Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_256_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     real *           vdwioffsetptr2;
90     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
92     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
103     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
104     __m256i          vfitab;
105     __m128i          vfitab_lo,vfitab_hi;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
108     real             *vftab;
109     __m256           dummy_mask,cutoff_mask;
110     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
111     __m256           one     = _mm256_set1_ps(1.0);
112     __m256           two     = _mm256_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm256_set1_ps(fr->ic->epsfac);
125     charge           = mdatoms->chargeA;
126     krf              = _mm256_set1_ps(fr->ic->k_rf);
127     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
128     crf              = _mm256_set1_ps(fr->ic->c_rf);
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     vftab            = kernel_data->table_vdw->data;
134     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
135
136     /* Setup water-specific parameters */
137     inr              = nlist->iinr[0];
138     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
139     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
140     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
141     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
142
143     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
144     rcutoff_scalar   = fr->ic->rcoulomb;
145     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
146     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152     j_coord_offsetC = 0;
153     j_coord_offsetD = 0;
154     j_coord_offsetE = 0;
155     j_coord_offsetF = 0;
156     j_coord_offsetG = 0;
157     j_coord_offsetH = 0;
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     for(iidx=0;iidx<4*DIM;iidx++)
163     {
164         scratch[iidx] = 0.0;
165     }
166
167     /* Start outer loop over neighborlists */
168     for(iidx=0; iidx<nri; iidx++)
169     {
170         /* Load shift vector for this list */
171         i_shift_offset   = DIM*shiftidx[iidx];
172
173         /* Load limits for loop over neighbors */
174         j_index_start    = jindex[iidx];
175         j_index_end      = jindex[iidx+1];
176
177         /* Get outer coordinate index */
178         inr              = iinr[iidx];
179         i_coord_offset   = DIM*inr;
180
181         /* Load i particle coords and add shift vector */
182         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
183                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
184
185         fix0             = _mm256_setzero_ps();
186         fiy0             = _mm256_setzero_ps();
187         fiz0             = _mm256_setzero_ps();
188         fix1             = _mm256_setzero_ps();
189         fiy1             = _mm256_setzero_ps();
190         fiz1             = _mm256_setzero_ps();
191         fix2             = _mm256_setzero_ps();
192         fiy2             = _mm256_setzero_ps();
193         fiz2             = _mm256_setzero_ps();
194
195         /* Reset potential sums */
196         velecsum         = _mm256_setzero_ps();
197         vvdwsum          = _mm256_setzero_ps();
198
199         /* Start inner kernel loop */
200         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
201         {
202
203             /* Get j neighbor index, and coordinate index */
204             jnrA             = jjnr[jidx];
205             jnrB             = jjnr[jidx+1];
206             jnrC             = jjnr[jidx+2];
207             jnrD             = jjnr[jidx+3];
208             jnrE             = jjnr[jidx+4];
209             jnrF             = jjnr[jidx+5];
210             jnrG             = jjnr[jidx+6];
211             jnrH             = jjnr[jidx+7];
212             j_coord_offsetA  = DIM*jnrA;
213             j_coord_offsetB  = DIM*jnrB;
214             j_coord_offsetC  = DIM*jnrC;
215             j_coord_offsetD  = DIM*jnrD;
216             j_coord_offsetE  = DIM*jnrE;
217             j_coord_offsetF  = DIM*jnrF;
218             j_coord_offsetG  = DIM*jnrG;
219             j_coord_offsetH  = DIM*jnrH;
220
221             /* load j atom coordinates */
222             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
223                                                  x+j_coord_offsetC,x+j_coord_offsetD,
224                                                  x+j_coord_offsetE,x+j_coord_offsetF,
225                                                  x+j_coord_offsetG,x+j_coord_offsetH,
226                                                  &jx0,&jy0,&jz0);
227
228             /* Calculate displacement vector */
229             dx00             = _mm256_sub_ps(ix0,jx0);
230             dy00             = _mm256_sub_ps(iy0,jy0);
231             dz00             = _mm256_sub_ps(iz0,jz0);
232             dx10             = _mm256_sub_ps(ix1,jx0);
233             dy10             = _mm256_sub_ps(iy1,jy0);
234             dz10             = _mm256_sub_ps(iz1,jz0);
235             dx20             = _mm256_sub_ps(ix2,jx0);
236             dy20             = _mm256_sub_ps(iy2,jy0);
237             dz20             = _mm256_sub_ps(iz2,jz0);
238
239             /* Calculate squared distance and things based on it */
240             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
241             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
242             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
243
244             rinv00           = avx256_invsqrt_f(rsq00);
