11b73839914bc87da034e9aadeb99f6c8773b125
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_avx_256_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
95     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
107     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
108     __m256i          vfitab;
109     __m128i          vfitab_lo,vfitab_hi;
110     __m128i          ifour       = _mm_set1_epi32(4);
111     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
112     real             *vftab;
113     __m256           dummy_mask,cutoff_mask;
114     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
115     __m256           one     = _mm256_set1_ps(1.0);
116     __m256           two     = _mm256_set1_ps(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm256_set1_ps(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     krf              = _mm256_set1_ps(fr->ic->k_rf);
131     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
132     crf              = _mm256_set1_ps(fr->ic->c_rf);
133     nvdwtype         = fr->ntype;
134     vdwparam         = fr->nbfp;
135     vdwtype          = mdatoms->typeA;
136
137     vftab            = kernel_data->table_vdw->data;
138     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
139
140     /* Setup water-specific parameters */
141     inr              = nlist->iinr[0];
142     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
143     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
144     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
145     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
146
147     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
148     rcutoff_scalar   = fr->rcoulomb;
149     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
150     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
151
152     /* Avoid stupid compiler warnings */
153     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
154     j_coord_offsetA = 0;
155     j_coord_offsetB = 0;
156     j_coord_offsetC = 0;
157     j_coord_offsetD = 0;
158     j_coord_offsetE = 0;
159     j_coord_offsetF = 0;
160     j_coord_offsetG = 0;
161     j_coord_offsetH = 0;
162
163     outeriter        = 0;
164     inneriter        = 0;
165
166     for(iidx=0;iidx<4*DIM;iidx++)
167     {
168         scratch[iidx] = 0.0;
169     }
170
171     /* Start outer loop over neighborlists */
172     for(iidx=0; iidx<nri; iidx++)
173     {
174         /* Load shift vector for this list */
175         i_shift_offset   = DIM*shiftidx[iidx];
176
177         /* Load limits for loop over neighbors */
178         j_index_start    = jindex[iidx];
179         j_index_end      = jindex[iidx+1];
180
181         /* Get outer coordinate index */
182         inr              = iinr[iidx];
183         i_coord_offset   = DIM*inr;
184
185         /* Load i particle coords and add shift vector */
186         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
187                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
188
189         fix0             = _mm256_setzero_ps();
190         fiy0             = _mm256_setzero_ps();
191         fiz0             = _mm256_setzero_ps();
192         fix1             = _mm256_setzero_ps();
193         fiy1             = _mm256_setzero_ps();
194         fiz1             = _mm256_setzero_ps();
195         fix2             = _mm256_setzero_ps();
196         fiy2             = _mm256_setzero_ps();
197         fiz2             = _mm256_setzero_ps();
198         fix3             = _mm256_setzero_ps();
199         fiy3             = _mm256_setzero_ps();
200         fiz3             = _mm256_setzero_ps();
201
202         /* Reset potential sums */
203         velecsum         = _mm256_setzero_ps();
204         vvdwsum          = _mm256_setzero_ps();
205
206         /* Start inner kernel loop */
207         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
208         {
209
210             /* Get j neighbor index, and coordinate index */
211             jnrA             = jjnr[jidx];
212             jnrB             = jjnr[jidx+1];
213             jnrC             = jjnr[jidx+2];
214             jnrD             = jjnr[jidx+3];
215             jnrE             = jjnr[jidx+4];
216             jnrF             = jjnr[jidx+5];
217             jnrG             = jjnr[jidx+6];
218             jnrH             = jjnr[jidx+7];
219             j_coord_offsetA  = DIM*jnrA;
220             j_coord_offsetB  = DIM*jnrB;
221             j_coord_offsetC  = DIM*jnrC;
222             j_coord_offsetD  = DIM*jnrD;
223             j_coord_offsetE  = DIM*jnrE;
224             j_coord_offsetF  = DIM*jnrF;
225             j_coord_offsetG  = DIM*jnrG;
226             j_coord_offsetH  = DIM*jnrH;
227
228             /* load j atom coordinates */
229             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
230                                                  x+j_coord_offsetC,x+j_coord_offsetD,
231                                                  x+j_coord_offsetE,x+j_coord_offsetF,
232                                                  x+j_coord_offsetG,x+j_coord_offsetH,
233                                                  &jx0,&jy0,&jz0);
234
235             /* Calculate displacement vector */
236             dx00             = _mm256_sub_ps(ix0,jx0);
237             dy00             = _mm256_sub_ps(iy0,jy0);
238             dz00             = _mm256_sub_ps(iz0,jz0);
239             dx10             = _mm256_sub_ps(ix1,jx0);
240             dy10             = _mm256_sub_ps(iy1,jy0);
241             dz10             = _mm256_sub_ps(iz1,jz0);
242             dx20             = _mm256_sub_ps(ix2,jx0);
243             dy20             = _mm256_sub_ps(iy2,jy0);
244             dz20             = _mm256_sub_ps(iz2,jz0);
245             dx30             = _mm256_sub_ps(ix3,jx0);
246             dy30             = _mm256_sub_ps(iy3,jy0);
247             dz30             = _mm256_sub_ps(iz3,jz0);
248
249             /* Calculate squared distance and things based on it */
250             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
251             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
252             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
253             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
254
255             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
256             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
257             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
258             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
259
260             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
261             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
262             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
263
264             /* Load parameters for j particles */
265             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
266                                                                  charge+jnrC+0,charge+jnrD+0,
267                                                                  charge+jnrE+0,charge+jnrF+0,
268                                                                  charge+jnrG+0,charge+jnrH+0);
269             vdwjidx0A        = 2*vdwtype[jnrA+0];
270             vdwjidx0B        = 2*vdwtype[jnrB+0];
271             vdwjidx0C        = 2*vdwtype[jnrC+0];
272             vdwjidx0D        = 2*vdwtype[jnrD+0];
273             vdwjidx0E        = 2*vdwtype[jnrE+0];
274             vdwjidx0F        = 2*vdwtype[jnrF+0];
275             vdwjidx0G        = 2*vdwtype[jnrG+0];
276             vdwjidx0H        = 2*vdwtype[jnrH+0];
277
278             fjx0             = _mm256_setzero_ps();
279             fjy0             = _mm256_setzero_ps();
280             fjz0             = _mm256_setzero_ps();
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             r00              = _mm256_mul_ps(rsq00,rinv00);
287
288             /* Compute parameters for interactions between i and j atoms */
289             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
290                                             vdwioffsetptr0+vdwjidx0B,
291                                             vdwioffsetptr0+vdwjidx0C,
292                                             vdwioffsetptr0+vdwjidx0D,
293                                             vdwioffsetptr0+vdwjidx0E,
294                                             vdwioffsetptr0+vdwjidx0F,
295                                             vdwioffsetptr0+vdwjidx0G,
296                                             vdwioffsetptr0+vdwjidx0H,
297                                             &c6_00,&c12_00);
298
299             /* Calculate table index by multiplying r with table scale and truncate to integer */
300             rt               = _mm256_mul_ps(r00,vftabscale);
301             vfitab           = _mm256_cvttps_epi32(rt);
302             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
303             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
304             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
305             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
306             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
307             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
