Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_256_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
88     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
97     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
98     __m256           dummy_mask,cutoff_mask;
99     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
100     __m256           one     = _mm256_set1_ps(1.0);
101     __m256           two     = _mm256_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm256_set1_ps(fr->ic->epsfac);
114     charge           = mdatoms->chargeA;
115     krf              = _mm256_set1_ps(fr->ic->k_rf);
116     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
117     crf              = _mm256_set1_ps(fr->ic->c_rf);
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
123     rcutoff_scalar   = fr->ic->rcoulomb;
124     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
125     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
126
127     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
128     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136     j_coord_offsetE = 0;
137     j_coord_offsetF = 0;
138     j_coord_offsetG = 0;
139     j_coord_offsetH = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _mm256_setzero_ps();
167         fiy0             = _mm256_setzero_ps();
168         fiz0             = _mm256_setzero_ps();
169
170         /* Load parameters for i particles */
171         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
172         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm256_setzero_ps();
176         vvdwsum          = _mm256_setzero_ps();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             jnrE             = jjnr[jidx+4];
188             jnrF             = jjnr[jidx+5];
189             jnrG             = jjnr[jidx+6];
190             jnrH             = jjnr[jidx+7];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195             j_coord_offsetE  = DIM*jnrE;
196             j_coord_offsetF  = DIM*jnrF;
197             j_coord_offsetG  = DIM*jnrG;
198             j_coord_offsetH  = DIM*jnrH;
199
200             /* load j atom coordinates */
201             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
202                                                  x+j_coord_offsetC,x+j_coord_offsetD,
203                                                  x+j_coord_offsetE,x+j_coord_offsetF,
204                                                  x+j_coord_offsetG,x+j_coord_offsetH,
205                                                  &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm256_sub_ps(ix0,jx0);
209             dy00             = _mm256_sub_ps(iy0,jy0);
210             dz00             = _mm256_sub_ps(iz0,jz0);
211
212             /* Calculate squared distance and things based on it */
213             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
214
215             rinv00           = avx256_invsqrt_f(rsq00);
216
217             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
221                                                                  charge+jnrC+0,charge+jnrD+0,
222                                                                  charge+jnrE+0,charge+jnrF+0,
223                                                                  charge+jnrG+0,charge+jnrH+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226             vdwjidx0C        = 2*vdwtype[jnrC+0];
227             vdwjidx0D        = 2*vdwtype[jnrD+0];
228             vdwjidx0E        = 2*vdwtype[jnrE+0];
229             vdwjidx0F        = 2*vdwtype[jnrF+0];
230             vdwjidx0G        = 2*vdwtype[jnrG+0];
231             vdwjidx0H        = 2*vdwtype[jnrH+0];
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             if (gmx_mm256_any_lt(rsq00,rcutoff2))
238             {
239
240             /* Compute parameters for interactions between i and j atoms */
241             qq00             = _mm256_mul_ps(iq0,jq0);
242             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
243                                             vdwioffsetptr0+vdwjidx0B,
244                                             vdwioffsetptr0+vdwjidx0C,
245                                             vdwioffsetptr0+vdwjidx0D,
246                                             vdwioffsetptr0+vdwjidx0E,
247                                             vdwioffsetptr0+vdwjidx0F,
248                                             vdwioffsetptr0+vdwjidx0G,
249                                             vdwioffsetptr0+vdwjidx0H,
250                                             &c6_00,&c12_00);
251
252             /* REACTION-FIELD ELECTROSTATICS */
253             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
254             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
255
256             /* LENNARD-JONES DISPERSION/REPULSION */
257
258             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
259             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
260             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
261             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
262                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
263             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
264
265             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
266
267             /* Update potential sum for this i atom from the interaction with this j atom. */
