
340
341             /* Update vectorial force */
342             fix1             = _mm256_add_ps(fix1,tx);
343             fiy1             = _mm256_add_ps(fiy1,ty);
344             fiz1             = _mm256_add_ps(fiz1,tz);
345
346             fjx0             = _mm256_add_ps(fjx0,tx);
347             fjy0             = _mm256_add_ps(fjy0,ty);
348             fjz0             = _mm256_add_ps(fjz0,tz);
349
350             }
351
352             /**************************
353              * CALCULATE INTERACTIONS *
354              **************************/
355
356             if (gmx_mm256_any_lt(rsq20,rcutoff2))
357             {
358
359             /* Compute parameters for interactions between i and j atoms */
360             qq20             = _mm256_mul_ps(iq2,jq0);
361
362             /* REACTION-FIELD ELECTROSTATICS */
363             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
364             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
365
366             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
367
368             /* Update potential sum for this i atom from the interaction with this j atom. */
369             velec            = _mm256_and_ps(velec,cutoff_mask);
370             velecsum         = _mm256_add_ps(velecsum,velec);
371
372             fscal            = felec;
373
374             fscal            = _mm256_and_ps(fscal,cutoff_mask);
375
376             /* Calculate temporary vectorial force */
377             tx               = _mm256_mul_ps(fscal,dx20);
378             ty               = _mm256_mul_ps(fscal,dy20);
379             tz               = _mm256_mul_ps(fscal,dz20);
380
381             /* Update vectorial force */
382             fix2             = _mm256_add_ps(fix2,tx);
383             fiy2             = _mm256_add_ps(fiy2,ty);
384             fiz2             = _mm256_add_ps(fiz2,tz);
385
386             fjx0             = _mm256_add_ps(fjx0,tx);
387             fjy0             = _mm256_add_ps(fjy0,ty);
388             fjz0             = _mm256_add_ps(fjz0,tz);
389
390             }
391
392             fjptrA             = f+j_coord_offsetA;
393             fjptrB             = f+j_coord_offsetB;
394             fjptrC             = f+j_coord_offsetC;
395             fjptrD             = f+j_coord_offsetD;
396             fjptrE             = f+j_coord_offsetE;
397             fjptrF             = f+j_coord_offsetF;
398             fjptrG             = f+j_coord_offsetG;
399             fjptrH             = f+j_coord_offsetH;
400
401             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
402
403             /* Inner loop uses 129 flops */
404         }
405
406         if(jidx<j_index_end)
407         {
408
409             /* Get j neighbor index, and coordinate index */
410             jnrlistA         = jjnr[jidx];
411             jnrlistB         = jjnr[jidx+1];
412             jnrlistC         = jjnr[jidx+2];
413             jnrlistD         = jjnr[jidx+3];
414             jnrlistE         = jjnr[jidx+4];
415             jnrlistF         = jjnr[jidx+5];
416             jnrlistG         = jjnr[jidx+6];
417             jnrlistH         = jjnr[jidx+7];
418             /* Sign of each element will be negative for non-real atoms.