245             rinv10           = avx256_invsqrt_f(rsq10);
246             rinv20           = avx256_invsqrt_f(rsq20);
247
248             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
249             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
250             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
251
252             /* Load parameters for j particles */
253             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
254                                                                  charge+jnrC+0,charge+jnrD+0,
255                                                                  charge+jnrE+0,charge+jnrF+0,
256                                                                  charge+jnrG+0,charge+jnrH+0);
257             vdwjidx0A        = 2*vdwtype[jnrA+0];
258             vdwjidx0B        = 2*vdwtype[jnrB+0];
259             vdwjidx0C        = 2*vdwtype[jnrC+0];
260             vdwjidx0D        = 2*vdwtype[jnrD+0];
261             vdwjidx0E        = 2*vdwtype[jnrE+0];
262             vdwjidx0F        = 2*vdwtype[jnrF+0];
263             vdwjidx0G        = 2*vdwtype[jnrG+0];
264             vdwjidx0H        = 2*vdwtype[jnrH+0];
265
266             fjx0             = _mm256_setzero_ps();
267             fjy0             = _mm256_setzero_ps();
268             fjz0             = _mm256_setzero_ps();
269
270             /**************************
271              * CALCULATE INTERACTIONS *
272              **************************/
273
274             if (gmx_mm256_any_lt(rsq00,rcutoff2))
275             {
276
277             r00              = _mm256_mul_ps(rsq00,rinv00);
278
279             /* Compute parameters for interactions between i and j atoms */
280             qq00             = _mm256_mul_ps(iq0,jq0);
281             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
282                                             vdwioffsetptr0+vdwjidx0B,
283                                             vdwioffsetptr0+vdwjidx0C,
284                                             vdwioffsetptr0+vdwjidx0D,
285                                             vdwioffsetptr0+vdwjidx0E,
286                                             vdwioffsetptr0+vdwjidx0F,
287                                             vdwioffsetptr0+vdwjidx0G,
288                                             vdwioffsetptr0+vdwjidx0H,
289                                             &c6_00,&c12_00);
290
291             /* Calculate table index by multiplying r with table scale and truncate to integer */
292             rt               = _mm256_mul_ps(r00,vftabscale);
293             vfitab           = _mm256_cvttps_epi32(rt);
294             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
295             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
296             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
297             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
298             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
299             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
300
301             /* REACTION-FIELD ELECTROSTATICS */
302             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
303             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
304
305             /* CUBIC SPLINE TABLE DISPERSION */
306             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
307                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
308             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
309                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
310             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
311                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
312             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
313                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
314             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
315             Heps             = _mm256_mul_ps(vfeps,H);
316             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
317             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
318             vvdw6            = _mm256_mul_ps(c6_00,VV);
319             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
320             fvdw6            = _mm256_mul_ps(c6_00,FF);
321
322             /* CUBIC SPLINE TABLE REPULSION */
323             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
324             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
325             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
326                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
327             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
328                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
329             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
330                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
331             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
332                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
333             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
334             Heps             = _mm256_mul_ps(vfeps,H);
335             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
336             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
337             vvdw12           = _mm256_mul_ps(c12_00,VV);
338             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
339             fvdw12           = _mm256_mul_ps(c12_00,FF);
340             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
