Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_256_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     real *           vdwioffsetptr1;
91     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
106     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
107     __m256           dummy_mask,cutoff_mask;
108     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
109     __m256           one     = _mm256_set1_ps(1.0);
110     __m256           two     = _mm256_set1_ps(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm256_set1_ps(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     krf              = _mm256_set1_ps(fr->ic->k_rf);
125     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
126     crf              = _mm256_set1_ps(fr->ic->c_rf);
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
134     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
135     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
136     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
137
138     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
139     rcutoff_scalar   = fr->rcoulomb;
140     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
141     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
142
143     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
144     rvdw             = _mm256_set1_ps(fr->rvdw);
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150     j_coord_offsetC = 0;
151     j_coord_offsetD = 0;
152     j_coord_offsetE = 0;
153     j_coord_offsetF = 0;
154     j_coord_offsetG = 0;
155     j_coord_offsetH = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     for(iidx=0;iidx<4*DIM;iidx++)
161     {
162         scratch[iidx] = 0.0;
163     }
164
165     /* Start outer loop over neighborlists */
166     for(iidx=0; iidx<nri; iidx++)
167     {
168         /* Load shift vector for this list */
169         i_shift_offset   = DIM*shiftidx[iidx];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
181                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
182
183         fix0             = _mm256_setzero_ps();
184         fiy0             = _mm256_setzero_ps();
185         fiz0             = _mm256_setzero_ps();
186         fix1             = _mm256_setzero_ps();
187         fiy1             = _mm256_setzero_ps();
188         fiz1             = _mm256_setzero_ps();
189         fix2             = _mm256_setzero_ps();
190         fiy2             = _mm256_setzero_ps();
191         fiz2             = _mm256_setzero_ps();
192
193         /* Reset potential sums */
194         velecsum         = _mm256_setzero_ps();
195         vvdwsum          = _mm256_setzero_ps();
196
197         /* Start inner kernel loop */
198         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
199         {
200
201             /* Get j neighbor index, and coordinate index */
202             jnrA             = jjnr[jidx];
203             jnrB             = jjnr[jidx+1];
204             jnrC             = jjnr[jidx+2];
205             jnrD             = jjnr[jidx+3];
206             jnrE             = jjnr[jidx+4];
207             jnrF             = jjnr[jidx+5];
208             jnrG             = jjnr[jidx+6];
209             jnrH             = jjnr[jidx+7];
210             j_coord_offsetA  = DIM*jnrA;
211             j_coord_offsetB  = DIM*jnrB;
212             j_coord_offsetC  = DIM*jnrC;
213             j_coord_offsetD  = DIM*jnrD;
214             j_coord_offsetE  = DIM*jnrE;
215             j_coord_offsetF  = DIM*jnrF;
216             j_coord_offsetG  = DIM*jnrG;
217             j_coord_offsetH  = DIM*jnrH;
218
219             /* load j atom coordinates */
220             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
221                                                  x+j_coord_offsetC,x+j_coord_offsetD,
222                                                  x+j_coord_offsetE,x+j_coord_offsetF,
223                                                  x+j_coord_offsetG,x+j_coord_offsetH,
224                                                  &jx0,&jy0,&jz0);
225
226             /* Calculate displacement vector */
227             dx00             = _mm256_sub_ps(ix0,jx0);
228             dy00             = _mm256_sub_ps(iy0,jy0);
229             dz00             = _mm256_sub_ps(iz0,jz0);
230             dx10             = _mm256_sub_ps(ix1,jx0);
231             dy10             = _mm256_sub_ps(iy1,jy0);
232             dz10             = _mm256_sub_ps(iz1,jz0);
233             dx20             = _mm256_sub_ps(ix2,jx0);
234             dy20             = _mm256_sub_ps(iy2,jy0);
235             dz20             = _mm256_sub_ps(iz2,jz0);
236
237             /* Calculate squared distance and things based on it */
238             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
239             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
240             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
241
242             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
243             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
244             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
245
246             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
247             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
248             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
249
250             /* Load parameters for j particles */
251             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
252                                                                  charge+jnrC+0,charge+jnrD+0,
253                                                                  charge+jnrE+0,charge+jnrF+0,
254                                                                  charge+jnrG+0,charge+jnrH+0);
255             vdwjidx0A        = 2*vdwtype[jnrA+0];
256             vdwjidx0B        = 2*vdwtype[jnrB+0];
257             vdwjidx0C        = 2*vdwtype[jnrC+0];
258             vdwjidx0D        = 2*vdwtype[jnrD+0];
259             vdwjidx0E        = 2*vdwtype[jnrE+0];
260             vdwjidx0F        = 2*vdwtype[jnrF+0];
261             vdwjidx0G        = 2*vdwtype[jnrG+0];
262             vdwjidx0H        = 2*vdwtype[jnrH+0];
263
264             fjx0             = _mm256_setzero_ps();
265             fjy0             = _mm256_setzero_ps();
266             fjz0             = _mm256_setzero_ps();
267
268             /**************************
269              * CALCULATE INTERACTIONS *
270              **************************/
271
272             if (gmx_mm256_any_lt(rsq00,rcutoff2))
273             {
274
275             /* Compute parameters for interactions between i and j atoms */
276             qq00             = _mm256_mul_ps(iq0,jq0);
277             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