419              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
420              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
421              */
422             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
423                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
424                                             
425             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
426             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
427             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
428             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
429             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
430             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
431             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
432             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
433             j_coord_offsetA  = DIM*jnrA;
434             j_coord_offsetB  = DIM*jnrB;
435             j_coord_offsetC  = DIM*jnrC;
436             j_coord_offsetD  = DIM*jnrD;
437             j_coord_offsetE  = DIM*jnrE;
438             j_coord_offsetF  = DIM*jnrF;
439             j_coord_offsetG  = DIM*jnrG;
440             j_coord_offsetH  = DIM*jnrH;
441
442             /* load j atom coordinates */
443             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
444                                                  x+j_coord_offsetC,x+j_coord_offsetD,
445                                                  x+j_coord_offsetE,x+j_coord_offsetF,
446                                                  x+j_coord_offsetG,x+j_coord_offsetH,
447                                                  &jx0,&jy0,&jz0);
448
449             /* Calculate displacement vector */
450             dx00             = _mm256_sub_ps(ix0,jx0);
451             dy00             = _mm256_sub_ps(iy0,jy0);
452             dz00             = _mm256_sub_ps(iz0,jz0);
453             dx10             = _mm256_sub_ps(ix1,jx0);
454             dy10             = _mm256_sub_ps(iy1,jy0);
455             dz10             = _mm256_sub_ps(iz1,jz0);
456             dx20             = _mm256_sub_ps(ix2,jx0);
457             dy20             = _mm256_sub_ps(iy2,jy0);
458             dz20             = _mm256_sub_ps(iz2,jz0);
459
460             /* Calculate squared distance and things based on it */
461             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
462             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
463             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
464
465             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
466             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
467             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
468
469             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
470             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
471             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
472
473             /* Load parameters for j particles */
474             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
475                                                                  charge+jnrC+0,charge+jnrD+0,
476                                                                  charge+jnrE+0,charge+jnrF+0,
477                                                                  charge+jnrG+0,charge+jnrH+0);
478             vdwjidx0A        = 2*vdwtype[jnrA+0];
479             vdwjidx0B        = 2*vdwtype[jnrB+0];
480             vdwjidx0C        = 2*vdwtype[jnrC+0];
481             vdwjidx0D        = 2*vdwtype[jnrD+0];
482             vdwjidx0E        = 2*vdwtype[jnrE+0];
483             vdwjidx0F        = 2*vdwtype[jnrF+0];
484             vdwjidx0G        = 2*vdwtype[jnrG+0];
485             vdwjidx0H        = 2*vdwtype[jnrH+0];
486
487             fjx0             = _mm256_setzero_ps();
488             fjy0             = _mm256_setzero_ps();
489             fjz0             = _mm256_setzero_ps();
490
491             /**************************
492              * CALCULATE INTERACTIONS *
493              **************************/
494
495             if (gmx_mm256_any_lt(rsq00,rcutoff2))
496             {
497
498             /* Compute parameters for interactions between i and j atoms */
499             qq00             = _mm256_mul_ps(iq0,jq0);
500             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
501                                             vdwioffsetptr0+vdwjidx0B,
502                                             vdwioffsetptr0+vdwjidx0C,
503                                             vdwioffsetptr0+vdwjidx0D,
504                                             vdwioffsetptr0+vdwjidx0E,
505                                             vdwioffsetptr0+vdwjidx0F,
506                                             vdwioffsetptr0+vdwjidx0G,
507                                             vdwioffsetptr0+vdwjidx0H,
508                                             &c6_00,&c12_00);
509
510             /* REACTION-FIELD ELECTROSTATICS */
511             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
512             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
513
514             /* LENNARD-JONES DISPERSION/REPULSION */
515
516             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
517             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
518             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
519             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
520                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
521             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
522
523             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
524
525             /* Update potential sum for this i atom from the interaction with this j atom. */
526             velec            = _mm256_and_ps(velec,cutoff_mask);
527             velec            = _mm256_andnot_ps(dummy_mask,velec);
528             velecsum         = _mm256_add_ps(velecsum,velec);
529             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
530             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
531             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
532
533             fscal            = _mm256_add_ps(felec,fvdw);
534
535             fscal            = _mm256_and_ps(fscal,cutoff_mask);
536
537             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
538
539             /* Calculate temporary vectorial force */