341             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
342
343             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velec            = _mm256_and_ps(velec,cutoff_mask);
347             velecsum         = _mm256_add_ps(velecsum,velec);
348             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
349             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
350
351             fscal            = _mm256_add_ps(felec,fvdw);
352
353             fscal            = _mm256_and_ps(fscal,cutoff_mask);
354
355             /* Calculate temporary vectorial force */
356             tx               = _mm256_mul_ps(fscal,dx00);
357             ty               = _mm256_mul_ps(fscal,dy00);
358             tz               = _mm256_mul_ps(fscal,dz00);
359
360             /* Update vectorial force */
361             fix0             = _mm256_add_ps(fix0,tx);
362             fiy0             = _mm256_add_ps(fiy0,ty);
363             fiz0             = _mm256_add_ps(fiz0,tz);
364
365             fjx0             = _mm256_add_ps(fjx0,tx);
366             fjy0             = _mm256_add_ps(fjy0,ty);
367             fjz0             = _mm256_add_ps(fjz0,tz);
368
369             }
370
371             /**************************
372              * CALCULATE INTERACTIONS *
373              **************************/
374
375             if (gmx_mm256_any_lt(rsq10,rcutoff2))
376             {
377
378             /* Compute parameters for interactions between i and j atoms */
379             qq10             = _mm256_mul_ps(iq1,jq0);
380
381             /* REACTION-FIELD ELECTROSTATICS */
382             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
383             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
384
385             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
386
387             /* Update potential sum for this i atom from the interaction with this j atom. */
388             velec            = _mm256_and_ps(velec,cutoff_mask);
389             velecsum         = _mm256_add_ps(velecsum,velec);
390
391             fscal            = felec;
392
393             fscal            = _mm256_and_ps(fscal,cutoff_mask);
394
395             /* Calculate temporary vectorial force */
396             tx               = _mm256_mul_ps(fscal,dx10);
397             ty               = _mm256_mul_ps(fscal,dy10);
398             tz               = _mm256_mul_ps(fscal,dz10);
399
400             /* Update vectorial force */
401             fix1             = _mm256_add_ps(fix1,tx);
402             fiy1             = _mm256_add_ps(fiy1,ty);
403             fiz1             = _mm256_add_ps(fiz1,tz);
404
405             fjx0             = _mm256_add_ps(fjx0,tx);
406             fjy0             = _mm256_add_ps(fjy0,ty);
407             fjz0             = _mm256_add_ps(fjz0,tz);
408
409             }
410
411             /**************************
412              * CALCULATE INTERACTIONS *
413              **************************/
414
415             if (gmx_mm256_any_lt(rsq20,rcutoff2))
416             {
417
418             /* Compute parameters for interactions between i and j atoms */
419             qq20             = _mm256_mul_ps(iq2,jq0);
420
421             /* REACTION-FIELD ELECTROSTATICS */
422             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
423             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
424
425             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
426
427             /* Update potential sum for this i atom from the interaction with this j atom. */
428             velec            = _mm256_and_ps(velec,cutoff_mask);
429             velecsum         = _mm256_add_ps(velecsum,velec);
430
431             fscal            = felec;
432
433             fscal            = _mm256_and_ps(fscal,cutoff_mask);
434
435             /* Calculate temporary vectorial force */
436             tx               = _mm256_mul_ps(fscal,dx20);
437             ty               = _mm256_mul_ps(fscal,dy20);
438             tz               = _mm256_mul_ps(fscal,dz20);
439
440             /* Update vectorial force */
441             fix2             = _mm256_add_ps(fix2,tx);
442             fiy2             = _mm256_add_ps(fiy2,ty);
443             fiz2             = _mm256_add_ps(fiz2,tz);
444
445             fjx0             = _mm256_add_ps(fjx0,tx);
446             fjy0             = _mm256_add_ps(fjy0,ty);
447             fjz0             = _mm256_add_ps(fjz0,tz);
448
449             }
450
451             fjptrA             = f+j_coord_offsetA;
452             fjptrB             = f+j_coord_offsetB;
453             fjptrC             = f+j_coord_offsetC;
454             fjptrD             = f+j_coord_offsetD;
455             fjptrE             = f+j_coord_offsetE;
456             fjptrF             = f+j_coord_offsetF;
457             fjptrG             = f+j_coord_offsetG;
458             fjptrH             = f+j_coord_offsetH;
459
460             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
461
462             /* Inner loop uses 147 flops */
463         }
464
465         if(jidx<j_index_end)
466         {
467
468             /* Get j neighbor index, and coordinate index */
469             jnrlistA         = jjnr[jidx];
470             jnrlistB         = jjnr[jidx+1];
471             jnrlistC         = jjnr[jidx+2];
472             jnrlistD         = jjnr[jidx+3];
473             jnrlistE         = jjnr[jidx+4];
474             jnrlistF         = jjnr[jidx+5];
475             jnrlistG         = jjnr[jidx+6];
476             jnrlistH         = jjnr[jidx+7];
477             /* Sign of each element will be negative for non-real atoms.
