Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_256_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
91     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
100     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
101     __m256           dummy_mask,cutoff_mask;
102     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
103     __m256           one     = _mm256_set1_ps(1.0);
104     __m256           two     = _mm256_set1_ps(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm256_set1_ps(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     krf              = _mm256_set1_ps(fr->ic->k_rf);
119     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
120     crf              = _mm256_set1_ps(fr->ic->c_rf);
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
126     rcutoff_scalar   = fr->rcoulomb;
127     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
128     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
129
130     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
131     rvdw             = _mm256_set1_ps(fr->rvdw);
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139     j_coord_offsetE = 0;
140     j_coord_offsetF = 0;
141     j_coord_offsetG = 0;
142     j_coord_offsetH = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
168
169         fix0             = _mm256_setzero_ps();
170         fiy0             = _mm256_setzero_ps();
171         fiz0             = _mm256_setzero_ps();
172
173         /* Load parameters for i particles */
174         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
175         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
176
177         /* Reset potential sums */
178         velecsum         = _mm256_setzero_ps();
179         vvdwsum          = _mm256_setzero_ps();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             jnrC             = jjnr[jidx+2];
189             jnrD             = jjnr[jidx+3];
190             jnrE             = jjnr[jidx+4];
191             jnrF             = jjnr[jidx+5];
192             jnrG             = jjnr[jidx+6];
193             jnrH             = jjnr[jidx+7];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196             j_coord_offsetC  = DIM*jnrC;
197             j_coord_offsetD  = DIM*jnrD;
198             j_coord_offsetE  = DIM*jnrE;
199             j_coord_offsetF  = DIM*jnrF;
200             j_coord_offsetG  = DIM*jnrG;
201             j_coord_offsetH  = DIM*jnrH;
202
203             /* load j atom coordinates */
204             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
205                                                  x+j_coord_offsetC,x+j_coord_offsetD,
206                                                  x+j_coord_offsetE,x+j_coord_offsetF,
207                                                  x+j_coord_offsetG,x+j_coord_offsetH,
208                                                  &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _mm256_sub_ps(ix0,jx0);
212             dy00             = _mm256_sub_ps(iy0,jy0);
213             dz00             = _mm256_sub_ps(iz0,jz0);
214
215             /* Calculate squared distance and things based on it */
216             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
217
218             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
219
220             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
221
222             /* Load parameters for j particles */
223             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
224                                                                  charge+jnrC+0,charge+jnrD+0,
225                                                                  charge+jnrE+0,charge+jnrF+0,
226                                                                  charge+jnrG+0,charge+jnrH+0);
227             vdwjidx0A        = 2*vdwtype[jnrA+0];
228             vdwjidx0B        = 2*vdwtype[jnrB+0];
229             vdwjidx0C        = 2*vdwtype[jnrC+0];
230             vdwjidx0D        = 2*vdwtype[jnrD+0];
231             vdwjidx0E        = 2*vdwtype[jnrE+0];
232             vdwjidx0F        = 2*vdwtype[jnrF+0];
233             vdwjidx0G        = 2*vdwtype[jnrG+0];
234             vdwjidx0H        = 2*vdwtype[jnrH+0];
235
236             /**************************
237              * CALCULATE INTERACTIONS *
238              **************************/
239
240             if (gmx_mm256_any_lt(rsq00,rcutoff2))
241             {
242
243             /* Compute parameters for interactions between i and j atoms */
244             qq00             = _mm256_mul_ps(iq0,jq0);
245             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
246                                             vdwioffsetptr0+vdwjidx0B,
247                                             vdwioffsetptr0+vdwjidx0C,
248                                             vdwioffsetptr0+vdwjidx0D,
249                                             vdwioffsetptr0+vdwjidx0E,
250                                             vdwioffsetptr0+vdwjidx0F,
251                                             vdwioffsetptr0+vdwjidx0G,
252                                             vdwioffsetptr0+vdwjidx0H,
253                                             &c6_00,&c12_00);
254
255             /* REACTION-FIELD ELECTROSTATICS */
256             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
257             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
258
259             /* LENNARD-JONES DISPERSION/REPULSION */
260
261             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
262             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