308
309             /* CUBIC SPLINE TABLE DISPERSION */
310             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
311                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
312             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
313                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
314             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
315                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
316             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
317                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
318             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
319             Heps             = _mm256_mul_ps(vfeps,H);
320             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
321             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
322             vvdw6            = _mm256_mul_ps(c6_00,VV);
323             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
324             fvdw6            = _mm256_mul_ps(c6_00,FF);
325
326             /* CUBIC SPLINE TABLE REPULSION */
327             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
328             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
329             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
330                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
331             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
332                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
333             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
334                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
335             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
336                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
337             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
338             Heps             = _mm256_mul_ps(vfeps,H);
339             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
340             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
341             vvdw12           = _mm256_mul_ps(c12_00,VV);
342             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
343             fvdw12           = _mm256_mul_ps(c12_00,FF);
344             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
345             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
349
350             fscal            = fvdw;
351
352             /* Calculate temporary vectorial force */
353             tx               = _mm256_mul_ps(fscal,dx00);
354             ty               = _mm256_mul_ps(fscal,dy00);
355             tz               = _mm256_mul_ps(fscal,dz00);
356
357             /* Update vectorial force */
358             fix0             = _mm256_add_ps(fix0,tx);
359             fiy0             = _mm256_add_ps(fiy0,ty);
360             fiz0             = _mm256_add_ps(fiz0,tz);
361
362             fjx0             = _mm256_add_ps(fjx0,tx);
363             fjy0             = _mm256_add_ps(fjy0,ty);
364             fjz0             = _mm256_add_ps(fjz0,tz);
365
366             /**************************
367              * CALCULATE INTERACTIONS *
368              **************************/
369
370             if (gmx_mm256_any_lt(rsq10,rcutoff2))
371             {
372
373             /* Compute parameters for interactions between i and j atoms */
374             qq10             = _mm256_mul_ps(iq1,jq0);
375
376             /* REACTION-FIELD ELECTROSTATICS */
377             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
378             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
379
380             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
381
382             /* Update potential sum for this i atom from the interaction with this j atom. */
383             velec            = _mm256_and_ps(velec,cutoff_mask);
384             velecsum         = _mm256_add_ps(velecsum,velec);
385
386             fscal            = felec;
387
388             fscal            = _mm256_and_ps(fscal,cutoff_mask);
389
390             /* Calculate temporary vectorial force */
391             tx               = _mm256_mul_ps(fscal,dx10);
392             ty               = _mm256_mul_ps(fscal,dy10);
393             tz               = _mm256_mul_ps(fscal,dz10);
394
395             /* Update vectorial force */
396             fix1             = _mm256_add_ps(fix1,tx);
397             fiy1             = _mm256_add_ps(fiy1,ty);
398             fiz1             = _mm256_add_ps(fiz1,tz);
399
400             fjx0             = _mm256_add_ps(fjx0,tx);
401             fjy0             = _mm256_add_ps(fjy0,ty);
402             fjz0             = _mm256_add_ps(fjz0,tz);
403
404             }
405
406             /**************************
407              * CALCULATE INTERACTIONS *
408              **************************/
409
410             if (gmx_mm256_any_lt(rsq20,rcutoff2))
411             {
412
413             /* Compute parameters for interactions between i and j atoms */
414             qq20             = _mm256_mul_ps(iq2,jq0);
415
416             /* REACTION-FIELD ELECTROSTATICS */
417             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
418             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
419
420             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
421
422             /* Update potential sum for this i atom from the interaction with this j atom. */
423             velec            = _mm256_and_ps(velec,cutoff_mask);
424             velecsum         = _mm256_add_ps(velecsum,velec);
425
426             fscal            = felec;
427
428             fscal            = _mm256_and_ps(fscal,cutoff_mask);
429
430             /* Calculate temporary vectorial force */
431             tx               = _mm256_mul_ps(fscal,dx20);
432             ty               = _mm256_mul_ps(fscal,dy20);
433             tz               = _mm256_mul_ps(fscal,dz20);
434
435             /* Update vectorial force */
436             fix2             = _mm256_add_ps(fix2,tx);
437             fiy2             = _mm256_add_ps(fiy2,ty);
438             fiz2             = _mm256_add_ps(fiz2,tz);
439
440             fjx0             = _mm256_add_ps(fjx0,tx);
441             fjy0             = _mm256_add_ps(fjy0,ty);
442             fjz0             = _mm256_add_ps(fjz0,tz);
443
444             }
445
446             /**************************
447              * CALCULATE INTERACTIONS *
448              **************************/
449
450             if (gmx_mm256_any_lt(rsq30,rcutoff2))
451             {
452
453             /* Compute parameters for interactions between i and j atoms */
454             qq30             = _mm256_mul_ps(iq3,jq0);
455
456             /* REACTION-FIELD ELECTROSTATICS */
457             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
458             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
459
460             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
461
462             /* Update potential sum for this i atom from the interaction with this j atom. */
463             velec            = _mm256_and_ps(velec,cutoff_mask);
464             velecsum         = _mm256_add_ps(velecsum,velec);
465
466             fscal            = felec;
467
468             fscal            = _mm256_and_ps(fscal,cutoff_mask);
469
470             /* Calculate temporary vectorial force */
471             tx               = _mm256_mul_ps(fscal,dx30);
472             ty               = _mm256_mul_ps(fscal,dy30);
473             tz               = _mm256_mul_ps(fscal,dz30);
474
475             /* Update vectorial force */
476             fix3             = _mm256_add_ps(fix3,tx);
477             fiy3             = _mm256_add_ps(fiy3,ty);
478             fiz3             = _mm256_add_ps(fiz3,tz);
479
480             fjx0             = _mm256_add_ps(fjx0,tx);
481             fjy0             = _mm256_add_ps(fjy0,ty);
482             fjz0             = _mm256_add_ps(fjz0,tz);
483
484             }
485
486             fjptrA             = f+j_coord_offsetA;
487             fjptrB             = f+j_coord_offsetB;
488             fjptrC             = f+j_coord_offsetC;
489             fjptrD             = f+j_coord_offsetD;
490             fjptrE             = f+j_coord_offsetE;
491             fjptrF             = f+j_coord_offsetF;
492             fjptrG             = f+j_coord_offsetG;
493             fjptrH             = f+j_coord_offsetH;
494
495             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
496
497             /* Inner loop uses 167 flops */
498         }
499
500         if(jidx<j_index_end)
501         {
502
503             /* Get j neighbor index, and coordinate index */
504             jnrlistA         = jjnr[jidx];
505             jnrlistB         = jjnr[jidx+1];
506             jnrlistC         = jjnr[jidx+2];
507             jnrlistD         = jjnr[jidx+3];
508             jnrlistE         = jjnr[jidx+4];
509             jnrlistF         = jjnr[jidx+5];
510             jnrlistG         = jjnr[jidx+6];
511             jnrlistH         = jjnr[jidx+7];
512             /* Sign of each element will be negative for non-real atoms.