268             velec            = _mm256_and_ps(velec,cutoff_mask);
269             velecsum         = _mm256_add_ps(velecsum,velec);
270             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
271             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
272
273             fscal            = _mm256_add_ps(felec,fvdw);
274
275             fscal            = _mm256_and_ps(fscal,cutoff_mask);
276
277             /* Calculate temporary vectorial force */
278             tx               = _mm256_mul_ps(fscal,dx00);
279             ty               = _mm256_mul_ps(fscal,dy00);
280             tz               = _mm256_mul_ps(fscal,dz00);
281
282             /* Update vectorial force */
283             fix0             = _mm256_add_ps(fix0,tx);
284             fiy0             = _mm256_add_ps(fiy0,ty);
285             fiz0             = _mm256_add_ps(fiz0,tz);
286
287             fjptrA             = f+j_coord_offsetA;
288             fjptrB             = f+j_coord_offsetB;
289             fjptrC             = f+j_coord_offsetC;
290             fjptrD             = f+j_coord_offsetD;
291             fjptrE             = f+j_coord_offsetE;
292             fjptrF             = f+j_coord_offsetF;
293             fjptrG             = f+j_coord_offsetG;
294             fjptrH             = f+j_coord_offsetH;
295             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
296
297             }
298
299             /* Inner loop uses 54 flops */
300         }
301
302         if(jidx<j_index_end)
303         {
304
305             /* Get j neighbor index, and coordinate index */
306             jnrlistA         = jjnr[jidx];
307             jnrlistB         = jjnr[jidx+1];
308             jnrlistC         = jjnr[jidx+2];
309             jnrlistD         = jjnr[jidx+3];
310             jnrlistE         = jjnr[jidx+4];
311             jnrlistF         = jjnr[jidx+5];
312             jnrlistG         = jjnr[jidx+6];
313             jnrlistH         = jjnr[jidx+7];
314             /* Sign of each element will be negative for non-real atoms.
315              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
316              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
317              */
318             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
319                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
320                                             
321             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
322             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
323             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
324             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
325             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
326             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
327             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
328             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
329             j_coord_offsetA  = DIM*jnrA;
330             j_coord_offsetB  = DIM*jnrB;
331             j_coord_offsetC  = DIM*jnrC;
332             j_coord_offsetD  = DIM*jnrD;
333             j_coord_offsetE  = DIM*jnrE;
334             j_coord_offsetF  = DIM*jnrF;
335             j_coord_offsetG  = DIM*jnrG;
336             j_coord_offsetH  = DIM*jnrH;
337
338             /* load j atom coordinates */
339             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
340                                                  x+j_coord_offsetC,x+j_coord_offsetD,
341                                                  x+j_coord_offsetE,x+j_coord_offsetF,
342                                                  x+j_coord_offsetG,x+j_coord_offsetH,
343                                                  &jx0,&jy0,&jz0);
344
345             /* Calculate displacement vector */
346             dx00             = _mm256_sub_ps(ix0,jx0);
347             dy00             = _mm256_sub_ps(iy0,jy0);
348             dz00             = _mm256_sub_ps(iz0,jz0);
349
350             /* Calculate squared distance and things based on it */
351             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
352
353             rinv00           = avx256_invsqrt_f(rsq00);
354
355             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
356
357             /* Load parameters for j particles */
358             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
359                                                                  charge+jnrC+0,charge+jnrD+0,
360                                                                  charge+jnrE+0,charge+jnrF+0,
361                                                                  charge+jnrG+0,charge+jnrH+0);
362             vdwjidx0A        = 2*vdwtype[jnrA+0];
363             vdwjidx0B        = 2*vdwtype[jnrB+0];
364             vdwjidx0C        = 2*vdwtype[jnrC+0];
365             vdwjidx0D        = 2*vdwtype[jnrD+0];
366             vdwjidx0E        = 2*vdwtype[jnrE+0];
367             vdwjidx0F        = 2*vdwtype[jnrF+0];
368             vdwjidx0G        = 2*vdwtype[jnrG+0];
369             vdwjidx0H        = 2*vdwtype[jnrH+0];
370
371             /**************************
372              * CALCULATE INTERACTIONS *
373              **************************/
374
375             if (gmx_mm256_any_lt(rsq00,rcutoff2))
376             {
377