263             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
264             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
265                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
266             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
267
268             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
269
270             /* Update potential sum for this i atom from the interaction with this j atom. */
271             velec            = _mm256_and_ps(velec,cutoff_mask);
272             velecsum         = _mm256_add_ps(velecsum,velec);
273             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
274             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
275
276             fscal            = _mm256_add_ps(felec,fvdw);
277
278             fscal            = _mm256_and_ps(fscal,cutoff_mask);
279
280             /* Calculate temporary vectorial force */
281             tx               = _mm256_mul_ps(fscal,dx00);
282             ty               = _mm256_mul_ps(fscal,dy00);
283             tz               = _mm256_mul_ps(fscal,dz00);
284
285             /* Update vectorial force */
286             fix0             = _mm256_add_ps(fix0,tx);
287             fiy0             = _mm256_add_ps(fiy0,ty);
288             fiz0             = _mm256_add_ps(fiz0,tz);
289
290             fjptrA             = f+j_coord_offsetA;
291             fjptrB             = f+j_coord_offsetB;
292             fjptrC             = f+j_coord_offsetC;
293             fjptrD             = f+j_coord_offsetD;
294             fjptrE             = f+j_coord_offsetE;
295             fjptrF             = f+j_coord_offsetF;
296             fjptrG             = f+j_coord_offsetG;
297             fjptrH             = f+j_coord_offsetH;
298             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
299
300             }
301
302             /* Inner loop uses 54 flops */
303         }
304
305         if(jidx<j_index_end)
306         {
307
308             /* Get j neighbor index, and coordinate index */
309             jnrlistA         = jjnr[jidx];
310             jnrlistB         = jjnr[jidx+1];
311             jnrlistC         = jjnr[jidx+2];
312             jnrlistD         = jjnr[jidx+3];
313             jnrlistE         = jjnr[jidx+4];
314             jnrlistF         = jjnr[jidx+5];
315             jnrlistG         = jjnr[jidx+6];
316             jnrlistH         = jjnr[jidx+7];
317             /* Sign of each element will be negative for non-real atoms.
318              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
319              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
320              */
321             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
322                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
323                                             
324             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
325             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
326             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
327             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
328             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
329             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
330             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
331             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
332             j_coord_offsetA  = DIM*jnrA;
333             j_coord_offsetB  = DIM*jnrB;
334             j_coord_offsetC  = DIM*jnrC;
335             j_coord_offsetD  = DIM*jnrD;
336             j_coord_offsetE  = DIM*jnrE;
337             j_coord_offsetF  = DIM*jnrF;
338             j_coord_offsetG  = DIM*jnrG;
339             j_coord_offsetH  = DIM*jnrH;
340
341             /* load j atom coordinates */
342             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
343                                                  x+j_coord_offsetC,x+j_coord_offsetD,
344                                                  x+j_coord_offsetE,x+j_coord_offsetF,
345                                                  x+j_coord_offsetG,x+j_coord_offsetH,
346                                                  &jx0,&jy0,&jz0);
347
348             /* Calculate displacement vector */
349             dx00             = _mm256_sub_ps(ix0,jx0);
350             dy00             = _mm256_sub_ps(iy0,jy0);
351             dz00             = _mm256_sub_ps(iz0,jz0);
352
353             /* Calculate squared distance and things based on it */
354             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
355
356             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
357
358             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
359
360             /* Load parameters for j particles */
361             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
362                                                                  charge+jnrC+0,charge+jnrD+0,
363                                                                  charge+jnrE+0,charge+jnrF+0,
364                                                                  charge+jnrG+0,charge+jnrH+0);
365             vdwjidx0A        = 2*vdwtype[jnrA+0];
366             vdwjidx0B        = 2*vdwtype[jnrB+0];
367             vdwjidx0C        = 2*vdwtype[jnrC+0];
368             vdwjidx0D        = 2*vdwtype[jnrD+0];
369             vdwjidx0E        = 2*vdwtype[jnrE+0];
370             vdwjidx0F        = 2*vdwtype[jnrF+0];
371             vdwjidx0G        = 2*vdwtype[jnrG+0];
372             vdwjidx0H        = 2*vdwtype[jnrH+0];
373
374             /**************************
