Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
98     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
99     __m256           dummy_mask,cutoff_mask;
100     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
101     __m256           one     = _mm256_set1_ps(1.0);
102     __m256           two     = _mm256_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm256_set1_ps(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     krf              = _mm256_set1_ps(fr->ic->k_rf);
117     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
118     crf              = _mm256_set1_ps(fr->ic->c_rf);
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
124     rcutoff_scalar   = fr->rcoulomb;
125     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
126     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
127
128     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
129     rvdw             = _mm256_set1_ps(fr->rvdw);
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137     j_coord_offsetE = 0;
138     j_coord_offsetF = 0;
139     j_coord_offsetG = 0;
140     j_coord_offsetH = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     for(iidx=0;iidx<4*DIM;iidx++)
146     {
147         scratch[iidx] = 0.0;
148     }
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
166
167         fix0             = _mm256_setzero_ps();
168         fiy0             = _mm256_setzero_ps();
169         fiz0             = _mm256_setzero_ps();
170
171         /* Load parameters for i particles */
172         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
173         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
174
175         /* Reset potential sums */
176         velecsum         = _mm256_setzero_ps();
177         vvdwsum          = _mm256_setzero_ps();
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
181         {
182
183             /* Get j neighbor index, and coordinate index */
184             jnrA             = jjnr[jidx];
185             jnrB             = jjnr[jidx+1];
186             jnrC             = jjnr[jidx+2];
187             jnrD             = jjnr[jidx+3];
188             jnrE             = jjnr[jidx+4];
189             jnrF             = jjnr[jidx+5];
190             jnrG             = jjnr[jidx+6];
191             jnrH             = jjnr[jidx+7];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194             j_coord_offsetC  = DIM*jnrC;
195             j_coord_offsetD  = DIM*jnrD;
196             j_coord_offsetE  = DIM*jnrE;
197             j_coord_offsetF  = DIM*jnrF;
198             j_coord_offsetG  = DIM*jnrG;
199             j_coord_offsetH  = DIM*jnrH;
200
201             /* load j atom coordinates */
202             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
203                                                  x+j_coord_offsetC,x+j_coord_offsetD,
204                                                  x+j_coord_offsetE,x+j_coord_offsetF,
205                                                  x+j_coord_offsetG,x+j_coord_offsetH,
206                                                  &jx0,&jy0,&jz0);
207
208             /* Calculate displacement vector */
209             dx00             = _mm256_sub_ps(ix0,jx0);
210             dy00             = _mm256_sub_ps(iy0,jy0);
211             dz00             = _mm256_sub_ps(iz0,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
215
216             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
217
218             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
219
220             /* Load parameters for j particles */
221             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
222                                                                  charge+jnrC+0,charge+jnrD+0,
223                                                                  charge+jnrE+0,charge+jnrF+0,
224                                                                  charge+jnrG+0,charge+jnrH+0);
225             vdwjidx0A        = 2*vdwtype[jnrA+0];
226             vdwjidx0B        = 2*vdwtype[jnrB+0];
227             vdwjidx0C        = 2*vdwtype[jnrC+0];
228             vdwjidx0D        = 2*vdwtype[jnrD+0];
229             vdwjidx0E        = 2*vdwtype[jnrE+0];
230             vdwjidx0F        = 2*vdwtype[jnrF+0];
231             vdwjidx0G        = 2*vdwtype[jnrG+0];
232             vdwjidx0H        = 2*vdwtype[jnrH+0];
233
234             /**************************
235              * CALCULATE INTERACTIONS *
236              **************************/
237
238             if (gmx_mm256_any_lt(rsq00,rcutoff2))
239             {
240
241             /* Compute parameters for interactions between i and j atoms */
242             qq00             = _mm256_mul_ps(iq0,jq0);
243             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
244                                             vdwioffsetptr0+vdwjidx0B,
245                                             vdwioffsetptr0+vdwjidx0C,
246                                             vdwioffsetptr0+vdwjidx0D,
247                                             vdwioffsetptr0+vdwjidx0E,
248                                             vdwioffsetptr0+vdwjidx0F,
249                                             vdwioffsetptr0+vdwjidx0G,
250                                             vdwioffsetptr0+vdwjidx0H,
251                                             &c6_00,&c12_00);
252
253             /* REACTION-FIELD ELECTROSTATICS */
254             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
255             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
256
257             /* LENNARD-JONES DISPERSION/REPULSION */
258
259             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