378             /* Compute parameters for interactions between i and j atoms */
379             qq00             = _mm256_mul_ps(iq0,jq0);
380             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
381                                             vdwioffsetptr0+vdwjidx0B,
382                                             vdwioffsetptr0+vdwjidx0C,
383                                             vdwioffsetptr0+vdwjidx0D,
384                                             vdwioffsetptr0+vdwjidx0E,
385                                             vdwioffsetptr0+vdwjidx0F,
386                                             vdwioffsetptr0+vdwjidx0G,
387                                             vdwioffsetptr0+vdwjidx0H,
388                                             &c6_00,&c12_00);
389
390             /* REACTION-FIELD ELECTROSTATICS */
391             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
392             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
393
394             /* LENNARD-JONES DISPERSION/REPULSION */
395
396             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
397             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
398             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
399             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
400                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
401             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
402
403             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
404
405             /* Update potential sum for this i atom from the interaction with this j atom. */
406             velec            = _mm256_and_ps(velec,cutoff_mask);
407             velec            = _mm256_andnot_ps(dummy_mask,velec);
408             velecsum         = _mm256_add_ps(velecsum,velec);
409             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
410             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
411             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
412
413             fscal            = _mm256_add_ps(felec,fvdw);
414
415             fscal            = _mm256_and_ps(fscal,cutoff_mask);
416
417             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
418
419             /* Calculate temporary vectorial force */
420             tx               = _mm256_mul_ps(fscal,dx00);
421             ty               = _mm256_mul_ps(fscal,dy00);
422             tz               = _mm256_mul_ps(fscal,dz00);
423
424             /* Update vectorial force */
425             fix0             = _mm256_add_ps(fix0,tx);
426             fiy0             = _mm256_add_ps(fiy0,ty);
427             fiz0             = _mm256_add_ps(fiz0,tz);
428
429             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
430             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
431             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
432             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
433             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
434             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
435             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
436             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
437             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
438
439             }
440
441             /* Inner loop uses 54 flops */
442         }
443
444         /* End of innermost loop */
445
446         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
447                                                  f+i_coord_offset,fshift+i_shift_offset);
448
449         ggid                        = gid[iidx];
450         /* Update potential energies */
451         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
452         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
453
454         /* Increment number of inner iterations */
455         inneriter                  += j_index_end - j_index_start;
456
457         /* Outer loop uses 9 flops */
458     }
459
460     /* Increment number of outer iterations */
461     outeriter        += nri;
462
463     /* Update outer/inner flops */
464
465     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54);
466 }
467 /*
468  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_256_single
469  * Electrostatics interaction: ReactionField
470  * VdW interaction:            LennardJones
471  * Geometry:                   Particle-Particle
472  * Calculate force/pot:        Force
473  */
474 void
475 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_256_single
476                     (t_nblist                    * gmx_restrict       nlist,
477                      rvec                        * gmx_restrict          xx,
478                      rvec                        * gmx_restrict          ff,
479                      struct t_forcerec           * gmx_restrict          fr,
480                      t_mdatoms                   * gmx_restrict     mdatoms,
481                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
482                      t_nrnb                      * gmx_restrict        nrnb)
483 {
484     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
485      * just 0 for non-waters.
486      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
487      * jnr indices corresponding to data put in the four positions in the SIMD register.