478              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
479              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
480              */
481             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
482                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
483                                             
484             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
485             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
486             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
487             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
488             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
489             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
490             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
491             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
492             j_coord_offsetA  = DIM*jnrA;
493             j_coord_offsetB  = DIM*jnrB;
494             j_coord_offsetC  = DIM*jnrC;
495             j_coord_offsetD  = DIM*jnrD;
496             j_coord_offsetE  = DIM*jnrE;
497             j_coord_offsetF  = DIM*jnrF;
498             j_coord_offsetG  = DIM*jnrG;
499             j_coord_offsetH  = DIM*jnrH;
500
501             /* load j atom coordinates */
502             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
503                                                  x+j_coord_offsetC,x+j_coord_offsetD,
504                                                  x+j_coord_offsetE,x+j_coord_offsetF,
505                                                  x+j_coord_offsetG,x+j_coord_offsetH,
506                                                  &jx0,&jy0,&jz0);
507
508             /* Calculate displacement vector */
509             dx00             = _mm256_sub_ps(ix0,jx0);
510             dy00             = _mm256_sub_ps(iy0,jy0);
511             dz00             = _mm256_sub_ps(iz0,jz0);
512             dx10             = _mm256_sub_ps(ix1,jx0);
513             dy10             = _mm256_sub_ps(iy1,jy0);
514             dz10             = _mm256_sub_ps(iz1,jz0);
515             dx20             = _mm256_sub_ps(ix2,jx0);
516             dy20             = _mm256_sub_ps(iy2,jy0);
517             dz20             = _mm256_sub_ps(iz2,jz0);
518
519             /* Calculate squared distance and things based on it */
520             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
521             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
522             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
523
524             rinv00           = avx256_invsqrt_f(rsq00);
525             rinv10           = avx256_invsqrt_f(rsq10);
526             rinv20           = avx256_invsqrt_f(rsq20);
527
528             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
529             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
530             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
531
532             /* Load parameters for j particles */
533             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
534                                                                  charge+jnrC+0,charge+jnrD+0,
535                                                                  charge+jnrE+0,charge+jnrF+0,
536                                                                  charge+jnrG+0,charge+jnrH+0);
537             vdwjidx0A        = 2*vdwtype[jnrA+0];
538             vdwjidx0B        = 2*vdwtype[jnrB+0];
539             vdwjidx0C        = 2*vdwtype[jnrC+0];
540             vdwjidx0D        = 2*vdwtype[jnrD+0];
541             vdwjidx0E        = 2*vdwtype[jnrE+0];
542             vdwjidx0F        = 2*vdwtype[jnrF+0];
543             vdwjidx0G        = 2*vdwtype[jnrG+0];
544             vdwjidx0H        = 2*vdwtype[jnrH+0];
545
546             fjx0             = _mm256_setzero_ps();
547             fjy0             = _mm256_setzero_ps();
548             fjz0             = _mm256_setzero_ps();
549
550             /**************************
551              * CALCULATE INTERACTIONS *
552              **************************/
553
554             if (gmx_mm256_any_lt(rsq00,rcutoff2))
555             {
556
557             r00              = _mm256_mul_ps(rsq00,rinv00);
558             r00              = _mm256_andnot_ps(dummy_mask,r00);
559
560             /* Compute parameters for interactions between i and j atoms */
561             qq00             = _mm256_mul_ps(iq0,jq0);
562             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
563                                             vdwioffsetptr0+vdwjidx0B,
564                                             vdwioffsetptr0+vdwjidx0C,
565                                             vdwioffsetptr0+vdwjidx0D,
566                                             vdwioffsetptr0+vdwjidx0E,
567                                             vdwioffsetptr0+vdwjidx0F,
568                                             vdwioffsetptr0+vdwjidx0G,
569                                             vdwioffsetptr0+vdwjidx0H,
570                                             &c6_00,&c12_00);
571
572             /* Calculate table index by multiplying r with table scale and truncate to integer */
573             rt               = _mm256_mul_ps(r00,vftabscale);
574             vfitab           = _mm256_cvttps_epi32(rt);
575             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
576             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
577             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
578             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
579             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
580             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
581
582             /* REACTION-FIELD ELECTROSTATICS */