278                                             vdwioffsetptr0+vdwjidx0B,
279                                             vdwioffsetptr0+vdwjidx0C,
280                                             vdwioffsetptr0+vdwjidx0D,
281                                             vdwioffsetptr0+vdwjidx0E,
282                                             vdwioffsetptr0+vdwjidx0F,
283                                             vdwioffsetptr0+vdwjidx0G,
284                                             vdwioffsetptr0+vdwjidx0H,
285                                             &c6_00,&c12_00);
286
287             /* REACTION-FIELD ELECTROSTATICS */
288             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
289             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
290
291             /* LENNARD-JONES DISPERSION/REPULSION */
292
293             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
294             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
295             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
296             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
297                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
298             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
299
300             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
301
302             /* Update potential sum for this i atom from the interaction with this j atom. */
303             velec            = _mm256_and_ps(velec,cutoff_mask);
304             velecsum         = _mm256_add_ps(velecsum,velec);
305             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
306             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
307
308             fscal            = _mm256_add_ps(felec,fvdw);
309
310             fscal            = _mm256_and_ps(fscal,cutoff_mask);
311
312             /* Calculate temporary vectorial force */
313             tx               = _mm256_mul_ps(fscal,dx00);
314             ty               = _mm256_mul_ps(fscal,dy00);
315             tz               = _mm256_mul_ps(fscal,dz00);
316
317             /* Update vectorial force */
318             fix0             = _mm256_add_ps(fix0,tx);
319             fiy0             = _mm256_add_ps(fiy0,ty);
320             fiz0             = _mm256_add_ps(fiz0,tz);
321
322             fjx0             = _mm256_add_ps(fjx0,tx);
323             fjy0             = _mm256_add_ps(fjy0,ty);
324             fjz0             = _mm256_add_ps(fjz0,tz);
325
326             }
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             if (gmx_mm256_any_lt(rsq10,rcutoff2))
333             {
334
335             /* Compute parameters for interactions between i and j atoms */
336             qq10             = _mm256_mul_ps(iq1,jq0);
337
338             /* REACTION-FIELD ELECTROSTATICS */
339             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
340             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
341
342             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velec            = _mm256_and_ps(velec,cutoff_mask);
346             velecsum         = _mm256_add_ps(velecsum,velec);
347
348             fscal            = felec;
349
350             fscal            = _mm256_and_ps(fscal,cutoff_mask);
351
352             /* Calculate temporary vectorial force */
353             tx               = _mm256_mul_ps(fscal,dx10);
354             ty               = _mm256_mul_ps(fscal,dy10);
355             tz               = _mm256_mul_ps(fscal,dz10);
356
357             /* Update vectorial force */
358             fix1             = _mm256_add_ps(fix1,tx);
359             fiy1             = _mm256_add_ps(fiy1,ty);
360             fiz1             = _mm256_add_ps(fiz1,tz);
361
362             fjx0             = _mm256_add_ps(fjx0,tx);
363             fjy0             = _mm256_add_ps(fjy0,ty);
364             fjz0             = _mm256_add_ps(fjz0,tz);
365
366             }
367
368             /**************************
369              * CALCULATE INTERACTIONS *
370              **************************/
371
372             if (gmx_mm256_any_lt(rsq20,rcutoff2))
373             {
374
375             /* Compute parameters for interactions between i and j atoms */
376             qq20             = _mm256_mul_ps(iq2,jq0);
377
378             /* REACTION-FIELD ELECTROSTATICS */
379             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
380             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
381
382             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
383
384             /* Update potential sum for this i atom from the interaction with this j atom. */
385             velec            = _mm256_and_ps(velec,cutoff_mask);
386             velecsum         = _mm256_add_ps(velecsum,velec);
387
388             fscal            = felec;
389
390             fscal            = _mm256_and_ps(fscal,cutoff_mask);
391
392             /* Calculate temporary vectorial force */
393             tx               = _mm256_mul_ps(fscal,dx20);
394             ty               = _mm256_mul_ps(fscal,dy20);
395             tz               = _mm256_mul_ps(fscal,dz20);
396
397             /* Update vectorial force */
398             fix2             = _mm256_add_ps(fix2,tx);
399             fiy2             = _mm256_add_ps(fiy2,ty);
400             fiz2             = _mm256_add_ps(fiz2,tz);
401
402             fjx0             = _mm256_add_ps(fjx0,tx);
403             fjy0             = _mm256_add_ps(fjy0,ty);
404             fjz0             = _mm256_add_ps(fjz0,tz);
405
406             }
407
408             fjptrA             = f+j_coord_offsetA;
409             fjptrB             = f+j_coord_offsetB;
410             fjptrC             = f+j_coord_offsetC;
411             fjptrD             = f+j_coord_offsetD;
412             fjptrE             = f+j_coord_offsetE;
413             fjptrF             = f+j_coord_offsetF;
414             fjptrG             = f+j_coord_offsetG;
415             fjptrH             = f+j_coord_offsetH;
416
417             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
418
419             /* Inner loop uses 129 flops */
420         }
421
422         if(jidx<j_index_end)
423         {
424
425             /* Get j neighbor index, and coordinate index */
426             jnrlistA         = jjnr[jidx];
427             jnrlistB         = jjnr[jidx+1];
428             jnrlistC         = jjnr[jidx+2];
429             jnrlistD         = jjnr[jidx+3];
430             jnrlistE         = jjnr[jidx+4];
431             jnrlistF         = jjnr[jidx+5];
432             jnrlistG         = jjnr[jidx+6];
433             jnrlistH         = jjnr[jidx+7];
434             /* Sign of each element will be negative for non-real atoms.