488      */
489     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
490     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
491     int              jnrA,jnrB,jnrC,jnrD;
492     int              jnrE,jnrF,jnrG,jnrH;
493     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
494     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
495     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
496     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
497     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
498     real             rcutoff_scalar;
499     real             *shiftvec,*fshift,*x,*f;
500     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
501     real             scratch[4*DIM];
502     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
503     real *           vdwioffsetptr0;
504     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
505     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
506     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
507     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
508     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
509     real             *charge;
510     int              nvdwtype;
511     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
512     int              *vdwtype;
513     real             *vdwparam;
514     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
515     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
516     __m256           dummy_mask,cutoff_mask;
517     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
518     __m256           one     = _mm256_set1_ps(1.0);
519     __m256           two     = _mm256_set1_ps(2.0);
520     x                = xx[0];
521     f                = ff[0];
522
523     nri              = nlist->nri;
524     iinr             = nlist->iinr;
525     jindex           = nlist->jindex;
526     jjnr             = nlist->jjnr;
527     shiftidx         = nlist->shift;
528     gid              = nlist->gid;
529     shiftvec         = fr->shift_vec[0];
530     fshift           = fr->fshift[0];
531     facel            = _mm256_set1_ps(fr->ic->epsfac);
532     charge           = mdatoms->chargeA;
533     krf              = _mm256_set1_ps(fr->ic->k_rf);
534     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
535     crf              = _mm256_set1_ps(fr->ic->c_rf);
536     nvdwtype         = fr->ntype;
537     vdwparam         = fr->nbfp;
538     vdwtype          = mdatoms->typeA;
539
540     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
541     rcutoff_scalar   = fr->ic->rcoulomb;
542     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
543     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
544
545     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
546     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
547
548     /* Avoid stupid compiler warnings */
549     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
550     j_coord_offsetA = 0;
551     j_coord_offsetB = 0;
552     j_coord_offsetC = 0;
553     j_coord_offsetD = 0;
554     j_coord_offsetE = 0;
555     j_coord_offsetF = 0;
556     j_coord_offsetG = 0;
557     j_coord_offsetH = 0;
558
559     outeriter        = 0;
560     inneriter        = 0;
561
562     for(iidx=0;iidx<4*DIM;iidx++)
563     {
564         scratch[iidx] = 0.0;
565     }
566
567     /* Start outer loop over neighborlists */
568     for(iidx=0; iidx<nri; iidx++)
569     {
570         /* Load shift vector for this list */
571         i_shift_offset   = DIM*shiftidx[iidx];
572
573         /* Load limits for loop over neighbors */
574         j_index_start    = jindex[iidx];
575         j_index_end      = jindex[iidx+1];
576
577         /* Get outer coordinate index */
578         inr              = iinr[iidx];
579         i_coord_offset   = DIM*inr;
580
581         /* Load i particle coords and add shift vector */
582         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
583
584         fix0             = _mm256_setzero_ps();
585         fiy0             = _mm256_setzero_ps();
586         fiz0             = _mm256_setzero_ps();
587
588         /* Load parameters for i particles */
589         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
590         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
591
592         /* Start inner kernel loop */
593         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
594         {
595
596             /* Get j neighbor index, and coordinate index */
597             jnrA             = jjnr[jidx];
598             jnrB             = jjnr[jidx+1];
599             jnrC             = jjnr[jidx+2];
600             jnrD             = jjnr[jidx+3];
601             jnrE             = jjnr[jidx+4];
602             jnrF             = jjnr[jidx+5];
603             jnrG             = jjnr[jidx+6];
604             jnrH             = jjnr[jidx+7];
605             j_coord_offsetA  = DIM*jnrA;
606             j_coord_offsetB  = DIM*jnrB;
607             j_coord_offsetC  = DIM*jnrC;
608             j_coord_offsetD  = DIM*jnrD;
609             j_coord_offsetE  = DIM*jnrE;
610             j_coord_offsetF  = DIM*jnrF;