583             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
584             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
585
586             /* CUBIC SPLINE TABLE DISPERSION */
587             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
588                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
589             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
590                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
591             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
592                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
593             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
594                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
595             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
596             Heps             = _mm256_mul_ps(vfeps,H);
597             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
598             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
599             vvdw6            = _mm256_mul_ps(c6_00,VV);
600             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
601             fvdw6            = _mm256_mul_ps(c6_00,FF);
602
603             /* CUBIC SPLINE TABLE REPULSION */
604             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
605             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
606             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
607                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
608             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
609                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
610             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
611                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
612             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
613                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
614             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
615             Heps             = _mm256_mul_ps(vfeps,H);
616             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
617             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
618             vvdw12           = _mm256_mul_ps(c12_00,VV);
619             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
620             fvdw12           = _mm256_mul_ps(c12_00,FF);
621             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
622             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
623
624             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
625
626             /* Update potential sum for this i atom from the interaction with this j atom. */
627             velec            = _mm256_and_ps(velec,cutoff_mask);
628             velec            = _mm256_andnot_ps(dummy_mask,velec);
629             velecsum         = _mm256_add_ps(velecsum,velec);
630             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
631             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
632             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
633
634             fscal            = _mm256_add_ps(felec,fvdw);
635
636             fscal            = _mm256_and_ps(fscal,cutoff_mask);
637
638             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
639
640             /* Calculate temporary vectorial force */
641             tx               = _mm256_mul_ps(fscal,dx00);
642             ty               = _mm256_mul_ps(fscal,dy00);
643             tz               = _mm256_mul_ps(fscal,dz00);
644
645             /* Update vectorial force */
646             fix0             = _mm256_add_ps(fix0,tx);
647             fiy0             = _mm256_add_ps(fiy0,ty);
648             fiz0             = _mm256_add_ps(fiz0,tz);
649
650             fjx0             = _mm256_add_ps(fjx0,tx);
651             fjy0             = _mm256_add_ps(fjy0,ty);
652             fjz0             = _mm256_add_ps(fjz0,tz);
653
654             }
655
656             /**************************
657              * CALCULATE INTERACTIONS *
658              **************************/
659
660             if (gmx_mm256_any_lt(rsq10,rcutoff2))
661             {
662
663             /* Compute parameters for interactions between i and j atoms */
664             qq10             = _mm256_mul_ps(iq1,jq0);
665
666             /* REACTION-FIELD ELECTROSTATICS */
667             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
668             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
669
670             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
671
672             /* Update potential sum for this i atom from the interaction with this j atom. */
673             velec            = _mm256_and_ps(velec,cutoff_mask);
674             velec            = _mm256_andnot_ps(dummy_mask,velec);
675             velecsum         = _mm256_add_ps(velecsum,velec);
676
677             fscal            = felec;
678
679             fscal            = _mm256_and_ps(fscal,cutoff_mask);
680
681             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
682
683             /* Calculate temporary vectorial force */
684             tx               = _mm256_mul_ps(fscal,dx10);
685             ty               = _mm256_mul_ps(fscal,dy10);
686             tz               = _mm256_mul_ps(fscal,dz10);
687
688             /* Update vectorial force */
689             fix1             = _mm256_add_ps(fix1,tx);
690             fiy1             = _mm256_add_ps(fiy1,ty);
691             fiz1             = _mm256_add_ps(fiz1,tz);
692
693             fjx0             = _mm256_add_ps(fjx0,tx);
694             fjy0             = _mm256_add_ps(fjy0,ty);
695             fjz0             = _mm256_add_ps(fjz0,tz);
696
697             }
698