375              * CALCULATE INTERACTIONS *
376              **************************/
377
378             if (gmx_mm256_any_lt(rsq00,rcutoff2))
379             {
380
381             /* Compute parameters for interactions between i and j atoms */
382             qq00             = _mm256_mul_ps(iq0,jq0);
383             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
384                                             vdwioffsetptr0+vdwjidx0B,
385                                             vdwioffsetptr0+vdwjidx0C,
386                                             vdwioffsetptr0+vdwjidx0D,
387                                             vdwioffsetptr0+vdwjidx0E,
388                                             vdwioffsetptr0+vdwjidx0F,
389                                             vdwioffsetptr0+vdwjidx0G,
390                                             vdwioffsetptr0+vdwjidx0H,
391                                             &c6_00,&c12_00);
392
393             /* REACTION-FIELD ELECTROSTATICS */
394             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
395             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
396
397             /* LENNARD-JONES DISPERSION/REPULSION */
398
399             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
400             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
401             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
402             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
403                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
404             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
405
406             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
407
408             /* Update potential sum for this i atom from the interaction with this j atom. */
409             velec            = _mm256_and_ps(velec,cutoff_mask);
410             velec            = _mm256_andnot_ps(dummy_mask,velec);
411             velecsum         = _mm256_add_ps(velecsum,velec);
412             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
413             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
414             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
415
416             fscal            = _mm256_add_ps(felec,fvdw);
417
418             fscal            = _mm256_and_ps(fscal,cutoff_mask);
419
420             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
421
422             /* Calculate temporary vectorial force */
423             tx               = _mm256_mul_ps(fscal,dx00);
424             ty               = _mm256_mul_ps(fscal,dy00);
425             tz               = _mm256_mul_ps(fscal,dz00);
426
427             /* Update vectorial force */
428             fix0             = _mm256_add_ps(fix0,tx);
429             fiy0             = _mm256_add_ps(fiy0,ty);
430             fiz0             = _mm256_add_ps(fiz0,tz);
431
432             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
433             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
434             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
435             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
436             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
437             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
438             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
439             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
440             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
441
442             }
443
444             /* Inner loop uses 54 flops */
445         }
446
447         /* End of innermost loop */
448
449         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
450                                                  f+i_coord_offset,fshift+i_shift_offset);
451
452         ggid                        = gid[iidx];
453         /* Update potential energies */
454         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
455         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
456
457         /* Increment number of inner iterations */
458         inneriter                  += j_index_end - j_index_start;
459
460         /* Outer loop uses 9 flops */
461     }
462
463     /* Increment number of outer iterations */
464     outeriter        += nri;
465
466     /* Update outer/inner flops */
467
468     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54);
469 }
470 /*
471  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_256_single
472  * Electrostatics interaction: ReactionField
473  * VdW interaction:            LennardJones
474  * Geometry:                   Particle-Particle
475  * Calculate force/pot:        Force
476  */
477 void
478 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_256_single
479                     (t_nblist                    * gmx_restrict       nlist,
480                      rvec                        * gmx_restrict          xx,
481                      rvec                        * gmx_restrict          ff,
482                      t_forcerec                  * gmx_restrict          fr,
483                      t_mdatoms                   * gmx_restrict     mdatoms,
484                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
485                      t_nrnb                      * gmx_restrict        nrnb)
486 {
487     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
488      * just 0 for non-waters.
489      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
490      * jnr indices corresponding to data put in the four positions in the SIMD register.