540             tx               = _mm256_mul_ps(fscal,dx00);
541             ty               = _mm256_mul_ps(fscal,dy00);
542             tz               = _mm256_mul_ps(fscal,dz00);
543
544             /* Update vectorial force */
545             fix0             = _mm256_add_ps(fix0,tx);
546             fiy0             = _mm256_add_ps(fiy0,ty);
547             fiz0             = _mm256_add_ps(fiz0,tz);
548
549             fjx0             = _mm256_add_ps(fjx0,tx);
550             fjy0             = _mm256_add_ps(fjy0,ty);
551             fjz0             = _mm256_add_ps(fjz0,tz);
552
553             }
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             if (gmx_mm256_any_lt(rsq10,rcutoff2))
560             {
561
562             /* Compute parameters for interactions between i and j atoms */
563             qq10             = _mm256_mul_ps(iq1,jq0);
564
565             /* REACTION-FIELD ELECTROSTATICS */
566             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
567             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
568
569             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
570
571             /* Update potential sum for this i atom from the interaction with this j atom. */
572             velec            = _mm256_and_ps(velec,cutoff_mask);
573             velec            = _mm256_andnot_ps(dummy_mask,velec);
574             velecsum         = _mm256_add_ps(velecsum,velec);
575
576             fscal            = felec;
577
578             fscal            = _mm256_and_ps(fscal,cutoff_mask);
579
580             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
581
582             /* Calculate temporary vectorial force */
583             tx               = _mm256_mul_ps(fscal,dx10);
584             ty               = _mm256_mul_ps(fscal,dy10);
585             tz               = _mm256_mul_ps(fscal,dz10);
586
587             /* Update vectorial force */
588             fix1             = _mm256_add_ps(fix1,tx);
589             fiy1             = _mm256_add_ps(fiy1,ty);
590             fiz1             = _mm256_add_ps(fiz1,tz);
591
592             fjx0             = _mm256_add_ps(fjx0,tx);
593             fjy0             = _mm256_add_ps(fjy0,ty);
594             fjz0             = _mm256_add_ps(fjz0,tz);
595
596             }
597
598             /**************************
599              * CALCULATE INTERACTIONS *
600              **************************/
601
602             if (gmx_mm256_any_lt(rsq20,rcutoff2))
603             {
604
605             /* Compute parameters for interactions between i and j atoms */
606             qq20             = _mm256_mul_ps(iq2,jq0);
607
608             /* REACTION-FIELD ELECTROSTATICS */
609             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
610             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
611
612             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
613
614             /* Update potential sum for this i atom from the interaction with this j atom. */
615             velec            = _mm256_and_ps(velec,cutoff_mask);
616             velec            = _mm256_andnot_ps(dummy_mask,velec);
617             velecsum         = _mm256_add_ps(velecsum,velec);
618
619             fscal            = felec;
620
621             fscal            = _mm256_and_ps(fscal,cutoff_mask);
622
623             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
624
625             /* Calculate temporary vectorial force */
626             tx               = _mm256_mul_ps(fscal,dx20);
627             ty               = _mm256_mul_ps(fscal,dy20);
628             tz               = _mm256_mul_ps(fscal,dz20);
629
630             /* Update vectorial force */
631             fix2             = _mm256_add_ps(fix2,tx);
632             fiy2             = _mm256_add_ps(fiy2,ty);
633             fiz2             = _mm256_add_ps(fiz2,tz);
634
635             fjx0             = _mm256_add_ps(fjx0,tx);
636             fjy0             = _mm256_add_ps(fjy0,ty);
637             fjz0             = _mm256_add_ps(fjz0,tz);
638
639             }
640
641             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
642             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
643             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
644             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
645             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
646             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
647             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
648             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
649
650             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
651
652             /* Inner loop uses 129 flops */
653         }
654
655         /* End of innermost loop */
656
657         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
658                                                  f+i_coord_offset,fshift+i_shift_offset);
659
660         ggid                        = gid[iidx];
661         /* Update potential energies */
662         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
663         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
664
665         /* Increment number of inner iterations */
666         inneriter                  += j_index_end - j_index_start;
667
668         /* Outer loop uses 20 flops */
669     }
670
671     /* Increment number of outer iterations */
672     outeriter        += nri;
673
674     /* Update outer/inner flops */
675
676     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*129);
677 }
678 /*
679  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_256_single
680  * Electrostatics interaction: ReactionField
681  * VdW interaction:            LennardJones
682  * Geometry:                   Water3-Particle
683  * Calculate force/pot:        Force
684  */
685 void
686 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_256_single
687                     (t_nblist * gmx_restrict                nlist,
688                      rvec * gmx_restrict                    xx,
689                      rvec * gmx_restrict                    ff,
690                      t_forcerec * gmx_restrict              fr,
691                      t_mdatoms * gmx_restrict               mdatoms,
692                      nb_kernel_data_t * gmx_restrict        kernel_data,
693                      t_nrnb * gmx_restrict                  nrnb)
694 {
695     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
696      * just 0 for non-waters.