435              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
436              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
437              */
438             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
439                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
440                                             
441             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
442             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
443             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
444             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
445             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
446             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
447             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
448             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
449             j_coord_offsetA  = DIM*jnrA;
450             j_coord_offsetB  = DIM*jnrB;
451             j_coord_offsetC  = DIM*jnrC;
452             j_coord_offsetD  = DIM*jnrD;
453             j_coord_offsetE  = DIM*jnrE;
454             j_coord_offsetF  = DIM*jnrF;
455             j_coord_offsetG  = DIM*jnrG;
456             j_coord_offsetH  = DIM*jnrH;
457
458             /* load j atom coordinates */
459             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
460                                                  x+j_coord_offsetC,x+j_coord_offsetD,
461                                                  x+j_coord_offsetE,x+j_coord_offsetF,
462                                                  x+j_coord_offsetG,x+j_coord_offsetH,
463                                                  &jx0,&jy0,&jz0);
464
465             /* Calculate displacement vector */
466             dx00             = _mm256_sub_ps(ix0,jx0);
467             dy00             = _mm256_sub_ps(iy0,jy0);
468             dz00             = _mm256_sub_ps(iz0,jz0);
469             dx10             = _mm256_sub_ps(ix1,jx0);
470             dy10             = _mm256_sub_ps(iy1,jy0);
471             dz10             = _mm256_sub_ps(iz1,jz0);
472             dx20             = _mm256_sub_ps(ix2,jx0);
473             dy20             = _mm256_sub_ps(iy2,jy0);
474             dz20             = _mm256_sub_ps(iz2,jz0);
475
476             /* Calculate squared distance and things based on it */
477             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
478             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
479             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
480
481             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
482             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
483             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
484
485             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
486             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
487             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
488
489             /* Load parameters for j particles */
490             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
491                                                                  charge+jnrC+0,charge+jnrD+0,
492                                                                  charge+jnrE+0,charge+jnrF+0,
493                                                                  charge+jnrG+0,charge+jnrH+0);
494             vdwjidx0A        = 2*vdwtype[jnrA+0];
495             vdwjidx0B        = 2*vdwtype[jnrB+0];
496             vdwjidx0C        = 2*vdwtype[jnrC+0];
497             vdwjidx0D        = 2*vdwtype[jnrD+0];
498             vdwjidx0E        = 2*vdwtype[jnrE+0];
499             vdwjidx0F        = 2*vdwtype[jnrF+0];
500             vdwjidx0G        = 2*vdwtype[jnrG+0];
501             vdwjidx0H        = 2*vdwtype[jnrH+0];
502
503             fjx0             = _mm256_setzero_ps();
504             fjy0             = _mm256_setzero_ps();
505             fjz0             = _mm256_setzero_ps();
506
507             /**************************
508              * CALCULATE INTERACTIONS *
509              **************************/
510
511             if (gmx_mm256_any_lt(rsq00,rcutoff2))
512             {
513
514             /* Compute parameters for interactions between i and j atoms */
515             qq00             = _mm256_mul_ps(iq0,jq0);
516             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
517                                             vdwioffsetptr0+vdwjidx0B,
518                                             vdwioffsetptr0+vdwjidx0C,
519                                             vdwioffsetptr0+vdwjidx0D,
520                                             vdwioffsetptr0+vdwjidx0E,
521                                             vdwioffsetptr0+vdwjidx0F,
522                                             vdwioffsetptr0+vdwjidx0G,
523                                             vdwioffsetptr0+vdwjidx0H,
524                                             &c6_00,&c12_00);
525
526             /* REACTION-FIELD ELECTROSTATICS */
527             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
528             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
529
530             /* LENNARD-JONES DISPERSION/REPULSION */
531
532             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
533             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
534             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
535             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
536                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
537             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
538
539             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
540
541             /* Update potential sum for this i atom from the interaction with this j atom. */
542             velec            = _mm256_and_ps(velec,cutoff_mask);
543             velec            = _mm256_andnot_ps(dummy_mask,velec);
544             velecsum         = _mm256_add_ps(velecsum,velec);
545             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
546             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
547             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
548
549             fscal            = _mm256_add_ps(felec,fvdw);
550
551             fscal            = _mm256_and_ps(fscal,cutoff_mask);
552
553             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
554
555             /* Calculate temporary vectorial force */
556             tx               = _mm256_mul_ps(fscal,dx00);