260             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
261             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
262             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
263                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
264             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
265
266             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
267
268             /* Update potential sum for this i atom from the interaction with this j atom. */
269             velec            = _mm256_and_ps(velec,cutoff_mask);
270             velecsum         = _mm256_add_ps(velecsum,velec);
271             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
272             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
273
274             fscal            = _mm256_add_ps(felec,fvdw);
275
276             fscal            = _mm256_and_ps(fscal,cutoff_mask);
277
278             /* Calculate temporary vectorial force */
279             tx               = _mm256_mul_ps(fscal,dx00);
280             ty               = _mm256_mul_ps(fscal,dy00);
281             tz               = _mm256_mul_ps(fscal,dz00);
282
283             /* Update vectorial force */
284             fix0             = _mm256_add_ps(fix0,tx);
285             fiy0             = _mm256_add_ps(fiy0,ty);
286             fiz0             = _mm256_add_ps(fiz0,tz);
287
288             fjptrA             = f+j_coord_offsetA;
289             fjptrB             = f+j_coord_offsetB;
290             fjptrC             = f+j_coord_offsetC;
291             fjptrD             = f+j_coord_offsetD;
292             fjptrE             = f+j_coord_offsetE;
293             fjptrF             = f+j_coord_offsetF;
294             fjptrG             = f+j_coord_offsetG;
295             fjptrH             = f+j_coord_offsetH;
296             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
297
298             }
299
300             /* Inner loop uses 54 flops */
301         }
302
303         if(jidx<j_index_end)
304         {
305
306             /* Get j neighbor index, and coordinate index */
307             jnrlistA         = jjnr[jidx];
308             jnrlistB         = jjnr[jidx+1];
309             jnrlistC         = jjnr[jidx+2];
310             jnrlistD         = jjnr[jidx+3];
311             jnrlistE         = jjnr[jidx+4];
312             jnrlistF         = jjnr[jidx+5];
313             jnrlistG         = jjnr[jidx+6];
314             jnrlistH         = jjnr[jidx+7];
315             /* Sign of each element will be negative for non-real atoms.
316              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
317              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
318              */
319             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
320                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
321                                             
322             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
323             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
324             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
325             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
326             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
327             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
328             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
329             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
330             j_coord_offsetA  = DIM*jnrA;
331             j_coord_offsetB  = DIM*jnrB;
332             j_coord_offsetC  = DIM*jnrC;
333             j_coord_offsetD  = DIM*jnrD;
334             j_coord_offsetE  = DIM*jnrE;
335             j_coord_offsetF  = DIM*jnrF;
336             j_coord_offsetG  = DIM*jnrG;
337             j_coord_offsetH  = DIM*jnrH;
338
339             /* load j atom coordinates */
340             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
341                                                  x+j_coord_offsetC,x+j_coord_offsetD,
342                                                  x+j_coord_offsetE,x+j_coord_offsetF,
343                                                  x+j_coord_offsetG,x+j_coord_offsetH,
344                                                  &jx0,&jy0,&jz0);
345
346             /* Calculate displacement vector */
347             dx00             = _mm256_sub_ps(ix0,jx0);
348             dy00             = _mm256_sub_ps(iy0,jy0);
349             dz00             = _mm256_sub_ps(iz0,jz0);
350
351             /* Calculate squared distance and things based on it */
352             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
353
354             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
355
356             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
357
358             /* Load parameters for j particles */
359             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
360                                                                  charge+jnrC+0,charge+jnrD+0,
361                                                                  charge+jnrE+0,charge+jnrF+0,
362                                                                  charge+jnrG+0,charge+jnrH+0);
363             vdwjidx0A        = 2*vdwtype[jnrA+0];
364             vdwjidx0B        = 2*vdwtype[jnrB+0];
365             vdwjidx0C        = 2*vdwtype[jnrC+0];
366             vdwjidx0D        = 2*vdwtype[jnrD+0];
367             vdwjidx0E        = 2*vdwtype[jnrE+0];
368             vdwjidx0F        = 2*vdwtype[jnrF+0];
369             vdwjidx0G        = 2*vdwtype[jnrG+0];
370             vdwjidx0H        = 2*vdwtype[jnrH+0];