697      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
698      * jnr indices corresponding to data put in the four positions in the SIMD register.
699      */
700     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
701     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
702     int              jnrA,jnrB,jnrC,jnrD;
703     int              jnrE,jnrF,jnrG,jnrH;
704     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
705     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
706     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
707     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
708     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
709     real             rcutoff_scalar;
710     real             *shiftvec,*fshift,*x,*f;
711     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
712     real             scratch[4*DIM];
713     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
714     real *           vdwioffsetptr0;
715     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
716     real *           vdwioffsetptr1;
717     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
718     real *           vdwioffsetptr2;
719     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
720     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
721     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
722     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
723     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
724     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
725     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
726     real             *charge;
727     int              nvdwtype;
728     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
729     int              *vdwtype;
730     real             *vdwparam;
731     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
732     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
733     __m256           dummy_mask,cutoff_mask;
734     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
735     __m256           one     = _mm256_set1_ps(1.0);
736     __m256           two     = _mm256_set1_ps(2.0);
737     x                = xx[0];
738     f                = ff[0];
739
740     nri              = nlist->nri;
741     iinr             = nlist->iinr;
742     jindex           = nlist->jindex;
743     jjnr             = nlist->jjnr;
744     shiftidx         = nlist->shift;
745     gid              = nlist->gid;
746     shiftvec         = fr->shift_vec[0];
747     fshift           = fr->fshift[0];
748     facel            = _mm256_set1_ps(fr->epsfac);
749     charge           = mdatoms->chargeA;
750     krf              = _mm256_set1_ps(fr->ic->k_rf);
751     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
752     crf              = _mm256_set1_ps(fr->ic->c_rf);
753     nvdwtype         = fr->ntype;
754     vdwparam         = fr->nbfp;
755     vdwtype          = mdatoms->typeA;
756
757     /* Setup water-specific parameters */
758     inr              = nlist->iinr[0];
759     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
760     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
761     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
762     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
763
764     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
765     rcutoff_scalar   = fr->rcoulomb;
766     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
767     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
768
769     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
770     rvdw             = _mm256_set1_ps(fr->rvdw);
771
772     /* Avoid stupid compiler warnings */
773     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
774     j_coord_offsetA = 0;
775     j_coord_offsetB = 0;
776     j_coord_offsetC = 0;
777     j_coord_offsetD = 0;
778     j_coord_offsetE = 0;
779     j_coord_offsetF = 0;
780     j_coord_offsetG = 0;
781     j_coord_offsetH = 0;
782
783     outeriter        = 0;
784     inneriter        = 0;
785
786     for(iidx=0;iidx<4*DIM;iidx++)
787     {
788         scratch[iidx] = 0.0;
789     }
790
791     /* Start outer loop over neighborlists */
792     for(iidx=0; iidx<nri; iidx++)
793     {
794         /* Load shift vector for this list */
795         i_shift_offset   = DIM*shiftidx[iidx];
796
797         /* Load limits for loop over neighbors */
798         j_index_start    = jindex[iidx];
799         j_index_end      = jindex[iidx+1];
800
801         /* Get outer coordinate index */
802         inr              = iinr[iidx];
803         i_coord_offset   = DIM*inr;
804
805         /* Load i particle coords and add shift vector */
806         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
807                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
808
809         fix0             = _mm256_setzero_ps();
810         fiy0             = _mm256_setzero_ps();
811         fiz0             = _mm256_setzero_ps();
812         fix1             = _mm256_setzero_ps();