557             ty               = _mm256_mul_ps(fscal,dy00);
558             tz               = _mm256_mul_ps(fscal,dz00);
559
560             /* Update vectorial force */
561             fix0             = _mm256_add_ps(fix0,tx);
562             fiy0             = _mm256_add_ps(fiy0,ty);
563             fiz0             = _mm256_add_ps(fiz0,tz);
564
565             fjx0             = _mm256_add_ps(fjx0,tx);
566             fjy0             = _mm256_add_ps(fjy0,ty);
567             fjz0             = _mm256_add_ps(fjz0,tz);
568
569             }
570
571             /**************************
572              * CALCULATE INTERACTIONS *
573              **************************/
574
575             if (gmx_mm256_any_lt(rsq10,rcutoff2))
576             {
577
578             /* Compute parameters for interactions between i and j atoms */
579             qq10             = _mm256_mul_ps(iq1,jq0);
580
581             /* REACTION-FIELD ELECTROSTATICS */
582             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
583             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
584
585             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
586
587             /* Update potential sum for this i atom from the interaction with this j atom. */
588             velec            = _mm256_and_ps(velec,cutoff_mask);
589             velec            = _mm256_andnot_ps(dummy_mask,velec);
590             velecsum         = _mm256_add_ps(velecsum,velec);
591
592             fscal            = felec;
593
594             fscal            = _mm256_and_ps(fscal,cutoff_mask);
595
596             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
597
598             /* Calculate temporary vectorial force */
599             tx               = _mm256_mul_ps(fscal,dx10);
600             ty               = _mm256_mul_ps(fscal,dy10);
601             tz               = _mm256_mul_ps(fscal,dz10);
602
603             /* Update vectorial force */
604             fix1             = _mm256_add_ps(fix1,tx);
605             fiy1             = _mm256_add_ps(fiy1,ty);
606             fiz1             = _mm256_add_ps(fiz1,tz);
607
608             fjx0             = _mm256_add_ps(fjx0,tx);
609             fjy0             = _mm256_add_ps(fjy0,ty);
610             fjz0             = _mm256_add_ps(fjz0,tz);
611
612             }
613
614             /**************************
615              * CALCULATE INTERACTIONS *
616              **************************/
617
618             if (gmx_mm256_any_lt(rsq20,rcutoff2))
619             {
620
621             /* Compute parameters for interactions between i and j atoms */
622             qq20             = _mm256_mul_ps(iq2,jq0);
623
624             /* REACTION-FIELD ELECTROSTATICS */
625             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
626             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
627
628             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
629
630             /* Update potential sum for this i atom from the interaction with this j atom. */
631             velec            = _mm256_and_ps(velec,cutoff_mask);
632             velec            = _mm256_andnot_ps(dummy_mask,velec);
633             velecsum         = _mm256_add_ps(velecsum,velec);
634
635             fscal            = felec;
636
637             fscal            = _mm256_and_ps(fscal,cutoff_mask);
638
639             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
640
641             /* Calculate temporary vectorial force */
642             tx               = _mm256_mul_ps(fscal,dx20);
643             ty               = _mm256_mul_ps(fscal,dy20);
644             tz               = _mm256_mul_ps(fscal,dz20);
645
646             /* Update vectorial force */
647             fix2             = _mm256_add_ps(fix2,tx);
648             fiy2             = _mm256_add_ps(fiy2,ty);
649             fiz2             = _mm256_add_ps(fiz2,tz);
650
651             fjx0             = _mm256_add_ps(fjx0,tx);
652             fjy0             = _mm256_add_ps(fjy0,ty);
653             fjz0             = _mm256_add_ps(fjz0,tz);
654
655             }
656
657             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
658             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
659             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
660             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
661             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
662             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
663             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
664             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
665
666             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
667
668             /* Inner loop uses 129 flops */
669         }
670
671         /* End of innermost loop */
672
673         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
674                                                  f+i_coord_offset,fshift+i_shift_offset);
675
676         ggid                        = gid[iidx];
677         /* Update potential energies */
678         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
679         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
680
681         /* Increment number of inner iterations */
682         inneriter                  += j_index_end - j_index_start;
683
684         /* Outer loop uses 20 flops */
685     }
686
687     /* Increment number of outer iterations */
688     outeriter        += nri;
689
690     /* Update outer/inner flops */
691
692     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*129);
693 }
694 /*
695  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_256_single
696  * Electrostatics interaction: ReactionField
697  * VdW interaction:            LennardJones
698  * Geometry:                   Water3-Particle
699  * Calculate force/pot:        Force
700  */
701 void
702 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_256_single
703                     (t_nblist                    * gmx_restrict       nlist,
704                      rvec                        * gmx_restrict          xx,
705                      rvec                        * gmx_restrict          ff,
706                      t_forcerec                  * gmx_restrict          fr,
707                      t_mdatoms                   * gmx_restrict     mdatoms,
708                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
709                      t_nrnb                      * gmx_restrict        nrnb)
710 {
711     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
712      * just 0 for non-waters.