371
372             /**************************
373              * CALCULATE INTERACTIONS *
374              **************************/
375
376             if (gmx_mm256_any_lt(rsq00,rcutoff2))
377             {
378
379             /* Compute parameters for interactions between i and j atoms */
380             qq00             = _mm256_mul_ps(iq0,jq0);
381             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
382                                             vdwioffsetptr0+vdwjidx0B,
383                                             vdwioffsetptr0+vdwjidx0C,
384                                             vdwioffsetptr0+vdwjidx0D,
385                                             vdwioffsetptr0+vdwjidx0E,
386                                             vdwioffsetptr0+vdwjidx0F,
387                                             vdwioffsetptr0+vdwjidx0G,
388                                             vdwioffsetptr0+vdwjidx0H,
389                                             &c6_00,&c12_00);
390
391             /* REACTION-FIELD ELECTROSTATICS */
392             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
393             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
394
395             /* LENNARD-JONES DISPERSION/REPULSION */
396
397             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
398             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
399             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
400             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
401                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
402             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
403
404             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
405
406             /* Update potential sum for this i atom from the interaction with this j atom. */
407             velec            = _mm256_and_ps(velec,cutoff_mask);
408             velec            = _mm256_andnot_ps(dummy_mask,velec);
409             velecsum         = _mm256_add_ps(velecsum,velec);
410             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
411             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
412             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
413
414             fscal            = _mm256_add_ps(felec,fvdw);
415
416             fscal            = _mm256_and_ps(fscal,cutoff_mask);
417
418             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
419
420             /* Calculate temporary vectorial force */
421             tx               = _mm256_mul_ps(fscal,dx00);
422             ty               = _mm256_mul_ps(fscal,dy00);
423             tz               = _mm256_mul_ps(fscal,dz00);
424
425             /* Update vectorial force */
426             fix0             = _mm256_add_ps(fix0,tx);
427             fiy0             = _mm256_add_ps(fiy0,ty);
428             fiz0             = _mm256_add_ps(fiz0,tz);
429
430             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
431             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
432             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
433             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
434             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
435             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
436             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
437             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
438             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
439
440             }
441
442             /* Inner loop uses 54 flops */
443         }
444
445         /* End of innermost loop */
446
447         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
448                                                  f+i_coord_offset,fshift+i_shift_offset);
449
450         ggid                        = gid[iidx];
451         /* Update potential energies */
452         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
453         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
454
455         /* Increment number of inner iterations */
456         inneriter                  += j_index_end - j_index_start;
457
458         /* Outer loop uses 9 flops */
459     }
460
461     /* Increment number of outer iterations */
462     outeriter        += nri;
463
464     /* Update outer/inner flops */
465
466     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54);
467 }
468 /*
469  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_256_single
470  * Electrostatics interaction: ReactionField
471  * VdW interaction:            LennardJones
472  * Geometry:                   Particle-Particle
473  * Calculate force/pot:        Force
474  */
475 void
476 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_256_single
477                     (t_nblist                    * gmx_restrict       nlist,
478                      rvec                        * gmx_restrict          xx,
479                      rvec                        * gmx_restrict          ff,
480                      t_forcerec                  * gmx_restrict          fr,
481                      t_mdatoms                   * gmx_restrict     mdatoms,
482                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
483                      t_nrnb                      * gmx_restrict        nrnb)
484 {
485     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
486      * just 0 for non-waters.
487      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
488      * jnr indices corresponding to data put in the four positions in the SIMD register.