699             /**************************
700              * CALCULATE INTERACTIONS *
701              **************************/
702
703             if (gmx_mm256_any_lt(rsq20,rcutoff2))
704             {
705
706             /* Compute parameters for interactions between i and j atoms */
707             qq20             = _mm256_mul_ps(iq2,jq0);
708
709             /* REACTION-FIELD ELECTROSTATICS */
710             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
711             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
712
713             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
714
715             /* Update potential sum for this i atom from the interaction with this j atom. */
716             velec            = _mm256_and_ps(velec,cutoff_mask);
717             velec            = _mm256_andnot_ps(dummy_mask,velec);
718             velecsum         = _mm256_add_ps(velecsum,velec);
719
720             fscal            = felec;
721
722             fscal            = _mm256_and_ps(fscal,cutoff_mask);
723
724             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
725
726             /* Calculate temporary vectorial force */
727             tx               = _mm256_mul_ps(fscal,dx20);
728             ty               = _mm256_mul_ps(fscal,dy20);
729             tz               = _mm256_mul_ps(fscal,dz20);
730
731             /* Update vectorial force */
732             fix2             = _mm256_add_ps(fix2,tx);
733             fiy2             = _mm256_add_ps(fiy2,ty);
734             fiz2             = _mm256_add_ps(fiz2,tz);
735
736             fjx0             = _mm256_add_ps(fjx0,tx);
737             fjy0             = _mm256_add_ps(fjy0,ty);
738             fjz0             = _mm256_add_ps(fjz0,tz);
739
740             }
741
742             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
743             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
744             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
745             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
746             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
747             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
748             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
749             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
750
751             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
752
753             /* Inner loop uses 148 flops */
754         }
755
756         /* End of innermost loop */
757
758         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
759                                                  f+i_coord_offset,fshift+i_shift_offset);
760
761         ggid                        = gid[iidx];
762         /* Update potential energies */
763         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
764         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
765
766         /* Increment number of inner iterations */
767         inneriter                  += j_index_end - j_index_start;
768
769         /* Outer loop uses 20 flops */
770     }
771
772     /* Increment number of outer iterations */
773     outeriter        += nri;
774
775     /* Update outer/inner flops */
776
777     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*148);
778 }
779 /*
780  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_256_single
781  * Electrostatics interaction: ReactionField
782  * VdW interaction:            CubicSplineTable
783  * Geometry:                   Water3-Particle
784  * Calculate force/pot:        Force
785  */
786 void
787 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_256_single
788                     (t_nblist                    * gmx_restrict       nlist,
789                      rvec                        * gmx_restrict          xx,
790                      rvec                        * gmx_restrict          ff,
791                      struct t_forcerec           * gmx_restrict          fr,
792                      t_mdatoms                   * gmx_restrict     mdatoms,
793                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
794                      t_nrnb                      * gmx_restrict        nrnb)
795 {
796     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
797      * just 0 for non-waters.
798      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
799      * jnr indices corresponding to data put in the four positions in the SIMD register.
800      */
801     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
802     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
803     int              jnrA,jnrB,jnrC,jnrD;
804     int              jnrE,jnrF,jnrG,jnrH;
805     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
806     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
807     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
808     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
809     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
810     real             rcutoff_scalar;
811     real             *shiftvec,*fshift,*x,*f;
812     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
813     real             scratch[4*DIM];
814     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
815     real *           vdwioffsetptr0;
816     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
817     real *           vdwioffsetptr1;
818     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
819     real *           vdwioffsetptr2;
820     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
821     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
822     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
823     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
824     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
825     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