713      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
714      * jnr indices corresponding to data put in the four positions in the SIMD register.
715      */
716     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
717     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
718     int              jnrA,jnrB,jnrC,jnrD;
719     int              jnrE,jnrF,jnrG,jnrH;
720     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
721     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
722     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
723     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
724     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
725     real             rcutoff_scalar;
726     real             *shiftvec,*fshift,*x,*f;
727     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
728     real             scratch[4*DIM];
729     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
730     real *           vdwioffsetptr0;
731     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
732     real *           vdwioffsetptr1;
733     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
734     real *           vdwioffsetptr2;
735     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
736     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
737     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
738     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
739     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
740     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
741     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
742     real             *charge;
743     int              nvdwtype;
744     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
745     int              *vdwtype;
746     real             *vdwparam;
747     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
748     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
749     __m256           dummy_mask,cutoff_mask;
750     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
751     __m256           one     = _mm256_set1_ps(1.0);
752     __m256           two     = _mm256_set1_ps(2.0);
753     x                = xx[0];
754     f                = ff[0];
755
756     nri              = nlist->nri;
757     iinr             = nlist->iinr;
758     jindex           = nlist->jindex;
759     jjnr             = nlist->jjnr;
760     shiftidx         = nlist->shift;
761     gid              = nlist->gid;
762     shiftvec         = fr->shift_vec[0];
763     fshift           = fr->fshift[0];
764     facel            = _mm256_set1_ps(fr->epsfac);
765     charge           = mdatoms->chargeA;
766     krf              = _mm256_set1_ps(fr->ic->k_rf);
767     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
768     crf              = _mm256_set1_ps(fr->ic->c_rf);
769     nvdwtype         = fr->ntype;
770     vdwparam         = fr->nbfp;
771     vdwtype          = mdatoms->typeA;
772
773     /* Setup water-specific parameters */
774     inr              = nlist->iinr[0];
775     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
776     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
777     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
778     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
779
780     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
781     rcutoff_scalar   = fr->rcoulomb;
782     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
783     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
784
785     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
786     rvdw             = _mm256_set1_ps(fr->rvdw);
787
788     /* Avoid stupid compiler warnings */
789     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
790     j_coord_offsetA = 0;
791     j_coord_offsetB = 0;
792     j_coord_offsetC = 0;
793     j_coord_offsetD = 0;
794     j_coord_offsetE = 0;
795     j_coord_offsetF = 0;
796     j_coord_offsetG = 0;
797     j_coord_offsetH = 0;
798
799     outeriter        = 0;
800     inneriter        = 0;
801
802     for(iidx=0;iidx<4*DIM;iidx++)
803     {
804         scratch[iidx] = 0.0;
805     }
806
807     /* Start outer loop over neighborlists */
808     for(iidx=0; iidx<nri; iidx++)
809     {
810         /* Load shift vector for this list */
811         i_shift_offset   = DIM*shiftidx[iidx];
812
813         /* Load limits for loop over neighbors */
814         j_index_start    = jindex[iidx];
815         j_index_end      = jindex[iidx+1];
816
817         /* Get outer coordinate index */
818         inr              = iinr[iidx];
819         i_coord_offset   = DIM*inr;
820
821         /* Load i particle coords and add shift vector */
822         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
823                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
824
825         fix0             = _mm256_setzero_ps();
826         fiy0             = _mm256_setzero_ps();
827         fiz0             = _mm256_setzero_ps();
828         fix1             = _mm256_setzero_ps();
829         fiy1             = _mm256_setzero_ps();
830         fiz1             = _mm256_setzero_ps();
831         fix2             = _mm256_setzero_ps();
832         fiy2             = _mm256_setzero_ps();
833         fiz2             = _mm256_setzero_ps();
834
835         /* Start inner kernel loop */
836         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
837         {
838
839             /* Get j neighbor index, and coordinate index */
840             jnrA             = jjnr[jidx];
841             jnrB             = jjnr[jidx+1];
842             jnrC             = jjnr[jidx+2];
843             jnrD             = jjnr[jidx+3];
844             jnrE             = jjnr[jidx+4];
845             jnrF             = jjnr[jidx+5];
846             jnrG             = jjnr[jidx+6];
847             jnrH             = jjnr[jidx+7];
848             j_coord_offsetA  = DIM*jnrA;
849             j_coord_offsetB  = DIM*jnrB;
850             j_coord_offsetC  = DIM*jnrC;
851             j_coord_offsetD  = DIM*jnrD;
852             j_coord_offsetE  = DIM*jnrE;
853             j_coord_offsetF  = DIM*jnrF;
854             j_coord_offsetG  = DIM*jnrG;
855             j_coord_offsetH  = DIM*jnrH;
856
857             /* load j atom coordinates */
858             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
859                                                  x+j_coord_offsetC,x+j_coord_offsetD,