513              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
514              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
515              */
516             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
517                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
518                                             
519             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
520             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
521             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
522             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
523             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
524             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
525             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
526             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
527             j_coord_offsetA  = DIM*jnrA;
528             j_coord_offsetB  = DIM*jnrB;
529             j_coord_offsetC  = DIM*jnrC;
530             j_coord_offsetD  = DIM*jnrD;
531             j_coord_offsetE  = DIM*jnrE;
532             j_coord_offsetF  = DIM*jnrF;
533             j_coord_offsetG  = DIM*jnrG;
534             j_coord_offsetH  = DIM*jnrH;
535
536             /* load j atom coordinates */
537             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
538                                                  x+j_coord_offsetC,x+j_coord_offsetD,
539                                                  x+j_coord_offsetE,x+j_coord_offsetF,
540                                                  x+j_coord_offsetG,x+j_coord_offsetH,
541                                                  &jx0,&jy0,&jz0);
542
543             /* Calculate displacement vector */
544             dx00             = _mm256_sub_ps(ix0,jx0);
545             dy00             = _mm256_sub_ps(iy0,jy0);
546             dz00             = _mm256_sub_ps(iz0,jz0);
547             dx10             = _mm256_sub_ps(ix1,jx0);
548             dy10             = _mm256_sub_ps(iy1,jy0);
549             dz10             = _mm256_sub_ps(iz1,jz0);
550             dx20             = _mm256_sub_ps(ix2,jx0);
551             dy20             = _mm256_sub_ps(iy2,jy0);
552             dz20             = _mm256_sub_ps(iz2,jz0);
553             dx30             = _mm256_sub_ps(ix3,jx0);
554             dy30             = _mm256_sub_ps(iy3,jy0);
555             dz30             = _mm256_sub_ps(iz3,jz0);
556
557             /* Calculate squared distance and things based on it */
558             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
559             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
560             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
561             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
562
563             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
564             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
565             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
566             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
567
568             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
569             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
570             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
571
572             /* Load parameters for j particles */
573             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
574                                                                  charge+jnrC+0,charge+jnrD+0,
575                                                                  charge+jnrE+0,charge+jnrF+0,
576                                                                  charge+jnrG+0,charge+jnrH+0);
577             vdwjidx0A        = 2*vdwtype[jnrA+0];
578             vdwjidx0B        = 2*vdwtype[jnrB+0];
579             vdwjidx0C        = 2*vdwtype[jnrC+0];
580             vdwjidx0D        = 2*vdwtype[jnrD+0];
581             vdwjidx0E        = 2*vdwtype[jnrE+0];
582             vdwjidx0F        = 2*vdwtype[jnrF+0];
583             vdwjidx0G        = 2*vdwtype[jnrG+0];
584             vdwjidx0H        = 2*vdwtype[jnrH+0];
585
586             fjx0             = _mm256_setzero_ps();
587             fjy0             = _mm256_setzero_ps();
588             fjz0             = _mm256_setzero_ps();
589
590             /**************************
591              * CALCULATE INTERACTIONS *
592              **************************/
593
594             r00              = _mm256_mul_ps(rsq00,rinv00);
595             r00              = _mm256_andnot_ps(dummy_mask,r00);
596
597             /* Compute parameters for interactions between i and j atoms */
598             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
599                                             vdwioffsetptr0+vdwjidx0B,
600                                             vdwioffsetptr0+vdwjidx0C,
601                                             vdwioffsetptr0+vdwjidx0D,
602                                             vdwioffsetptr0+vdwjidx0E,
603                                             vdwioffsetptr0+vdwjidx0F,
604                                             vdwioffsetptr0+vdwjidx0G,
605                                             vdwioffsetptr0+vdwjidx0H,
606                                             &c6_00,&c12_00);
607
608             /* Calculate table index by multiplying r with table scale and truncate to integer */
609             rt               = _mm256_mul_ps(r00,vftabscale);
610             vfitab           = _mm256_cvttps_epi32(rt);
611             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
612             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
613             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
614             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
615             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
616             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
617
618             /* CUBIC SPLINE TABLE DISPERSION */
619             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
620                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
621             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
622                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
623             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
624                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
625             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
626                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
627             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
628             Heps             = _mm256_mul_ps(vfeps,H);
629             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
630             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
631             vvdw6            = _mm256_mul_ps(c6_00,VV);
632             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
633             fvdw6            = _mm256_mul_ps(c6_00,FF);
634
635             /* CUBIC SPLINE TABLE REPULSION */
636             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
637             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
638             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
639                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
640             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
641                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
642             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
643                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
644             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
645                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
646             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
647             Heps             = _mm256_mul_ps(vfeps,H);
648             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
649             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
650             vvdw12           = _mm256_mul_ps(c12_00,VV);
651             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
652             fvdw12           = _mm256_mul_ps(c12_00,FF);
653             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
654             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
655
656             /* Update potential sum for this i atom from the interaction with this j atom. */
657             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
658             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
659
660             fscal            = fvdw;