489      */
490     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
491     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
492     int              jnrA,jnrB,jnrC,jnrD;
493     int              jnrE,jnrF,jnrG,jnrH;
494     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
495     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
496     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
497     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
498     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
499     real             rcutoff_scalar;
500     real             *shiftvec,*fshift,*x,*f;
501     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
502     real             scratch[4*DIM];
503     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
504     real *           vdwioffsetptr0;
505     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
506     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
507     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
508     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
509     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
510     real             *charge;
511     int              nvdwtype;
512     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
513     int              *vdwtype;
514     real             *vdwparam;
515     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
516     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
517     __m256           dummy_mask,cutoff_mask;
518     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
519     __m256           one     = _mm256_set1_ps(1.0);
520     __m256           two     = _mm256_set1_ps(2.0);
521     x                = xx[0];
522     f                = ff[0];
523
524     nri              = nlist->nri;
525     iinr             = nlist->iinr;
526     jindex           = nlist->jindex;
527     jjnr             = nlist->jjnr;
528     shiftidx         = nlist->shift;
529     gid              = nlist->gid;
530     shiftvec         = fr->shift_vec[0];
531     fshift           = fr->fshift[0];
532     facel            = _mm256_set1_ps(fr->epsfac);
533     charge           = mdatoms->chargeA;
534     krf              = _mm256_set1_ps(fr->ic->k_rf);
535     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
536     crf              = _mm256_set1_ps(fr->ic->c_rf);
537     nvdwtype         = fr->ntype;
538     vdwparam         = fr->nbfp;
539     vdwtype          = mdatoms->typeA;
540
541     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
542     rcutoff_scalar   = fr->rcoulomb;
543     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
544     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
545
546     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
547     rvdw             = _mm256_set1_ps(fr->rvdw);
548
549     /* Avoid stupid compiler warnings */
550     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
551     j_coord_offsetA = 0;
552     j_coord_offsetB = 0;
553     j_coord_offsetC = 0;
554     j_coord_offsetD = 0;
555     j_coord_offsetE = 0;
556     j_coord_offsetF = 0;
557     j_coord_offsetG = 0;
558     j_coord_offsetH = 0;
559
560     outeriter        = 0;
561     inneriter        = 0;
562
563     for(iidx=0;iidx<4*DIM;iidx++)
564     {
565         scratch[iidx] = 0.0;
566     }
567
568     /* Start outer loop over neighborlists */
569     for(iidx=0; iidx<nri; iidx++)
570     {
571         /* Load shift vector for this list */
572         i_shift_offset   = DIM*shiftidx[iidx];
573
574         /* Load limits for loop over neighbors */
575         j_index_start    = jindex[iidx];
576         j_index_end      = jindex[iidx+1];
577
578         /* Get outer coordinate index */
579         inr              = iinr[iidx];
580         i_coord_offset   = DIM*inr;
581
582         /* Load i particle coords and add shift vector */
583         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
584
585         fix0             = _mm256_setzero_ps();
586         fiy0             = _mm256_setzero_ps();
587         fiz0             = _mm256_setzero_ps();
588
589         /* Load parameters for i particles */
590         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
591         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
592
593         /* Start inner kernel loop */
594         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
595         {
596
597             /* Get j neighbor index, and coordinate index */
598             jnrA             = jjnr[jidx];
599             jnrB             = jjnr[jidx+1];
600             jnrC             = jjnr[jidx+2];
601             jnrD             = jjnr[jidx+3];
602             jnrE             = jjnr[jidx+4];
603             jnrF             = jjnr[jidx+5];
604             jnrG             = jjnr[jidx+6];
605             jnrH             = jjnr[jidx+7];
606             j_coord_offsetA  = DIM*jnrA;
607             j_coord_offsetB  = DIM*jnrB;
608             j_coord_offsetC  = DIM*jnrC;
609             j_coord_offsetD  = DIM*jnrD;
610             j_coord_offsetE  = DIM*jnrE;
611             j_coord_offsetF  = DIM*jnrF;