860                                                  x+j_coord_offsetE,x+j_coord_offsetF,
861                                                  x+j_coord_offsetG,x+j_coord_offsetH,
862                                                  &jx0,&jy0,&jz0);
863
864             /* Calculate displacement vector */
865             dx00             = _mm256_sub_ps(ix0,jx0);
866             dy00             = _mm256_sub_ps(iy0,jy0);
867             dz00             = _mm256_sub_ps(iz0,jz0);
868             dx10             = _mm256_sub_ps(ix1,jx0);
869             dy10             = _mm256_sub_ps(iy1,jy0);
870             dz10             = _mm256_sub_ps(iz1,jz0);
871             dx20             = _mm256_sub_ps(ix2,jx0);
872             dy20             = _mm256_sub_ps(iy2,jy0);
873             dz20             = _mm256_sub_ps(iz2,jz0);
874
875             /* Calculate squared distance and things based on it */
876             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
877             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
878             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
879
880             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
881             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
882             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
883
884             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
885             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
886             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
887
888             /* Load parameters for j particles */
889             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
890                                                                  charge+jnrC+0,charge+jnrD+0,
891                                                                  charge+jnrE+0,charge+jnrF+0,
892                                                                  charge+jnrG+0,charge+jnrH+0);
893             vdwjidx0A        = 2*vdwtype[jnrA+0];
894             vdwjidx0B        = 2*vdwtype[jnrB+0];
895             vdwjidx0C        = 2*vdwtype[jnrC+0];
896             vdwjidx0D        = 2*vdwtype[jnrD+0];
897             vdwjidx0E        = 2*vdwtype[jnrE+0];
898             vdwjidx0F        = 2*vdwtype[jnrF+0];
899             vdwjidx0G        = 2*vdwtype[jnrG+0];
900             vdwjidx0H        = 2*vdwtype[jnrH+0];
901
902             fjx0             = _mm256_setzero_ps();
903             fjy0             = _mm256_setzero_ps();
904             fjz0             = _mm256_setzero_ps();
905
906             /**************************
907              * CALCULATE INTERACTIONS *
908              **************************/
909
910             if (gmx_mm256_any_lt(rsq00,rcutoff2))
911             {
912
913             /* Compute parameters for interactions between i and j atoms */
914             qq00             = _mm256_mul_ps(iq0,jq0);
915             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
916                                             vdwioffsetptr0+vdwjidx0B,
917                                             vdwioffsetptr0+vdwjidx0C,
918                                             vdwioffsetptr0+vdwjidx0D,
919                                             vdwioffsetptr0+vdwjidx0E,
920                                             vdwioffsetptr0+vdwjidx0F,
921                                             vdwioffsetptr0+vdwjidx0G,
922                                             vdwioffsetptr0+vdwjidx0H,
923                                             &c6_00,&c12_00);
924
925             /* REACTION-FIELD ELECTROSTATICS */
926             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
927
928             /* LENNARD-JONES DISPERSION/REPULSION */
929
930             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
931             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
932
933             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
934
935             fscal            = _mm256_add_ps(felec,fvdw);
936
937             fscal            = _mm256_and_ps(fscal,cutoff_mask);
938
939             /* Calculate temporary vectorial force */
940             tx               = _mm256_mul_ps(fscal,dx00);
941             ty               = _mm256_mul_ps(fscal,dy00);
942             tz               = _mm256_mul_ps(fscal,dz00);
943
944             /* Update vectorial force */
945             fix0             = _mm256_add_ps(fix0,tx);
946             fiy0             = _mm256_add_ps(fiy0,ty);
947             fiz0             = _mm256_add_ps(fiz0,tz);
948
949             fjx0             = _mm256_add_ps(fjx0,tx);
950             fjy0             = _mm256_add_ps(fjy0,ty);
951             fjz0             = _mm256_add_ps(fjz0,tz);
952
953             }
954
955             /**************************
956              * CALCULATE INTERACTIONS *
957              **************************/
958
959             if (gmx_mm256_any_lt(rsq10,rcutoff2))
960             {
961
962             /* Compute parameters for interactions between i and j atoms */
963             qq10             = _mm256_mul_ps(iq1,jq0);
964
965             /* REACTION-FIELD ELECTROSTATICS */
966             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
967
968             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
969
970             fscal            = felec;
971
972             fscal            = _mm256_and_ps(fscal,cutoff_mask);
973
974             /* Calculate temporary vectorial force */
975             tx               = _mm256_mul_ps(fscal,dx10);
976             ty               = _mm256_mul_ps(fscal,dy10);
977             tz               = _mm256_mul_ps(fscal,dz10);
978
979             /* Update vectorial force */
980             fix1             = _mm256_add_ps(fix1,tx);
981             fiy1             = _mm256_add_ps(fiy1,ty);
982             fiz1             = _mm256_add_ps(fiz1,tz);
983
984             fjx0             = _mm256_add_ps(fjx0,tx);
985             fjy0             = _mm256_add_ps(fjy0,ty);
986             fjz0             = _mm256_add_ps(fjz0,tz);
987
988             }
989
990             /**************************
991              * CALCULATE INTERACTIONS *
992              **************************/
993
994             if (gmx_mm256_any_lt(rsq20,rcutoff2))
995             {
996
997             /* Compute parameters for interactions between i and j atoms */