661
662             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
663
664             /* Calculate temporary vectorial force */
665             tx               = _mm256_mul_ps(fscal,dx00);
666             ty               = _mm256_mul_ps(fscal,dy00);
667             tz               = _mm256_mul_ps(fscal,dz00);
668
669             /* Update vectorial force */
670             fix0             = _mm256_add_ps(fix0,tx);
671             fiy0             = _mm256_add_ps(fiy0,ty);
672             fiz0             = _mm256_add_ps(fiz0,tz);
673
674             fjx0             = _mm256_add_ps(fjx0,tx);
675             fjy0             = _mm256_add_ps(fjy0,ty);
676             fjz0             = _mm256_add_ps(fjz0,tz);
677
678             /**************************
679              * CALCULATE INTERACTIONS *
680              **************************/
681
682             if (gmx_mm256_any_lt(rsq10,rcutoff2))
683             {
684
685             /* Compute parameters for interactions between i and j atoms */
686             qq10             = _mm256_mul_ps(iq1,jq0);
687
688             /* REACTION-FIELD ELECTROSTATICS */
689             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
690             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
691
692             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
693
694             /* Update potential sum for this i atom from the interaction with this j atom. */
695             velec            = _mm256_and_ps(velec,cutoff_mask);
696             velec            = _mm256_andnot_ps(dummy_mask,velec);
697             velecsum         = _mm256_add_ps(velecsum,velec);
698
699             fscal            = felec;
700
701             fscal            = _mm256_and_ps(fscal,cutoff_mask);
702
703             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
704
705             /* Calculate temporary vectorial force */
706             tx               = _mm256_mul_ps(fscal,dx10);
707             ty               = _mm256_mul_ps(fscal,dy10);
708             tz               = _mm256_mul_ps(fscal,dz10);
709
710             /* Update vectorial force */
711             fix1             = _mm256_add_ps(fix1,tx);
712             fiy1             = _mm256_add_ps(fiy1,ty);
713             fiz1             = _mm256_add_ps(fiz1,tz);
714
715             fjx0             = _mm256_add_ps(fjx0,tx);
716             fjy0             = _mm256_add_ps(fjy0,ty);
717             fjz0             = _mm256_add_ps(fjz0,tz);
718
719             }
720
721             /**************************
722              * CALCULATE INTERACTIONS *
723              **************************/
724
725             if (gmx_mm256_any_lt(rsq20,rcutoff2))
726             {
727
728             /* Compute parameters for interactions between i and j atoms */
729             qq20             = _mm256_mul_ps(iq2,jq0);
730
731             /* REACTION-FIELD ELECTROSTATICS */
732             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
733             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
734
735             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
736
737             /* Update potential sum for this i atom from the interaction with this j atom. */
738             velec            = _mm256_and_ps(velec,cutoff_mask);
739             velec            = _mm256_andnot_ps(dummy_mask,velec);
740             velecsum         = _mm256_add_ps(velecsum,velec);
741
742             fscal            = felec;
743
744             fscal            = _mm256_and_ps(fscal,cutoff_mask);
745
746             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
747
748             /* Calculate temporary vectorial force */
749             tx               = _mm256_mul_ps(fscal,dx20);
750             ty               = _mm256_mul_ps(fscal,dy20);
751             tz               = _mm256_mul_ps(fscal,dz20);
752
753             /* Update vectorial force */
754             fix2             = _mm256_add_ps(fix2,tx);
755             fiy2             = _mm256_add_ps(fiy2,ty);
756             fiz2             = _mm256_add_ps(fiz2,tz);
757
758             fjx0             = _mm256_add_ps(fjx0,tx);
759             fjy0             = _mm256_add_ps(fjy0,ty);
760             fjz0             = _mm256_add_ps(fjz0,tz);
761
762             }
763
764             /**************************
765              * CALCULATE INTERACTIONS *
766              **************************/
767
768             if (gmx_mm256_any_lt(rsq30,rcutoff2))
769             {
770
771             /* Compute parameters for interactions between i and j atoms */
772             qq30             = _mm256_mul_ps(iq3,jq0);
773
774             /* REACTION-FIELD ELECTROSTATICS */
775             velec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_add_ps(rinv30,_mm256_mul_ps(krf,rsq30)),crf));
776             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
777
778             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
779
780             /* Update potential sum for this i atom from the interaction with this j atom. */
781             velec            = _mm256_and_ps(velec,cutoff_mask);
782             velec            = _mm256_andnot_ps(dummy_mask,velec);
783             velecsum         = _mm256_add_ps(velecsum,velec);
784
785             fscal            = felec;
786
787             fscal            = _mm256_and_ps(fscal,cutoff_mask);
788
789             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
790
791             /* Calculate temporary vectorial force */
792             tx               = _mm256_mul_ps(fscal,dx30);
793             ty               = _mm256_mul_ps(fscal,dy30);
794             tz               = _mm256_mul_ps(fscal,dz30);
795
796             /* Update vectorial force */
797             fix3             = _mm256_add_ps(fix3,tx);
798             fiy3             = _mm256_add_ps(fiy3,ty);
799             fiz3             = _mm256_add_ps(fiz3,tz);
800
801             fjx0             = _mm256_add_ps(fjx0,tx);
802             fjy0             = _mm256_add_ps(fjy0,ty);
803             fjz0             = _mm256_add_ps(fjz0,tz);
804
805             }
806
807             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
808             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
809             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
810             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
811             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
812             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
813             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
814             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
815
816             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
817
818             /* Inner loop uses 168 flops */
819         }
820
821         /* End of innermost loop */
822
823         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
824                                                  f+i_coord_offset,fshift+i_shift_offset);
825
826         ggid                        = gid[iidx];
827         /* Update potential energies */
828         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
829         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
830
831         /* Increment number of inner iterations */
832         inneriter                  += j_index_end - j_index_start;
833
834         /* Outer loop uses 26 flops */
835     }
836
837     /* Increment number of outer iterations */
838     outeriter        += nri;
839
840     /* Update outer/inner flops */
841
842     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*168);
843 }
844 /*
845  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_avx_256_single
846  * Electrostatics interaction: ReactionField
847  * VdW interaction:            CubicSplineTable
848  * Geometry:                   Water4-Particle
849  * Calculate force/pot:        Force
850  */
851 void
852 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_avx_256_single
853                     (t_nblist                    * gmx_restrict       nlist,
854                      rvec                        * gmx_restrict          xx,
855                      rvec                        * gmx_restrict          ff,
856                      t_forcerec                  * gmx_restrict          fr,
857                      t_mdatoms                   * gmx_restrict     mdatoms,
858                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
859                      t_nrnb                      * gmx_restrict        nrnb)
860 {
861     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
862      * just 0 for non-waters.