491      */
492     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
493     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
494     int              jnrA,jnrB,jnrC,jnrD;
495     int              jnrE,jnrF,jnrG,jnrH;
496     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
497     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
498     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
499     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
500     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
501     real             rcutoff_scalar;
502     real             *shiftvec,*fshift,*x,*f;
503     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
504     real             scratch[4*DIM];
505     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
506     real *           vdwioffsetptr0;
507     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
508     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
509     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
510     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
511     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
512     real             *charge;
513     int              nvdwtype;
514     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
515     int              *vdwtype;
516     real             *vdwparam;
517     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
518     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
519     __m256           dummy_mask,cutoff_mask;
520     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
521     __m256           one     = _mm256_set1_ps(1.0);
522     __m256           two     = _mm256_set1_ps(2.0);
523     x                = xx[0];
524     f                = ff[0];
525
526     nri              = nlist->nri;
527     iinr             = nlist->iinr;
528     jindex           = nlist->jindex;
529     jjnr             = nlist->jjnr;
530     shiftidx         = nlist->shift;
531     gid              = nlist->gid;
532     shiftvec         = fr->shift_vec[0];
533     fshift           = fr->fshift[0];
534     facel            = _mm256_set1_ps(fr->epsfac);
535     charge           = mdatoms->chargeA;
536     krf              = _mm256_set1_ps(fr->ic->k_rf);
537     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
538     crf              = _mm256_set1_ps(fr->ic->c_rf);
539     nvdwtype         = fr->ntype;
540     vdwparam         = fr->nbfp;
541     vdwtype          = mdatoms->typeA;
542
543     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
544     rcutoff_scalar   = fr->rcoulomb;
545     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
546     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
547
548     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
549     rvdw             = _mm256_set1_ps(fr->rvdw);
550
551     /* Avoid stupid compiler warnings */
552     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
553     j_coord_offsetA = 0;
554     j_coord_offsetB = 0;
555     j_coord_offsetC = 0;
556     j_coord_offsetD = 0;
557     j_coord_offsetE = 0;
558     j_coord_offsetF = 0;
559     j_coord_offsetG = 0;
560     j_coord_offsetH = 0;
561
562     outeriter        = 0;
563     inneriter        = 0;
564
565     for(iidx=0;iidx<4*DIM;iidx++)
566     {
567         scratch[iidx] = 0.0;
568     }
569
570     /* Start outer loop over neighborlists */
571     for(iidx=0; iidx<nri; iidx++)
572     {
573         /* Load shift vector for this list */
574         i_shift_offset   = DIM*shiftidx[iidx];
575
576         /* Load limits for loop over neighbors */
577         j_index_start    = jindex[iidx];
578         j_index_end      = jindex[iidx+1];
579
580         /* Get outer coordinate index */
581         inr              = iinr[iidx];
582         i_coord_offset   = DIM*inr;
583
584         /* Load i particle coords and add shift vector */
585         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
586
587         fix0             = _mm256_setzero_ps();
588         fiy0             = _mm256_setzero_ps();
589         fiz0             = _mm256_setzero_ps();
590
591         /* Load parameters for i particles */
592         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
593         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
594
595         /* Start inner kernel loop */
596         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
597         {
598
599             /* Get j neighbor index, and coordinate index */
600             jnrA             = jjnr[jidx];
601             jnrB             = jjnr[jidx+1];
602             jnrC             = jjnr[jidx+2];
603             jnrD             = jjnr[jidx+3];
604             jnrE             = jjnr[jidx+4];
605             jnrF             = jjnr[jidx+5];
606             jnrG             = jjnr[jidx+6];
607             jnrH             = jjnr[jidx+7];
608             j_coord_offsetA  = DIM*jnrA;
609             j_coord_offsetB  = DIM*jnrB;
610             j_coord_offsetC  = DIM*jnrC;
611             j_coord_offsetD  = DIM*jnrD;
612             j_coord_offsetE  = DIM*jnrE;
613             j_coord_offsetF  = DIM*jnrF;