998             qq20             = _mm256_mul_ps(iq2,jq0);
999
1000             /* REACTION-FIELD ELECTROSTATICS */
1001             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1002
1003             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1004
1005             fscal            = felec;
1006
1007             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1008
1009             /* Calculate temporary vectorial force */
1010             tx               = _mm256_mul_ps(fscal,dx20);
1011             ty               = _mm256_mul_ps(fscal,dy20);
1012             tz               = _mm256_mul_ps(fscal,dz20);
1013
1014             /* Update vectorial force */
1015             fix2             = _mm256_add_ps(fix2,tx);
1016             fiy2             = _mm256_add_ps(fiy2,ty);
1017             fiz2             = _mm256_add_ps(fiz2,tz);
1018
1019             fjx0             = _mm256_add_ps(fjx0,tx);
1020             fjy0             = _mm256_add_ps(fjy0,ty);
1021             fjz0             = _mm256_add_ps(fjz0,tz);
1022
1023             }
1024
1025             fjptrA             = f+j_coord_offsetA;
1026             fjptrB             = f+j_coord_offsetB;
1027             fjptrC             = f+j_coord_offsetC;
1028             fjptrD             = f+j_coord_offsetD;
1029             fjptrE             = f+j_coord_offsetE;
1030             fjptrF             = f+j_coord_offsetF;
1031             fjptrG             = f+j_coord_offsetG;
1032             fjptrH             = f+j_coord_offsetH;
1033
1034             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1035
1036             /* Inner loop uses 100 flops */
1037         }
1038
1039         if(jidx<j_index_end)
1040         {
1041
1042             /* Get j neighbor index, and coordinate index */
1043             jnrlistA         = jjnr[jidx];
1044             jnrlistB         = jjnr[jidx+1];
1045             jnrlistC         = jjnr[jidx+2];
1046             jnrlistD         = jjnr[jidx+3];
1047             jnrlistE         = jjnr[jidx+4];
1048             jnrlistF         = jjnr[jidx+5];
1049             jnrlistG         = jjnr[jidx+6];
1050             jnrlistH         = jjnr[jidx+7];
1051             /* Sign of each element will be negative for non-real atoms.
1052              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1053              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1054              */
1055             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1056                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1057                                             
1058             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1059             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1060             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1061             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1062             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1063             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1064             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1065             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1066             j_coord_offsetA  = DIM*jnrA;
1067             j_coord_offsetB  = DIM*jnrB;
1068             j_coord_offsetC  = DIM*jnrC;
1069             j_coord_offsetD  = DIM*jnrD;
1070             j_coord_offsetE  = DIM*jnrE;
1071             j_coord_offsetF  = DIM*jnrF;
1072             j_coord_offsetG  = DIM*jnrG;
1073             j_coord_offsetH  = DIM*jnrH;
1074
1075             /* load j atom coordinates */
1076             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1077                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1078                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1079                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1080                                                  &jx0,&jy0,&jz0);
1081
1082             /* Calculate displacement vector */
1083             dx00             = _mm256_sub_ps(ix0,jx0);
1084             dy00             = _mm256_sub_ps(iy0,jy0);
1085             dz00             = _mm256_sub_ps(iz0,jz0);
1086             dx10             = _mm256_sub_ps(ix1,jx0);
1087             dy10             = _mm256_sub_ps(iy1,jy0);
1088             dz10             = _mm256_sub_ps(iz1,jz0);
1089             dx20             = _mm256_sub_ps(ix2,jx0);
1090             dy20             = _mm256_sub_ps(iy2,jy0);
1091             dz20             = _mm256_sub_ps(iz2,jz0);
1092
1093             /* Calculate squared distance and things based on it */
1094             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1095             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1096             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1097
1098             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1099             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1100             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1101
1102             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1103             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1104             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1105
1106             /* Load parameters for j particles */
1107             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1108                                                                  charge+jnrC+0,charge+jnrD+0,
1109                                                                  charge+jnrE+0,charge+jnrF+0,
1110                                                                  charge+jnrG+0,charge+jnrH+0);
1111             vdwjidx0A        = 2*vdwtype[jnrA+0];
1112             vdwjidx0B        = 2*vdwtype[jnrB+0];
1113             vdwjidx0C        = 2*vdwtype[jnrC+0];
1114             vdwjidx0D        = 2*vdwtype[jnrD+0];
1115             vdwjidx0E        = 2*vdwtype[jnrE+0];
1116             vdwjidx0F        = 2*vdwtype[jnrF+0];
1117             vdwjidx0G        = 2*vdwtype[jnrG+0];
1118             vdwjidx0H        = 2*vdwtype[jnrH+0];
1119
1120             fjx0             = _mm256_setzero_ps();
1121             fjy0             = _mm256_setzero_ps();
1122             fjz0             = _mm256_setzero_ps();
1123
1124             /**************************
1125              * CALCULATE INTERACTIONS *
1126              **************************/
1127