863      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
864      * jnr indices corresponding to data put in the four positions in the SIMD register.
865      */
866     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
867     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
868     int              jnrA,jnrB,jnrC,jnrD;
869     int              jnrE,jnrF,jnrG,jnrH;
870     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
871     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
872     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
873     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
874     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
875     real             rcutoff_scalar;
876     real             *shiftvec,*fshift,*x,*f;
877     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
878     real             scratch[4*DIM];
879     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
880     real *           vdwioffsetptr0;
881     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
882     real *           vdwioffsetptr1;
883     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
884     real *           vdwioffsetptr2;
885     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
886     real *           vdwioffsetptr3;
887     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
888     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
889     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
890     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
891     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
892     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
893     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
894     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
895     real             *charge;
896     int              nvdwtype;
897     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
898     int              *vdwtype;
899     real             *vdwparam;
900     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
901     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
902     __m256i          vfitab;
903     __m128i          vfitab_lo,vfitab_hi;
904     __m128i          ifour       = _mm_set1_epi32(4);
905     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
906     real             *vftab;
907     __m256           dummy_mask,cutoff_mask;
908     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
909     __m256           one     = _mm256_set1_ps(1.0);
910     __m256           two     = _mm256_set1_ps(2.0);
911     x                = xx[0];
912     f                = ff[0];
913
914     nri              = nlist->nri;
915     iinr             = nlist->iinr;
916     jindex           = nlist->jindex;
917     jjnr             = nlist->jjnr;
918     shiftidx         = nlist->shift;
919     gid              = nlist->gid;
920     shiftvec         = fr->shift_vec[0];
921     fshift           = fr->fshift[0];
922     facel            = _mm256_set1_ps(fr->epsfac);
923     charge           = mdatoms->chargeA;
924     krf              = _mm256_set1_ps(fr->ic->k_rf);
925     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
926     crf              = _mm256_set1_ps(fr->ic->c_rf);
927     nvdwtype         = fr->ntype;
928     vdwparam         = fr->nbfp;
929     vdwtype          = mdatoms->typeA;
930
931     vftab            = kernel_data->table_vdw->data;
932     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
933
934     /* Setup water-specific parameters */
935     inr              = nlist->iinr[0];
936     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
937     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
938     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
939     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
940
941     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
942     rcutoff_scalar   = fr->rcoulomb;
943     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
944     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
945
946     /* Avoid stupid compiler warnings */
947     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
948     j_coord_offsetA = 0;
949     j_coord_offsetB = 0;
950     j_coord_offsetC = 0;
951     j_coord_offsetD = 0;
952     j_coord_offsetE = 0;
953     j_coord_offsetF = 0;
954     j_coord_offsetG = 0;
955     j_coord_offsetH = 0;
956
957     outeriter        = 0;
958     inneriter        = 0;
959
960     for(iidx=0;iidx<4*DIM;iidx++)
961     {
962         scratch[iidx] = 0.0;
963     }
964
965     /* Start outer loop over neighborlists */
966     for(iidx=0; iidx<nri; iidx++)
967     {
968         /* Load shift vector for this list */
969         i_shift_offset   = DIM*shiftidx[iidx];
970
971         /* Load limits for loop over neighbors */
972         j_index_start    = jindex[iidx];
973         j_index_end      = jindex[iidx+1];
974
975         /* Get outer coordinate index */
976         inr              = iinr[iidx];
977         i_coord_offset   = DIM*inr;
978
979         /* Load i particle coords and add shift vector */
980         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
981                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
982
983         fix0             = _mm256_setzero_ps();
984         fiy0             = _mm256_setzero_ps();
985         fiz0             = _mm256_setzero_ps();
986         fix1             = _mm256_setzero_ps();
987         fiy1             = _mm256_setzero_ps();
988         fiz1             = _mm256_setzero_ps();
989         fix2             = _mm256_setzero_ps();
990         fiy2             = _mm256_setzero_ps();
991         fiz2             = _mm256_setzero_ps();
992         fix3             = _mm256_setzero_ps();
993         fiy3             = _mm256_setzero_ps();
994         fiz3             = _mm256_setzero_ps();
995
996         /* Start inner kernel loop */
997         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
998         {
999
1000             /* Get j neighbor index, and coordinate index */
1001             jnrA             = jjnr[jidx];
1002             jnrB             = jjnr[jidx+1];
1003             jnrC             = jjnr[jidx+2];
1004             jnrD             = jjnr[jidx+3];
1005             jnrE             = jjnr[jidx+4];
1006             jnrF             = jjnr[jidx+5];
1007             jnrG             = jjnr[jidx+6];
1008             jnrH             = jjnr[jidx+7];
1009             j_coord_offsetA  = DIM*jnrA;
1010             j_coord_offsetB  = DIM*jnrB;
1011             j_coord_offsetC  = DIM*jnrC;
1012             j_coord_offsetD  = DIM*jnrD;
1013             j_coord_offsetE  = DIM*jnrE;
1014             j_coord_offsetF  = DIM*jnrF;
1015             j_coord_offsetG  = DIM*jnrG;
1016             j_coord_offsetH  = DIM*jnrH;
1017
1018             /* load j atom coordinates */
1019             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1020                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1021                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1022                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1023                                                  &jx0,&jy0,&jz0);
1024
1025             /* Calculate displacement vector */
1026             dx00             = _mm256_sub_ps(ix0,jx0);
1027             dy00             = _mm256_sub_ps(iy0,jy0);
1028             dz00             = _mm256_sub_ps(iz0,jz0);
1029             dx10             = _mm256_sub_ps(ix1,jx0);
1030             dy10             = _mm256_sub_ps(iy1,jy0);
1031             dz10             = _mm256_sub_ps(iz1,jz0);
1032             dx20             = _mm256_sub_ps(ix2,jx0);
1033             dy20             = _mm256_sub_ps(iy2,jy0);
1034             dz20             = _mm256_sub_ps(iz2,jz0);
1035             dx30             = _mm256_sub_ps(ix3,jx0);
1036             dy30             = _mm256_sub_ps(iy3,jy0);
1037             dz30             = _mm256_sub_ps(iz3,jz0);
1038
1039             /* Calculate squared distance and things based on it */
1040             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1041             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1042             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1043             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1044
1045             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1046             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1047             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1048             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1049