813         fiy1             = _mm256_setzero_ps();
814         fiz1             = _mm256_setzero_ps();
815         fix2             = _mm256_setzero_ps();
816         fiy2             = _mm256_setzero_ps();
817         fiz2             = _mm256_setzero_ps();
818
819         /* Start inner kernel loop */
820         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
821         {
822
823             /* Get j neighbor index, and coordinate index */
824             jnrA             = jjnr[jidx];
825             jnrB             = jjnr[jidx+1];
826             jnrC             = jjnr[jidx+2];
827             jnrD             = jjnr[jidx+3];
828             jnrE             = jjnr[jidx+4];
829             jnrF             = jjnr[jidx+5];
830             jnrG             = jjnr[jidx+6];
831             jnrH             = jjnr[jidx+7];
832             j_coord_offsetA  = DIM*jnrA;
833             j_coord_offsetB  = DIM*jnrB;
834             j_coord_offsetC  = DIM*jnrC;
835             j_coord_offsetD  = DIM*jnrD;
836             j_coord_offsetE  = DIM*jnrE;
837             j_coord_offsetF  = DIM*jnrF;
838             j_coord_offsetG  = DIM*jnrG;
839             j_coord_offsetH  = DIM*jnrH;
840
841             /* load j atom coordinates */
842             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
843                                                  x+j_coord_offsetC,x+j_coord_offsetD,
844                                                  x+j_coord_offsetE,x+j_coord_offsetF,
845                                                  x+j_coord_offsetG,x+j_coord_offsetH,
846                                                  &jx0,&jy0,&jz0);
847
848             /* Calculate displacement vector */
849             dx00             = _mm256_sub_ps(ix0,jx0);
850             dy00             = _mm256_sub_ps(iy0,jy0);
851             dz00             = _mm256_sub_ps(iz0,jz0);
852             dx10             = _mm256_sub_ps(ix1,jx0);
853             dy10             = _mm256_sub_ps(iy1,jy0);
854             dz10             = _mm256_sub_ps(iz1,jz0);
855             dx20             = _mm256_sub_ps(ix2,jx0);
856             dy20             = _mm256_sub_ps(iy2,jy0);
857             dz20             = _mm256_sub_ps(iz2,jz0);
858
859             /* Calculate squared distance and things based on it */
860             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
861             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
862             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
863
864             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
865             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
866             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
867
868             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
869             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
870             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
871
872             /* Load parameters for j particles */
873             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
874                                                                  charge+jnrC+0,charge+jnrD+0,
875                                                                  charge+jnrE+0,charge+jnrF+0,
876                                                                  charge+jnrG+0,charge+jnrH+0);
877             vdwjidx0A        = 2*vdwtype[jnrA+0];
878             vdwjidx0B        = 2*vdwtype[jnrB+0];
879             vdwjidx0C        = 2*vdwtype[jnrC+0];
880             vdwjidx0D        = 2*vdwtype[jnrD+0];
881             vdwjidx0E        = 2*vdwtype[jnrE+0];
882             vdwjidx0F        = 2*vdwtype[jnrF+0];
883             vdwjidx0G        = 2*vdwtype[jnrG+0];
884             vdwjidx0H        = 2*vdwtype[jnrH+0];
885
886             fjx0             = _mm256_setzero_ps();
887             fjy0             = _mm256_setzero_ps();
888             fjz0             = _mm256_setzero_ps();
889
890             /**************************
891              * CALCULATE INTERACTIONS *
892              **************************/
893
894             if (gmx_mm256_any_lt(rsq00,rcutoff2))
895             {
896
897             /* Compute parameters for interactions between i and j atoms */
898             qq00             = _mm256_mul_ps(iq0,jq0);
899             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
900                                             vdwioffsetptr0+vdwjidx0B,
901                                             vdwioffsetptr0+vdwjidx0C,
902                                             vdwioffsetptr0+vdwjidx0D,
903                                             vdwioffsetptr0+vdwjidx0E,
904                                             vdwioffsetptr0+vdwjidx0F,
905                                             vdwioffsetptr0+vdwjidx0G,
906                                             vdwioffsetptr0+vdwjidx0H,
907                                             &c6_00,&c12_00);
908
909             /* REACTION-FIELD ELECTROSTATICS */