611             j_coord_offsetG  = DIM*jnrG;
612             j_coord_offsetH  = DIM*jnrH;
613
614             /* load j atom coordinates */
615             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
616                                                  x+j_coord_offsetC,x+j_coord_offsetD,
617                                                  x+j_coord_offsetE,x+j_coord_offsetF,
618                                                  x+j_coord_offsetG,x+j_coord_offsetH,
619                                                  &jx0,&jy0,&jz0);
620
621             /* Calculate displacement vector */
622             dx00             = _mm256_sub_ps(ix0,jx0);
623             dy00             = _mm256_sub_ps(iy0,jy0);
624             dz00             = _mm256_sub_ps(iz0,jz0);
625
626             /* Calculate squared distance and things based on it */
627             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
628
629             rinv00           = avx256_invsqrt_f(rsq00);
630
631             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
632
633             /* Load parameters for j particles */
634             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
635                                                                  charge+jnrC+0,charge+jnrD+0,
636                                                                  charge+jnrE+0,charge+jnrF+0,
637                                                                  charge+jnrG+0,charge+jnrH+0);
638             vdwjidx0A        = 2*vdwtype[jnrA+0];
639             vdwjidx0B        = 2*vdwtype[jnrB+0];
640             vdwjidx0C        = 2*vdwtype[jnrC+0];
641             vdwjidx0D        = 2*vdwtype[jnrD+0];
642             vdwjidx0E        = 2*vdwtype[jnrE+0];
643             vdwjidx0F        = 2*vdwtype[jnrF+0];
644             vdwjidx0G        = 2*vdwtype[jnrG+0];
645             vdwjidx0H        = 2*vdwtype[jnrH+0];
646
647             /**************************
648              * CALCULATE INTERACTIONS *
649              **************************/
650
651             if (gmx_mm256_any_lt(rsq00,rcutoff2))
652             {
653
654             /* Compute parameters for interactions between i and j atoms */
655             qq00             = _mm256_mul_ps(iq0,jq0);
656             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
657                                             vdwioffsetptr0+vdwjidx0B,
658                                             vdwioffsetptr0+vdwjidx0C,
659                                             vdwioffsetptr0+vdwjidx0D,
660                                             vdwioffsetptr0+vdwjidx0E,
661                                             vdwioffsetptr0+vdwjidx0F,
662                                             vdwioffsetptr0+vdwjidx0G,
663                                             vdwioffsetptr0+vdwjidx0H,
664                                             &c6_00,&c12_00);
665
666             /* REACTION-FIELD ELECTROSTATICS */
667             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
668
669             /* LENNARD-JONES DISPERSION/REPULSION */
670
671             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
672             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
673
674             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
675
676             fscal            = _mm256_add_ps(felec,fvdw);
677
678             fscal            = _mm256_and_ps(fscal,cutoff_mask);
679
680             /* Calculate temporary vectorial force */
681             tx               = _mm256_mul_ps(fscal,dx00);
682             ty               = _mm256_mul_ps(fscal,dy00);
683             tz               = _mm256_mul_ps(fscal,dz00);
684
685             /* Update vectorial force */
686             fix0             = _mm256_add_ps(fix0,tx);
687             fiy0             = _mm256_add_ps(fiy0,ty);
688             fiz0             = _mm256_add_ps(fiz0,tz);
689
690             fjptrA             = f+j_coord_offsetA;
691             fjptrB             = f+j_coord_offsetB;
692             fjptrC             = f+j_coord_offsetC;
693             fjptrD             = f+j_coord_offsetD;
694             fjptrE             = f+j_coord_offsetE;
695             fjptrF             = f+j_coord_offsetF;
696             fjptrG             = f+j_coord_offsetG;
697             fjptrH             = f+j_coord_offsetH;
698             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
699
700             }
701
702             /* Inner loop uses 37 flops */
703         }
704
705         if(jidx<j_index_end)
706         {
707
708             /* Get j neighbor index, and coordinate index */
709             jnrlistA         = jjnr[jidx];
710             jnrlistB         = jjnr[jidx+1];
711             jnrlistC         = jjnr[jidx+2];
712             jnrlistD         = jjnr[jidx+3];
713             jnrlistE         = jjnr[jidx+4];
714             jnrlistF         = jjnr[jidx+5];
715             jnrlistG         = jjnr[jidx+6];
716             jnrlistH         = jjnr[jidx+7];
717             /* Sign of each element will be negative for non-real atoms.