614             j_coord_offsetG  = DIM*jnrG;
615             j_coord_offsetH  = DIM*jnrH;
616
617             /* load j atom coordinates */
618             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
619                                                  x+j_coord_offsetC,x+j_coord_offsetD,
620                                                  x+j_coord_offsetE,x+j_coord_offsetF,
621                                                  x+j_coord_offsetG,x+j_coord_offsetH,
622                                                  &jx0,&jy0,&jz0);
623
624             /* Calculate displacement vector */
625             dx00             = _mm256_sub_ps(ix0,jx0);
626             dy00             = _mm256_sub_ps(iy0,jy0);
627             dz00             = _mm256_sub_ps(iz0,jz0);
628
629             /* Calculate squared distance and things based on it */
630             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
631
632             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
633
634             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
635
636             /* Load parameters for j particles */
637             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
638                                                                  charge+jnrC+0,charge+jnrD+0,
639                                                                  charge+jnrE+0,charge+jnrF+0,
640                                                                  charge+jnrG+0,charge+jnrH+0);
641             vdwjidx0A        = 2*vdwtype[jnrA+0];
642             vdwjidx0B        = 2*vdwtype[jnrB+0];
643             vdwjidx0C        = 2*vdwtype[jnrC+0];
644             vdwjidx0D        = 2*vdwtype[jnrD+0];
645             vdwjidx0E        = 2*vdwtype[jnrE+0];
646             vdwjidx0F        = 2*vdwtype[jnrF+0];
647             vdwjidx0G        = 2*vdwtype[jnrG+0];
648             vdwjidx0H        = 2*vdwtype[jnrH+0];
649
650             /**************************
651              * CALCULATE INTERACTIONS *
652              **************************/
653
654             if (gmx_mm256_any_lt(rsq00,rcutoff2))
655             {
656
657             /* Compute parameters for interactions between i and j atoms */
658             qq00             = _mm256_mul_ps(iq0,jq0);
659             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
660                                             vdwioffsetptr0+vdwjidx0B,
661                                             vdwioffsetptr0+vdwjidx0C,
662                                             vdwioffsetptr0+vdwjidx0D,
663                                             vdwioffsetptr0+vdwjidx0E,
664                                             vdwioffsetptr0+vdwjidx0F,
665                                             vdwioffsetptr0+vdwjidx0G,
666                                             vdwioffsetptr0+vdwjidx0H,
667                                             &c6_00,&c12_00);
668
669             /* REACTION-FIELD ELECTROSTATICS */
670             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
671
672             /* LENNARD-JONES DISPERSION/REPULSION */
673
674             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
675             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
676
677             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
678
679             fscal            = _mm256_add_ps(felec,fvdw);
680
681             fscal            = _mm256_and_ps(fscal,cutoff_mask);
682
683             /* Calculate temporary vectorial force */
684             tx               = _mm256_mul_ps(fscal,dx00);
685             ty               = _mm256_mul_ps(fscal,dy00);
686             tz               = _mm256_mul_ps(fscal,dz00);
687
688             /* Update vectorial force */
689             fix0             = _mm256_add_ps(fix0,tx);
690             fiy0             = _mm256_add_ps(fiy0,ty);
691             fiz0             = _mm256_add_ps(fiz0,tz);
692
693             fjptrA             = f+j_coord_offsetA;
694             fjptrB             = f+j_coord_offsetB;
695             fjptrC             = f+j_coord_offsetC;
696             fjptrD             = f+j_coord_offsetD;
697             fjptrE             = f+j_coord_offsetE;
698             fjptrF             = f+j_coord_offsetF;
699             fjptrG             = f+j_coord_offsetG;
700             fjptrH             = f+j_coord_offsetH;
701             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
702
703             }
704
705             /* Inner loop uses 37 flops */
706         }
707
708         if(jidx<j_index_end)
709         {
710
711             /* Get j neighbor index, and coordinate index */
712             jnrlistA         = jjnr[jidx];
713             jnrlistB         = jjnr[jidx+1];
714             jnrlistC         = jjnr[jidx+2];
715             jnrlistD         = jjnr[jidx+3];
716             jnrlistE         = jjnr[jidx+4];
717             jnrlistF         = jjnr[jidx+5];
718             jnrlistG         = jjnr[jidx+6];
719             jnrlistH         = jjnr[jidx+7];
720             /* Sign of each element will be negative for non-real atoms.