910             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
911
912             /* LENNARD-JONES DISPERSION/REPULSION */
913
914             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
915             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
916
917             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
918
919             fscal            = _mm256_add_ps(felec,fvdw);
920
921             fscal            = _mm256_and_ps(fscal,cutoff_mask);
922
923             /* Calculate temporary vectorial force */
924             tx               = _mm256_mul_ps(fscal,dx00);
925             ty               = _mm256_mul_ps(fscal,dy00);
926             tz               = _mm256_mul_ps(fscal,dz00);
927
928             /* Update vectorial force */
929             fix0             = _mm256_add_ps(fix0,tx);
930             fiy0             = _mm256_add_ps(fiy0,ty);
931             fiz0             = _mm256_add_ps(fiz0,tz);
932
933             fjx0             = _mm256_add_ps(fjx0,tx);
934             fjy0             = _mm256_add_ps(fjy0,ty);
935             fjz0             = _mm256_add_ps(fjz0,tz);
936
937             }
938
939             /**************************
940              * CALCULATE INTERACTIONS *
941              **************************/
942
943             if (gmx_mm256_any_lt(rsq10,rcutoff2))
944             {
945
946             /* Compute parameters for interactions between i and j atoms */
947             qq10             = _mm256_mul_ps(iq1,jq0);
948
949             /* REACTION-FIELD ELECTROSTATICS */
950             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
951
952             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
953
954             fscal            = felec;
955
956             fscal            = _mm256_and_ps(fscal,cutoff_mask);
957
958             /* Calculate temporary vectorial force */
959             tx               = _mm256_mul_ps(fscal,dx10);
960             ty               = _mm256_mul_ps(fscal,dy10);
961             tz               = _mm256_mul_ps(fscal,dz10);
962
963             /* Update vectorial force */
964             fix1             = _mm256_add_ps(fix1,tx);
965             fiy1             = _mm256_add_ps(fiy1,ty);
966             fiz1             = _mm256_add_ps(fiz1,tz);
967
968             fjx0             = _mm256_add_ps(fjx0,tx);
969             fjy0             = _mm256_add_ps(fjy0,ty);
970             fjz0             = _mm256_add_ps(fjz0,tz);
971
972             }
973
974             /**************************
975              * CALCULATE INTERACTIONS *
976              **************************/
977
978             if (gmx_mm256_any_lt(rsq20,rcutoff2))
979             {
980
981             /* Compute parameters for interactions between i and j atoms */
982             qq20             = _mm256_mul_ps(iq2,jq0);
983
984             /* REACTION-FIELD ELECTROSTATICS */
985             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
986
987             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
988
989             fscal            = felec;
990
991             fscal            = _mm256_and_ps(fscal,cutoff_mask);
992
993             /* Calculate temporary vectorial force */
994             tx               = _mm256_mul_ps(fscal,dx20);
995             ty               = _mm256_mul_ps(fscal,dy20);
996             tz               = _mm256_mul_ps(fscal,dz20);
997
998             /* Update vectorial force */
999             fix2             = _mm256_add_ps(fix2,tx);
1000             fiy2             = _mm256_add_ps(fiy2,ty);
1001             fiz2             = _mm256_add_ps(fiz2,tz);
1002
1003             fjx0             = _mm256_add_ps(fjx0,tx);
1004             fjy0             = _mm256_add_ps(fjy0,ty);
1005             fjz0             = _mm256_add_ps(fjz0,tz);
1006
1007             }
1008
1009             fjptrA             = f+j_coord_offsetA;
1010             fjptrB             = f+j_coord_offsetB;
1011             fjptrC             = f+j_coord_offsetC;
1012             fjptrD             = f+j_coord_offsetD;
1013             fjptrE             = f+j_coord_offsetE;
1014             fjptrF             = f+j_coord_offsetF;
1015             fjptrG             = f+j_coord_offsetG;
1016             fjptrH             = f+j_coord_offsetH;
1017
1018             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1019
1020             /* Inner loop uses 100 flops */
1021         }
1022
1023         if(jidx<j_index_end)
1024         {
1025
1026             /* Get j neighbor index, and coordinate index */
1027             jnrlistA         = jjnr[jidx];
1028             jnrlistB         = jjnr[jidx+1];
1029             jnrlistC         = jjnr[jidx+2];
1030             jnrlistD         = jjnr[jidx+3];
1031             jnrlistE         = jjnr[jidx+4];
1032             jnrlistF         = jjnr[jidx+5];
1033             jnrlistG         = jjnr[jidx+6];
1034             jnrlistH         = jjnr[jidx+7];
1035             /* Sign of each element will be negative for non-real atoms.