1050             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1051             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1052             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1053
1054             /* Load parameters for j particles */
1055             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1056                                                                  charge+jnrC+0,charge+jnrD+0,
1057                                                                  charge+jnrE+0,charge+jnrF+0,
1058                                                                  charge+jnrG+0,charge+jnrH+0);
1059             vdwjidx0A        = 2*vdwtype[jnrA+0];
1060             vdwjidx0B        = 2*vdwtype[jnrB+0];
1061             vdwjidx0C        = 2*vdwtype[jnrC+0];
1062             vdwjidx0D        = 2*vdwtype[jnrD+0];
1063             vdwjidx0E        = 2*vdwtype[jnrE+0];
1064             vdwjidx0F        = 2*vdwtype[jnrF+0];
1065             vdwjidx0G        = 2*vdwtype[jnrG+0];
1066             vdwjidx0H        = 2*vdwtype[jnrH+0];
1067
1068             fjx0             = _mm256_setzero_ps();
1069             fjy0             = _mm256_setzero_ps();
1070             fjz0             = _mm256_setzero_ps();
1071
1072             /**************************
1073              * CALCULATE INTERACTIONS *
1074              **************************/
1075
1076             r00              = _mm256_mul_ps(rsq00,rinv00);
1077
1078             /* Compute parameters for interactions between i and j atoms */
1079             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1080                                             vdwioffsetptr0+vdwjidx0B,
1081                                             vdwioffsetptr0+vdwjidx0C,
1082                                             vdwioffsetptr0+vdwjidx0D,
1083                                             vdwioffsetptr0+vdwjidx0E,
1084                                             vdwioffsetptr0+vdwjidx0F,
1085                                             vdwioffsetptr0+vdwjidx0G,
1086                                             vdwioffsetptr0+vdwjidx0H,
1087                                             &c6_00,&c12_00);
1088
1089             /* Calculate table index by multiplying r with table scale and truncate to integer */
1090             rt               = _mm256_mul_ps(r00,vftabscale);
1091             vfitab           = _mm256_cvttps_epi32(rt);
1092             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1093             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1094             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1095             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1096             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1097             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1098
1099             /* CUBIC SPLINE TABLE DISPERSION */
1100             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1101                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1102             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1103                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1104             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1105                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1106             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1107                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1108             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1109             Heps             = _mm256_mul_ps(vfeps,H);
1110             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1111             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1112             fvdw6            = _mm256_mul_ps(c6_00,FF);
1113
1114             /* CUBIC SPLINE TABLE REPULSION */
1115             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1116             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1117             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1118                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1119             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1120                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1121             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1122                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1123             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1124                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1125             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1126             Heps             = _mm256_mul_ps(vfeps,H);
1127             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1128             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1129             fvdw12           = _mm256_mul_ps(c12_00,FF);
1130             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1131
1132             fscal            = fvdw;
1133
1134             /* Calculate temporary vectorial force */
1135             tx               = _mm256_mul_ps(fscal,dx00);
1136             ty               = _mm256_mul_ps(fscal,dy00);
1137             tz               = _mm256_mul_ps(fscal,dz00);
1138
1139             /* Update vectorial force */
1140             fix0             = _mm256_add_ps(fix0,tx);
1141             fiy0             = _mm256_add_ps(fiy0,ty);
1142             fiz0             = _mm256_add_ps(fiz0,tz);
1143
1144             fjx0             = _mm256_add_ps(fjx0,tx);
1145             fjy0             = _mm256_add_ps(fjy0,ty);
1146             fjz0             = _mm256_add_ps(fjz0,tz);
1147
1148             /**************************
1149              * CALCULATE INTERACTIONS *
1150              **************************/
1151
1152             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1153             {
1154
1155             /* Compute parameters for interactions between i and j atoms */
1156             qq10             = _mm256_mul_ps(iq1,jq0);
1157
1158             /* REACTION-FIELD ELECTROSTATICS */
1159             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1160
1161             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1162
1163             fscal            = felec;
1164
1165             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1166
1167             /* Calculate temporary vectorial force */
1168             tx               = _mm256_mul_ps(fscal,dx10);
1169             ty               = _mm256_mul_ps(fscal,dy10);
1170             tz               = _mm256_mul_ps(fscal,dz10);
1171
1172             /* Update vectorial force */
1173             fix1             = _mm256_add_ps(fix1,tx);
1174             fiy1             = _mm256_add_ps(fiy1,ty);
1175             fiz1             = _mm256_add_ps(fiz1,tz);
1176
1177             fjx0             = _mm256_add_ps(fjx0,tx);
1178             fjy0             = _mm256_add_ps(fjy0,ty);
1179             fjz0             = _mm256_add_ps(fjz0,tz);
1180
1181             }
1182
1183             /**************************
1184              * CALCULATE INTERACTIONS *
1185              **************************/
1186
1187             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1188             {
1189
1190             /* Compute parameters for interactions between i and j atoms */
1191             qq20             = _mm256_mul_ps(iq2,jq0);
1192
1193             /* REACTION-FIELD ELECTROSTATICS */
1194             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1195
1196             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1197
1198             fscal            = felec;
1199
1200             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1201
1202             /* Calculate temporary vectorial force */
1203             tx               = _mm256_mul_ps(fscal,dx20);
1204             ty               = _mm256_mul_ps(fscal,dy20);
1205             tz               = _mm256_mul_ps(fscal,dz20);
1206
1207             /* Update vectorial force */
1208             fix2             = _mm256_add_ps(fix2,tx);
1209             fiy2             = _mm256_add_ps(fiy2,ty);
1210             fiz2             = _mm256_add_ps(fiz2,tz);
1211
1212             fjx0             = _mm256_add_ps(fjx0,tx);
1213             fjy0             = _mm256_add_ps(fjy0,ty);
1214             fjz0             = _mm256_add_ps(fjz0,tz);
1215
1216             }
1217
1218             /**************************
1219              * CALCULATE INTERACTIONS *