721              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
722              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
723              */
724             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
725                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
726                                             
727             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
728             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
729             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
730             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
731             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
732             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
733             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
734             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
735             j_coord_offsetA  = DIM*jnrA;
736             j_coord_offsetB  = DIM*jnrB;
737             j_coord_offsetC  = DIM*jnrC;
738             j_coord_offsetD  = DIM*jnrD;
739             j_coord_offsetE  = DIM*jnrE;
740             j_coord_offsetF  = DIM*jnrF;
741             j_coord_offsetG  = DIM*jnrG;
742             j_coord_offsetH  = DIM*jnrH;
743
744             /* load j atom coordinates */
745             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
746                                                  x+j_coord_offsetC,x+j_coord_offsetD,
747                                                  x+j_coord_offsetE,x+j_coord_offsetF,
748                                                  x+j_coord_offsetG,x+j_coord_offsetH,
749                                                  &jx0,&jy0,&jz0);
750
751             /* Calculate displacement vector */
752             dx00             = _mm256_sub_ps(ix0,jx0);
753             dy00             = _mm256_sub_ps(iy0,jy0);
754             dz00             = _mm256_sub_ps(iz0,jz0);
755
756             /* Calculate squared distance and things based on it */
757             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
758
759             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
760
761             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
762
763             /* Load parameters for j particles */
764             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
765                                                                  charge+jnrC+0,charge+jnrD+0,
766                                                                  charge+jnrE+0,charge+jnrF+0,
767                                                                  charge+jnrG+0,charge+jnrH+0);
768             vdwjidx0A        = 2*vdwtype[jnrA+0];
769             vdwjidx0B        = 2*vdwtype[jnrB+0];
770             vdwjidx0C        = 2*vdwtype[jnrC+0];
771             vdwjidx0D        = 2*vdwtype[jnrD+0];
772             vdwjidx0E        = 2*vdwtype[jnrE+0];
773             vdwjidx0F        = 2*vdwtype[jnrF+0];
774             vdwjidx0G        = 2*vdwtype[jnrG+0];
775             vdwjidx0H        = 2*vdwtype[jnrH+0];
776
777             /**************************
778              * CALCULATE INTERACTIONS *
779              **************************/
780
781             if (gmx_mm256_any_lt(rsq00,rcutoff2))
782             {
783
784             /* Compute parameters for interactions between i and j atoms */
785             qq00             = _mm256_mul_ps(iq0,jq0);
786             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
787                                             vdwioffsetptr0+vdwjidx0B,
788                                             vdwioffsetptr0+vdwjidx0C,
789                                             vdwioffsetptr0+vdwjidx0D,
790                                             vdwioffsetptr0+vdwjidx0E,
791                                             vdwioffsetptr0+vdwjidx0F,
792                                             vdwioffsetptr0+vdwjidx0G,
793                                             vdwioffsetptr0+vdwjidx0H,
794                                             &c6_00,&c12_00);
795
796             /* REACTION-FIELD ELECTROSTATICS */
797             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
798
799             /* LENNARD-JONES DISPERSION/REPULSION */
800
801             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
802             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
803
804             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
805
806             fscal            = _mm256_add_ps(felec,fvdw);
807
808             fscal            = _mm256_and_ps(fscal,cutoff_mask);
809
810             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
811
812             /* Calculate temporary vectorial force */
813             tx               = _mm256_mul_ps(fscal,dx00);
814             ty               = _mm256_mul_ps(fscal,dy00);
815             tz               = _mm256_mul_ps(fscal,dz00);
816
817             /* Update vectorial force */
818             fix0             = _mm256_add_ps(fix0,tx);
819             fiy0             = _mm256_add_ps(fiy0,ty);
820             fiz0             = _mm256_add_ps(fiz0,tz);
821
822             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
823             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
824             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
825             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
826             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
827             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
828             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
829             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
830             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
831
832             }
833
834             /* Inner loop uses 37 flops */
835         }
836
837         /* End of innermost loop */
838
839         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
840                                                  f+i_coord_offset,fshift+i_shift_offset);
841
842         /* Increment number of inner iterations */
843         inneriter                  += j_index_end - j_index_start;
844
845         /* Outer loop uses 7 flops */
846     }
847
848     /* Increment number of outer iterations */
849     outeriter        += nri;
850
851     /* Update outer/inner flops */
852
853     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);
854 }