612             j_coord_offsetG  = DIM*jnrG;
613             j_coord_offsetH  = DIM*jnrH;
614
615             /* load j atom coordinates */
616             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
617                                                  x+j_coord_offsetC,x+j_coord_offsetD,
618                                                  x+j_coord_offsetE,x+j_coord_offsetF,
619                                                  x+j_coord_offsetG,x+j_coord_offsetH,
620                                                  &jx0,&jy0,&jz0);
621
622             /* Calculate displacement vector */
623             dx00             = _mm256_sub_ps(ix0,jx0);
624             dy00             = _mm256_sub_ps(iy0,jy0);
625             dz00             = _mm256_sub_ps(iz0,jz0);
626
627             /* Calculate squared distance and things based on it */
628             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
629
630             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
631
632             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
633
634             /* Load parameters for j particles */
635             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
636                                                                  charge+jnrC+0,charge+jnrD+0,
637                                                                  charge+jnrE+0,charge+jnrF+0,
638                                                                  charge+jnrG+0,charge+jnrH+0);
639             vdwjidx0A        = 2*vdwtype[jnrA+0];
640             vdwjidx0B        = 2*vdwtype[jnrB+0];
641             vdwjidx0C        = 2*vdwtype[jnrC+0];
642             vdwjidx0D        = 2*vdwtype[jnrD+0];
643             vdwjidx0E        = 2*vdwtype[jnrE+0];
644             vdwjidx0F        = 2*vdwtype[jnrF+0];
645             vdwjidx0G        = 2*vdwtype[jnrG+0];
646             vdwjidx0H        = 2*vdwtype[jnrH+0];
647
648             /**************************
649              * CALCULATE INTERACTIONS *
650              **************************/
651
652             if (gmx_mm256_any_lt(rsq00,rcutoff2))
653             {
654
655             /* Compute parameters for interactions between i and j atoms */
656             qq00             = _mm256_mul_ps(iq0,jq0);
657             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
658                                             vdwioffsetptr0+vdwjidx0B,
659                                             vdwioffsetptr0+vdwjidx0C,
660                                             vdwioffsetptr0+vdwjidx0D,
661                                             vdwioffsetptr0+vdwjidx0E,
662                                             vdwioffsetptr0+vdwjidx0F,
663                                             vdwioffsetptr0+vdwjidx0G,
664                                             vdwioffsetptr0+vdwjidx0H,
665                                             &c6_00,&c12_00);
666
667             /* REACTION-FIELD ELECTROSTATICS */
668             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
669
670             /* LENNARD-JONES DISPERSION/REPULSION */
671
672             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
673             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
674
675             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
676
677             fscal            = _mm256_add_ps(felec,fvdw);
678
679             fscal            = _mm256_and_ps(fscal,cutoff_mask);
680
681             /* Calculate temporary vectorial force */
682             tx               = _mm256_mul_ps(fscal,dx00);
683             ty               = _mm256_mul_ps(fscal,dy00);
684             tz               = _mm256_mul_ps(fscal,dz00);
685
686             /* Update vectorial force */
687             fix0             = _mm256_add_ps(fix0,tx);
688             fiy0             = _mm256_add_ps(fiy0,ty);
689             fiz0             = _mm256_add_ps(fiz0,tz);
690
691             fjptrA             = f+j_coord_offsetA;
692             fjptrB             = f+j_coord_offsetB;
693             fjptrC             = f+j_coord_offsetC;
694             fjptrD             = f+j_coord_offsetD;
695             fjptrE             = f+j_coord_offsetE;
696             fjptrF             = f+j_coord_offsetF;
697             fjptrG             = f+j_coord_offsetG;
698             fjptrH             = f+j_coord_offsetH;
699             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
700
701             }
702
703             /* Inner loop uses 37 flops */
704         }
705
706         if(jidx<j_index_end)
707         {
708
709             /* Get j neighbor index, and coordinate index */
710             jnrlistA         = jjnr[jidx];
711             jnrlistB         = jjnr[jidx+1];
712             jnrlistC         = jjnr[jidx+2];
713             jnrlistD         = jjnr[jidx+3];
714             jnrlistE         = jjnr[jidx+4];
715             jnrlistF         = jjnr[jidx+5];
716             jnrlistG         = jjnr[jidx+6];
717             jnrlistH         = jjnr[jidx+7];
718             /* Sign of each element will be negative for non-real atoms.