1220              **************************/
1221
1222             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1223             {
1224
1225             /* Compute parameters for interactions between i and j atoms */
1226             qq30             = _mm256_mul_ps(iq3,jq0);
1227
1228             /* REACTION-FIELD ELECTROSTATICS */
1229             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1230
1231             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1232
1233             fscal            = felec;
1234
1235             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1236
1237             /* Calculate temporary vectorial force */
1238             tx               = _mm256_mul_ps(fscal,dx30);
1239             ty               = _mm256_mul_ps(fscal,dy30);
1240             tz               = _mm256_mul_ps(fscal,dz30);
1241
1242             /* Update vectorial force */
1243             fix3             = _mm256_add_ps(fix3,tx);
1244             fiy3             = _mm256_add_ps(fiy3,ty);
1245             fiz3             = _mm256_add_ps(fiz3,tz);
1246
1247             fjx0             = _mm256_add_ps(fjx0,tx);
1248             fjy0             = _mm256_add_ps(fjy0,ty);
1249             fjz0             = _mm256_add_ps(fjz0,tz);
1250
1251             }
1252
1253             fjptrA             = f+j_coord_offsetA;
1254             fjptrB             = f+j_coord_offsetB;
1255             fjptrC             = f+j_coord_offsetC;
1256             fjptrD             = f+j_coord_offsetD;
1257             fjptrE             = f+j_coord_offsetE;
1258             fjptrF             = f+j_coord_offsetF;
1259             fjptrG             = f+j_coord_offsetG;
1260             fjptrH             = f+j_coord_offsetH;
1261
1262             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1263
1264             /* Inner loop uses 141 flops */
1265         }
1266
1267         if(jidx<j_index_end)
1268         {
1269
1270             /* Get j neighbor index, and coordinate index */
1271             jnrlistA         = jjnr[jidx];
1272             jnrlistB         = jjnr[jidx+1];
1273             jnrlistC         = jjnr[jidx+2];
1274             jnrlistD         = jjnr[jidx+3];
1275             jnrlistE         = jjnr[jidx+4];
1276             jnrlistF         = jjnr[jidx+5];
1277             jnrlistG         = jjnr[jidx+6];
1278             jnrlistH         = jjnr[jidx+7];
1279             /* Sign of each element will be negative for non-real atoms.
1280              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1281              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1282              */
1283             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1284                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1285                                             
1286             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1287             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1288             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1289             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1290             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1291             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1292             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1293             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1294             j_coord_offsetA  = DIM*jnrA;
1295             j_coord_offsetB  = DIM*jnrB;
1296             j_coord_offsetC  = DIM*jnrC;
1297             j_coord_offsetD  = DIM*jnrD;
1298             j_coord_offsetE  = DIM*jnrE;
1299             j_coord_offsetF  = DIM*jnrF;
1300             j_coord_offsetG  = DIM*jnrG;
1301             j_coord_offsetH  = DIM*jnrH;
1302
1303             /* load j atom coordinates */
1304             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1305                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1306                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1307                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1308                                                  &jx0,&jy0,&jz0);
1309
1310             /* Calculate displacement vector */
1311             dx00             = _mm256_sub_ps(ix0,jx0);
1312             dy00             = _mm256_sub_ps(iy0,jy0);
1313             dz00             = _mm256_sub_ps(iz0,jz0);
1314             dx10             = _mm256_sub_ps(ix1,jx0);
1315             dy10             = _mm256_sub_ps(iy1,jy0);
1316             dz10             = _mm256_sub_ps(iz1,jz0);
1317             dx20             = _mm256_sub_ps(ix2,jx0);
1318             dy20             = _mm256_sub_ps(iy2,jy0);
1319             dz20             = _mm256_sub_ps(iz2,jz0);
1320             dx30             = _mm256_sub_ps(ix3,jx0);
1321             dy30             = _mm256_sub_ps(iy3,jy0);
1322             dz30             = _mm256_sub_ps(iz3,jz0);
1323
1324             /* Calculate squared distance and things based on it */
1325             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1326             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1327             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1328             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1329
1330             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1331             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1332             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1333             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1334
1335             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1336             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1337             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1338
1339             /* Load parameters for j particles */
1340             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1341                                                                  charge+jnrC+0,charge+jnrD+0,
1342                                                                  charge+jnrE+0,charge+jnrF+0,
1343                                                                  charge+jnrG+0,charge+jnrH+0);
1344             vdwjidx0A        = 2*vdwtype[jnrA+0];
1345             vdwjidx0B        = 2*vdwtype[jnrB+0];
1346             vdwjidx0C        = 2*vdwtype[jnrC+0];
1347             vdwjidx0D        = 2*vdwtype[jnrD+0];
1348             vdwjidx0E        = 2*vdwtype[jnrE+0];
1349             vdwjidx0F        = 2*vdwtype[jnrF+0];
1350             vdwjidx0G        = 2*vdwtype[jnrG+0];
1351             vdwjidx0H        = 2*vdwtype[jnrH+0];
1352
1353             fjx0             = _mm256_setzero_ps();
1354             fjy0             = _mm256_setzero_ps();
1355             fjz0             = _mm256_setzero_ps();
1356
1357             /**************************
1358              * CALCULATE INTERACTIONS *
1359              **************************/
1360
1361             r00              = _mm256_mul_ps(rsq00,rinv00);
1362             r00              = _mm256_andnot_ps(dummy_mask,r00);
1363
1364             /* Compute parameters for interactions between i and j atoms */
1365             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1366                                             vdwioffsetptr0+vdwjidx0B,
1367                                             vdwioffsetptr0+vdwjidx0C,
1368                                             vdwioffsetptr0+vdwjidx0D,
1369                                             vdwioffsetptr0+vdwjidx0E,
1370                                             vdwioffsetptr0+vdwjidx0F,
1371                                             vdwioffsetptr0+vdwjidx0G,
1372                                             vdwioffsetptr0+vdwjidx0H,
1373                                             &c6_00,&c12_00);
1374
1375             /* Calculate table index by multiplying r with table scale and truncate to integer */
1376             rt               = _mm256_mul_ps(r00,vftabscale);
1377             vfitab           = _mm256_cvttps_epi32(rt);
1378             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1379             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1380             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1381             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1382             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1383             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1384
1385             /* CUBIC SPLINE TABLE DISPERSION */