1128             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1129             {
1130
1131             /* Compute parameters for interactions between i and j atoms */
1132             qq00             = _mm256_mul_ps(iq0,jq0);
1133             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1134                                             vdwioffsetptr0+vdwjidx0B,
1135                                             vdwioffsetptr0+vdwjidx0C,
1136                                             vdwioffsetptr0+vdwjidx0D,
1137                                             vdwioffsetptr0+vdwjidx0E,
1138                                             vdwioffsetptr0+vdwjidx0F,
1139                                             vdwioffsetptr0+vdwjidx0G,
1140                                             vdwioffsetptr0+vdwjidx0H,
1141                                             &c6_00,&c12_00);
1142
1143             /* REACTION-FIELD ELECTROSTATICS */
1144             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
1145
1146             /* LENNARD-JONES DISPERSION/REPULSION */
1147
1148             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1149             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1150
1151             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1152
1153             fscal            = _mm256_add_ps(felec,fvdw);
1154
1155             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1156
1157             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1158
1159             /* Calculate temporary vectorial force */
1160             tx               = _mm256_mul_ps(fscal,dx00);
1161             ty               = _mm256_mul_ps(fscal,dy00);
1162             tz               = _mm256_mul_ps(fscal,dz00);
1163
1164             /* Update vectorial force */
1165             fix0             = _mm256_add_ps(fix0,tx);
1166             fiy0             = _mm256_add_ps(fiy0,ty);
1167             fiz0             = _mm256_add_ps(fiz0,tz);
1168
1169             fjx0             = _mm256_add_ps(fjx0,tx);
1170             fjy0             = _mm256_add_ps(fjy0,ty);
1171             fjz0             = _mm256_add_ps(fjz0,tz);
1172
1173             }
1174
1175             /**************************
1176              * CALCULATE INTERACTIONS *
1177              **************************/
1178
1179             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1180             {
1181
1182             /* Compute parameters for interactions between i and j atoms */
1183             qq10             = _mm256_mul_ps(iq1,jq0);
1184
1185             /* REACTION-FIELD ELECTROSTATICS */
1186             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1187
1188             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1189
1190             fscal            = felec;
1191
1192             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1193
1194             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1195
1196             /* Calculate temporary vectorial force */
1197             tx               = _mm256_mul_ps(fscal,dx10);
1198             ty               = _mm256_mul_ps(fscal,dy10);
1199             tz               = _mm256_mul_ps(fscal,dz10);
1200
1201             /* Update vectorial force */
1202             fix1             = _mm256_add_ps(fix1,tx);
1203             fiy1             = _mm256_add_ps(fiy1,ty);
1204             fiz1             = _mm256_add_ps(fiz1,tz);
1205
1206             fjx0             = _mm256_add_ps(fjx0,tx);
1207             fjy0             = _mm256_add_ps(fjy0,ty);
1208             fjz0             = _mm256_add_ps(fjz0,tz);
1209
1210             }
1211
1212             /**************************
1213              * CALCULATE INTERACTIONS *
1214              **************************/
1215
1216             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1217             {
1218
1219             /* Compute parameters for interactions between i and j atoms */
1220             qq20             = _mm256_mul_ps(iq2,jq0);
1221
1222             /* REACTION-FIELD ELECTROSTATICS */
1223             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1224
1225             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1226
1227             fscal            = felec;
1228
1229             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1230
1231             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1232
1233             /* Calculate temporary vectorial force */
1234             tx               = _mm256_mul_ps(fscal,dx20);
1235             ty               = _mm256_mul_ps(fscal,dy20);
1236             tz               = _mm256_mul_ps(fscal,dz20);
1237
1238             /* Update vectorial force */
1239             fix2             = _mm256_add_ps(fix2,tx);
1240             fiy2             = _mm256_add_ps(fiy2,ty);
1241             fiz2             = _mm256_add_ps(fiz2,tz);
1242
1243             fjx0             = _mm256_add_ps(fjx0,tx);
1244             fjy0             = _mm256_add_ps(fjy0,ty);
1245             fjz0             = _mm256_add_ps(fjz0,tz);
1246
1247             }
1248
1249             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1250             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1251             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1252             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1253             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1254             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1255             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1256             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1257
1258             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1259
1260             /* Inner loop uses 100 flops */
1261         }
1262
1263         /* End of innermost loop */
1264
1265         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1266                                                  f+i_coord_offset,fshift+i_shift_offset);
1267
1268         /* Increment number of inner iterations */
1269         inneriter                  += j_index_end - j_index_start;
1270
1271         /* Outer loop uses 18 flops */
1272     }
1273
1274     /* Increment number of outer iterations */
1275     outeriter        += nri;
1276
1277     /* Update outer/inner flops */
1278
1279     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*100);
1280 }