1036              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1037              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1038              */
1039             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1040                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1041                                             
1042             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1043             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1044             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1045             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1046             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1047             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1048             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1049             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1050             j_coord_offsetA  = DIM*jnrA;
1051             j_coord_offsetB  = DIM*jnrB;
1052             j_coord_offsetC  = DIM*jnrC;
1053             j_coord_offsetD  = DIM*jnrD;
1054             j_coord_offsetE  = DIM*jnrE;
1055             j_coord_offsetF  = DIM*jnrF;
1056             j_coord_offsetG  = DIM*jnrG;
1057             j_coord_offsetH  = DIM*jnrH;
1058
1059             /* load j atom coordinates */
1060             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1061                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1062                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1063                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1064                                                  &jx0,&jy0,&jz0);
1065
1066             /* Calculate displacement vector */
1067             dx00             = _mm256_sub_ps(ix0,jx0);
1068             dy00             = _mm256_sub_ps(iy0,jy0);
1069             dz00             = _mm256_sub_ps(iz0,jz0);
1070             dx10             = _mm256_sub_ps(ix1,jx0);
1071             dy10             = _mm256_sub_ps(iy1,jy0);
1072             dz10             = _mm256_sub_ps(iz1,jz0);
1073             dx20             = _mm256_sub_ps(ix2,jx0);
1074             dy20             = _mm256_sub_ps(iy2,jy0);
1075             dz20             = _mm256_sub_ps(iz2,jz0);
1076
1077             /* Calculate squared distance and things based on it */
1078             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1079             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1080             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1081
1082             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1083             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1084             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1085
1086             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1087             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1088             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1089
1090             /* Load parameters for j particles */
1091             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1092                                                                  charge+jnrC+0,charge+jnrD+0,
1093                                                                  charge+jnrE+0,charge+jnrF+0,
1094                                                                  charge+jnrG+0,charge+jnrH+0);
1095             vdwjidx0A        = 2*vdwtype[jnrA+0];
1096             vdwjidx0B        = 2*vdwtype[jnrB+0];
1097             vdwjidx0C        = 2*vdwtype[jnrC+0];
1098             vdwjidx0D        = 2*vdwtype[jnrD+0];
1099             vdwjidx0E        = 2*vdwtype[jnrE+0];
1100             vdwjidx0F        = 2*vdwtype[jnrF+0];
1101             vdwjidx0G        = 2*vdwtype[jnrG+0];
1102             vdwjidx0H        = 2*vdwtype[jnrH+0];
1103
1104             fjx0             = _mm256_setzero_ps();
1105             fjy0             = _mm256_setzero_ps();
1106             fjz0             = _mm256_setzero_ps();
1107
1108             /**************************
1109              * CALCULATE INTERACTIONS *
1110              **************************/
1111
1112             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1113             {
1114
1115             /* Compute parameters for interactions between i and j atoms */
1116             qq00             = _mm256_mul_ps(iq0,jq0);
1117             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1118                                             vdwioffsetptr0+vdwjidx0B,
1119                                             vdwioffsetptr0+vdwjidx0C,
1120                                             vdwioffsetptr0+vdwjidx0D,
1121                                             vdwioffsetptr0+vdwjidx0E,
1122                                             vdwioffsetptr0+vdwjidx0F,
1123                                             vdwioffsetptr0+vdwjidx0G,
1124                                             vdwioffsetptr0+vdwjidx0H,
1125                                             &c6_00,&c12_00);
1126
1127             /* REACTION-FIELD ELECTROSTATICS */
1128             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
1129
1130             /* LENNARD-JONES DISPERSION/REPULSION */
1131