1386             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1387                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1388             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1389                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1390             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1391                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1392             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1393                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1394             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1395             Heps             = _mm256_mul_ps(vfeps,H);
1396             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1397             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1398             fvdw6            = _mm256_mul_ps(c6_00,FF);
1399
1400             /* CUBIC SPLINE TABLE REPULSION */
1401             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1402             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1403             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1404                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1405             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1406                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1407             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1408                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1409             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1410                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1411             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1412             Heps             = _mm256_mul_ps(vfeps,H);
1413             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1414             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1415             fvdw12           = _mm256_mul_ps(c12_00,FF);
1416             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1417
1418             fscal            = fvdw;
1419
1420             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1421
1422             /* Calculate temporary vectorial force */
1423             tx               = _mm256_mul_ps(fscal,dx00);
1424             ty               = _mm256_mul_ps(fscal,dy00);
1425             tz               = _mm256_mul_ps(fscal,dz00);
1426
1427             /* Update vectorial force */
1428             fix0             = _mm256_add_ps(fix0,tx);
1429             fiy0             = _mm256_add_ps(fiy0,ty);
1430             fiz0             = _mm256_add_ps(fiz0,tz);
1431
1432             fjx0             = _mm256_add_ps(fjx0,tx);
1433             fjy0             = _mm256_add_ps(fjy0,ty);
1434             fjz0             = _mm256_add_ps(fjz0,tz);
1435
1436             /**************************
1437              * CALCULATE INTERACTIONS *
1438              **************************/
1439
1440             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1441             {
1442
1443             /* Compute parameters for interactions between i and j atoms */
1444             qq10             = _mm256_mul_ps(iq1,jq0);
1445
1446             /* REACTION-FIELD ELECTROSTATICS */
1447             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1448
1449             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1450
1451             fscal            = felec;
1452
1453             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1454
1455             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1456
1457             /* Calculate temporary vectorial force */
1458             tx               = _mm256_mul_ps(fscal,dx10);
1459             ty               = _mm256_mul_ps(fscal,dy10);
1460             tz               = _mm256_mul_ps(fscal,dz10);
1461
1462             /* Update vectorial force */
1463             fix1             = _mm256_add_ps(fix1,tx);
1464             fiy1             = _mm256_add_ps(fiy1,ty);
1465             fiz1             = _mm256_add_ps(fiz1,tz);
1466
1467             fjx0             = _mm256_add_ps(fjx0,tx);
1468             fjy0             = _mm256_add_ps(fjy0,ty);
1469             fjz0             = _mm256_add_ps(fjz0,tz);
1470
1471             }
1472
1473             /**************************
1474              * CALCULATE INTERACTIONS *
1475              **************************/
1476
1477             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1478             {
1479
1480             /* Compute parameters for interactions between i and j atoms */
1481             qq20             = _mm256_mul_ps(iq2,jq0);
1482
1483             /* REACTION-FIELD ELECTROSTATICS */
1484             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1485
1486             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1487
1488             fscal            = felec;
1489
1490             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1491
1492             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1493
1494             /* Calculate temporary vectorial force */
1495             tx               = _mm256_mul_ps(fscal,dx20);
1496             ty               = _mm256_mul_ps(fscal,dy20);
1497             tz               = _mm256_mul_ps(fscal,dz20);
1498
1499             /* Update vectorial force */
1500             fix2             = _mm256_add_ps(fix2,tx);
1501             fiy2             = _mm256_add_ps(fiy2,ty);
1502             fiz2             = _mm256_add_ps(fiz2,tz);
1503
1504             fjx0             = _mm256_add_ps(fjx0,tx);
1505             fjy0             = _mm256_add_ps(fjy0,ty);
1506             fjz0             = _mm256_add_ps(fjz0,tz);
1507
1508             }
1509
1510             /**************************
1511              * CALCULATE INTERACTIONS *
1512              **************************/
1513
1514             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1515             {
1516
1517             /* Compute parameters for interactions between i and j atoms */
1518             qq30             = _mm256_mul_ps(iq3,jq0);
1519
1520             /* REACTION-FIELD ELECTROSTATICS */
1521             felec            = _mm256_mul_ps(qq30,_mm256_sub_ps(_mm256_mul_ps(rinv30,rinvsq30),krf2));
1522
1523             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1524
1525             fscal            = felec;
1526
1527             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1528
1529             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1530
1531             /* Calculate temporary vectorial force */
1532             tx               = _mm256_mul_ps(fscal,dx30);
1533             ty               = _mm256_mul_ps(fscal,dy30);
1534             tz               = _mm256_mul_ps(fscal,dz30);
1535
1536             /* Update vectorial force */
1537             fix3             = _mm256_add_ps(fix3,tx);
1538             fiy3             = _mm256_add_ps(fiy3,ty);
1539             fiz3             = _mm256_add_ps(fiz3,tz);
1540
1541             fjx0             = _mm256_add_ps(fjx0,tx);
1542             fjy0             = _mm256_add_ps(fjy0,ty);
1543             fjz0             = _mm256_add_ps(fjz0,tz);
1544
1545             }
1546
1547             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1548             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1549             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1550             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1551             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1552             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1553             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1554             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1555
1556             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1557
1558             /* Inner loop uses 142 flops */
1559         }
1560
1561         /* End of innermost loop */
1562
1563         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1564                                                  f+i_coord_offset,fshift+i_shift_offset);
1565
1566         /* Increment number of inner iterations */
1567         inneriter                  += j_index_end - j_index_start;
1568
1569         /* Outer loop uses 24 flops */
1570     }
1571
1572     /* Increment number of outer iterations */
1573     outeriter        += nri;
1574
1575     /* Update outer/inner flops */
1576
1577     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*142);
1578 }