719              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
720              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
721              */
722             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
723                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
724                                             
725             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
726             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
727             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
728             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
729             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
730             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
731             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
732             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
733             j_coord_offsetA  = DIM*jnrA;
734             j_coord_offsetB  = DIM*jnrB;
735             j_coord_offsetC  = DIM*jnrC;
736             j_coord_offsetD  = DIM*jnrD;
737             j_coord_offsetE  = DIM*jnrE;
738             j_coord_offsetF  = DIM*jnrF;
739             j_coord_offsetG  = DIM*jnrG;
740             j_coord_offsetH  = DIM*jnrH;
741
742             /* load j atom coordinates */
743             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
744                                                  x+j_coord_offsetC,x+j_coord_offsetD,
745                                                  x+j_coord_offsetE,x+j_coord_offsetF,
746                                                  x+j_coord_offsetG,x+j_coord_offsetH,
747                                                  &jx0,&jy0,&jz0);
748
749             /* Calculate displacement vector */
750             dx00             = _mm256_sub_ps(ix0,jx0);
751             dy00             = _mm256_sub_ps(iy0,jy0);
752             dz00             = _mm256_sub_ps(iz0,jz0);
753
754             /* Calculate squared distance and things based on it */
755             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
756
757             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
758
759             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
760
761             /* Load parameters for j particles */
762             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
763                                                                  charge+jnrC+0,charge+jnrD+0,
764                                                                  charge+jnrE+0,charge+jnrF+0,
765                                                                  charge+jnrG+0,charge+jnrH+0);
766             vdwjidx0A        = 2*vdwtype[jnrA+0];
767             vdwjidx0B        = 2*vdwtype[jnrB+0];
768             vdwjidx0C        = 2*vdwtype[jnrC+0];
769             vdwjidx0D        = 2*vdwtype[jnrD+0];
770             vdwjidx0E        = 2*vdwtype[jnrE+0];
771             vdwjidx0F        = 2*vdwtype[jnrF+0];
772             vdwjidx0G        = 2*vdwtype[jnrG+0];
773             vdwjidx0H        = 2*vdwtype[jnrH+0];
774
775             /**************************
776              * CALCULATE INTERACTIONS *
777              **************************/
778
779             if (gmx_mm256_any_lt(rsq00,rcutoff2))
780             {
781
782             /* Compute parameters for interactions between i and j atoms */
783             qq00             = _mm256_mul_ps(iq0,jq0);
784             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
785                                             vdwioffsetptr0+vdwjidx0B,
786                                             vdwioffsetptr0+vdwjidx0C,
787                                             vdwioffsetptr0+vdwjidx0D,
788                                             vdwioffsetptr0+vdwjidx0E,
789                                             vdwioffsetptr0+vdwjidx0F,
790                                             vdwioffsetptr0+vdwjidx0G,
791                                             vdwioffsetptr0+vdwjidx0H,
792                                             &c6_00,&c12_00);
793
794             /* REACTION-FIELD ELECTROSTATICS */
795             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
796
797             /* LENNARD-JONES DISPERSION/REPULSION */
798
799             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
800             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
801
802             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
803
804             fscal            = _mm256_add_ps(felec,fvdw);
805
806             fscal            = _mm256_and_ps(fscal,cutoff_mask);
807
808             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
809
810             /* Calculate temporary vectorial force */
811             tx               = _mm256_mul_ps(fscal,dx00);
812             ty               = _mm256_mul_ps(fscal,dy00);
813             tz               = _mm256_mul_ps(fscal,dz00);
814
815             /* Update vectorial force */
816             fix0             = _mm256_add_ps(fix0,tx);
817             fiy0             = _mm256_add_ps(fiy0,ty);
818             fiz0             = _mm256_add_ps(fiz0,tz);
819
820             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
821             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
822             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
823             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
824             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
825             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
826             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
827             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
828             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
829
830             }
831
832             /* Inner loop uses 37 flops */
833         }
834
835         /* End of innermost loop */
836
837         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
838                                                  f+i_coord_offset,fshift+i_shift_offset);
839
840         /* Increment number of inner iterations */
841         inneriter                  += j_index_end - j_index_start;
842
843         /* Outer loop uses 7 flops */
844     }
845
846     /* Increment number of outer iterations */
847     outeriter        += nri;
848
849     /* Update outer/inner flops */
850
851     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);
852 }