1132             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1133             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1134
1135             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1136
1137             fscal            = _mm256_add_ps(felec,fvdw);
1138
1139             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1140
1141             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1142
1143             /* Calculate temporary vectorial force */
1144             tx               = _mm256_mul_ps(fscal,dx00);
1145             ty               = _mm256_mul_ps(fscal,dy00);
1146             tz               = _mm256_mul_ps(fscal,dz00);
1147
1148             /* Update vectorial force */
1149             fix0             = _mm256_add_ps(fix0,tx);
1150             fiy0             = _mm256_add_ps(fiy0,ty);
1151             fiz0             = _mm256_add_ps(fiz0,tz);
1152
1153             fjx0             = _mm256_add_ps(fjx0,tx);
1154             fjy0             = _mm256_add_ps(fjy0,ty);
1155             fjz0             = _mm256_add_ps(fjz0,tz);
1156
1157             }
1158
1159             /**************************
1160              * CALCULATE INTERACTIONS *
1161              **************************/
1162
1163             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1164             {
1165
1166             /* Compute parameters for interactions between i and j atoms */
1167             qq10             = _mm256_mul_ps(iq1,jq0);
1168
1169             /* REACTION-FIELD ELECTROSTATICS */
1170             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1171
1172             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1173
1174             fscal            = felec;
1175
1176             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1177
1178             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1179
1180             /* Calculate temporary vectorial force */
1181             tx               = _mm256_mul_ps(fscal,dx10);
1182             ty               = _mm256_mul_ps(fscal,dy10);
1183             tz               = _mm256_mul_ps(fscal,dz10);
1184
1185             /* Update vectorial force */
1186             fix1             = _mm256_add_ps(fix1,tx);
1187             fiy1             = _mm256_add_ps(fiy1,ty);
1188             fiz1             = _mm256_add_ps(fiz1,tz);
1189
1190             fjx0             = _mm256_add_ps(fjx0,tx);
1191             fjy0             = _mm256_add_ps(fjy0,ty);
1192             fjz0             = _mm256_add_ps(fjz0,tz);
1193
1194             }
1195
1196             /**************************
1197              * CALCULATE INTERACTIONS *
1198              **************************/
1199
1200             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1201             {
1202
1203             /* Compute parameters for interactions between i and j atoms */
1204             qq20             = _mm256_mul_ps(iq2,jq0);
1205
1206             /* REACTION-FIELD ELECTROSTATICS */
1207             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1208
1209             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1210
1211             fscal            = felec;
1212
1213             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1214
1215             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1216
1217             /* Calculate temporary vectorial force */
1218             tx               = _mm256_mul_ps(fscal,dx20);
1219             ty               = _mm256_mul_ps(fscal,dy20);
1220             tz               = _mm256_mul_ps(fscal,dz20);
1221
1222             /* Update vectorial force */
1223             fix2             = _mm256_add_ps(fix2,tx);
1224             fiy2             = _mm256_add_ps(fiy2,ty);
1225             fiz2             = _mm256_add_ps(fiz2,tz);
1226
1227             fjx0             = _mm256_add_ps(fjx0,tx);
1228             fjy0             = _mm256_add_ps(fjy0,ty);
1229             fjz0             = _mm256_add_ps(fjz0,tz);
1230
1231             }
1232
1233             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1234             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1235             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1236             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1237             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1238             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1239             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1240             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1241
1242             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1243
1244             /* Inner loop uses 100 flops */
1245         }
1246
1247         /* End of innermost loop */
1248
1249         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1250                                                  f+i_coord_offset,fshift+i_shift_offset);
1251
1252         /* Increment number of inner iterations */
1253         inneriter                  += j_index_end - j_index_start;
1254
1255         /* Outer loop uses 18 flops */
1256     }
1257
1258     /* Increment number of outer iterations */
1259     outeriter        += nri;
1260
1261     /* Update outer/inner flops */
1262
1263     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*100);
1264 }