718              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
719              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
720              */
721             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
722                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
723                                             
724             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
725             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
726             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
727             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
728             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
729             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
730             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
731             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
732             j_coord_offsetA  = DIM*jnrA;
733             j_coord_offsetB  = DIM*jnrB;
734             j_coord_offsetC  = DIM*jnrC;
735             j_coord_offsetD  = DIM*jnrD;
736             j_coord_offsetE  = DIM*jnrE;
737             j_coord_offsetF  = DIM*jnrF;
738             j_coord_offsetG  = DIM*jnrG;
739             j_coord_offsetH  = DIM*jnrH;
740
741             /* load j atom coordinates */
742             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
743                                                  x+j_coord_offsetC,x+j_coord_offsetD,
744                                                  x+j_coord_offsetE,x+j_coord_offsetF,
745                                                  x+j_coord_offsetG,x+j_coord_offsetH,
746                                                  &jx0,&jy0,&jz0);
747
748             /* Calculate displacement vector */
749             dx00             = _mm256_sub_ps(ix0,jx0);
750             dy00             = _mm256_sub_ps(iy0,jy0);
751             dz00             = _mm256_sub_ps(iz0,jz0);
752
753             /* Calculate squared distance and things based on it */
754             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
755
756             rinv00           = avx256_invsqrt_f(rsq00);
757
758             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
759
760             /* Load parameters for j particles */
761             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
762                                                                  charge+jnrC+0,charge+jnrD+0,
763                                                                  charge+jnrE+0,charge+jnrF+0,
764                                                                  charge+jnrG+0,charge+jnrH+0);
765             vdwjidx0A        = 2*vdwtype[jnrA+0];
766             vdwjidx0B        = 2*vdwtype[jnrB+0];
767             vdwjidx0C        = 2*vdwtype[jnrC+0];
768             vdwjidx0D        = 2*vdwtype[jnrD+0];
769             vdwjidx0E        = 2*vdwtype[jnrE+0];
770             vdwjidx0F        = 2*vdwtype[jnrF+0];
771             vdwjidx0G        = 2*vdwtype[jnrG+0];
772             vdwjidx0H        = 2*vdwtype[jnrH+0];
773
774             /**************************
775              * CALCULATE INTERACTIONS *
776              **************************/
777
778             if (gmx_mm256_any_lt(rsq00,rcutoff2))
779             {
780
781             /* Compute parameters for interactions between i and j atoms */
782             qq00             = _mm256_mul_ps(iq0,jq0);
783             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
784                                             vdwioffsetptr0+vdwjidx0B,
785                                             vdwioffsetptr0+vdwjidx0C,
786                                             vdwioffsetptr0+vdwjidx0D,
787                                             vdwioffsetptr0+vdwjidx0E,
788                                             vdwioffsetptr0+vdwjidx0F,
789                                             vdwioffsetptr0+vdwjidx0G,
790                                             vdwioffsetptr0+vdwjidx0H,
791                                             &c6_00,&c12_00);
792
793             /* REACTION-FIELD ELECTROSTATICS */
794             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
795
796             /* LENNARD-JONES DISPERSION/REPULSION */
797
798             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
799             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
800
801             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
802
803             fscal            = _mm256_add_ps(felec,fvdw);
804
805             fscal            = _mm256_and_ps(fscal,cutoff_mask);
806
807             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
808
809             /* Calculate temporary vectorial force */
810             tx               = _mm256_mul_ps(fscal,dx00);
811             ty               = _mm256_mul_ps(fscal,dy00);
812             tz               = _mm256_mul_ps(fscal,dz00);
813
814             /* Update vectorial force */
815             fix0             = _mm256_add_ps(fix0,tx);
816             fiy0             = _mm256_add_ps(fiy0,ty);
817             fiz0             = _mm256_add_ps(fiz0,tz);
818
819             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
820             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
821             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
822             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
823             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
824             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
825             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
826             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
827             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
828
829             }
830
831             /* Inner loop uses 37 flops */
832         }
833
834         /* End of innermost loop */
835
836         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
837                                                  f+i_coord_offset,fshift+i_shift_offset);
838
839         /* Increment number of inner iterations */
840         inneriter                  += j_index_end - j_index_start;
841
842         /* Outer loop uses 7 flops */
843     }
844
845     /* Increment number of outer iterations */
846     outeriter        += nri;
847
848     /* Update outer/inner flops */
849
850     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);
851 }