826     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
827     real             *charge;
828     int              nvdwtype;
829     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
830     int              *vdwtype;
831     real             *vdwparam;
832     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
833     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
834     __m256i          vfitab;
835     __m128i          vfitab_lo,vfitab_hi;
836     __m128i          ifour       = _mm_set1_epi32(4);
837     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
838     real             *vftab;
839     __m256           dummy_mask,cutoff_mask;
840     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
841     __m256           one     = _mm256_set1_ps(1.0);
842     __m256           two     = _mm256_set1_ps(2.0);
843     x                = xx[0];
844     f                = ff[0];
845
846     nri              = nlist->nri;
847     iinr             = nlist->iinr;
848     jindex           = nlist->jindex;
849     jjnr             = nlist->jjnr;
850     shiftidx         = nlist->shift;
851     gid              = nlist->gid;
852     shiftvec         = fr->shift_vec[0];
853     fshift           = fr->fshift[0];
854     facel            = _mm256_set1_ps(fr->ic->epsfac);
855     charge           = mdatoms->chargeA;
856     krf              = _mm256_set1_ps(fr->ic->k_rf);
857     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
858     crf              = _mm256_set1_ps(fr->ic->c_rf);
859     nvdwtype         = fr->ntype;
860     vdwparam         = fr->nbfp;
861     vdwtype          = mdatoms->typeA;
862
863     vftab            = kernel_data->table_vdw->data;
864     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
865
866     /* Setup water-specific parameters */
867     inr              = nlist->iinr[0];
868     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
869     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
870     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
871     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
872
873     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
874     rcutoff_scalar   = fr->ic->rcoulomb;
875     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
876     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
877
878     /* Avoid stupid compiler warnings */
879     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
880     j_coord_offsetA = 0;
881     j_coord_offsetB = 0;
882     j_coord_offsetC = 0;
883     j_coord_offsetD = 0;
884     j_coord_offsetE = 0;
885     j_coord_offsetF = 0;
886     j_coord_offsetG = 0;
887     j_coord_offsetH = 0;
888
889     outeriter        = 0;
890     inneriter        = 0;
891
892     for(iidx=0;iidx<4*DIM;iidx++)
893     {
894         scratch[iidx] = 0.0;
895     }
896
897     /* Start outer loop over neighborlists */
898     for(iidx=0; iidx<nri; iidx++)
899     {
900         /* Load shift vector for this list */
901         i_shift_offset   = DIM*shiftidx[iidx];
902
903         /* Load limits for loop over neighbors */
904         j_index_start    = jindex[iidx];
905         j_index_end      = jindex[iidx+1];
906
907         /* Get outer coordinate index */
908         inr              = iinr[iidx];
909         i_coord_offset   = DIM*inr;
910
911         /* Load i particle coords and add shift vector */
912         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
913                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
914
915         fix0             = _mm256_setzero_ps();
916         fiy0             = _mm256_setzero_ps();
917         fiz0             = _mm256_setzero_ps();
918         fix1             = _mm256_setzero_ps();
919         fiy1             = _mm256_setzero_ps();
920         fiz1             = _mm256_setzero_ps();
921         fix2             = _mm256_setzero_ps();
922         fiy2             = _mm256_setzero_ps();
923         fiz2             = _mm256_setzero_ps();
924
925         /* Start inner kernel loop */
926         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
927         {
928
929             /* Get j neighbor index, and coordinate index */
930             jnrA             = jjnr[jidx];
931             jnrB             = jjnr[jidx+1];
932             jnrC             = jjnr[jidx+2];
933             jnrD             = jjnr[jidx+3];
934             jnrE             = jjnr[jidx+4];
935             jnrF             = jjnr[jidx+5];
936             jnrG             = jjnr[jidx+6];
937             jnrH             = jjnr[jidx+7];
938             j_coord_offsetA  = DIM*jnrA;
939             j_coord_offsetB  = DIM*jnrB;
940             j_coord_offsetC  = DIM*jnrC;
941             j_coord_offsetD  = DIM*jnrD;
942             j_coord_offsetE  = DIM*jnrE;
943             j_coord_offsetF  = DIM*jnrF;
944             j_coord_offsetG  = DIM*jnrG;
945             j_coord_offsetH  = DIM*jnrH;
946
947             /* load j atom coordinates */
948             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
949                                                  x+j_coord_offsetC,x+j_coord_offsetD,
950                                                  x+j_coord_offsetE,x+j_coord_offsetF,
951                                                  x+j_coord_offsetG,x+j_coord_offsetH,
952                                                  &jx0,&jy0,&jz0);
953
954             /* Calculate displacement vector */
955             dx00             = _mm256_sub_ps(ix0,jx0);
956             dy00             = _mm256_sub_ps(iy0,jy0);
957             dz00             = _mm256_sub_ps(iz0,jz0);
958             dx10             = _mm256_sub_ps(ix1,jx0);
959             dy10             = _mm256_sub_ps(iy1,jy0);
960             dz10             = _mm256_sub_ps(iz1,jz0);
961             dx20             = _mm256_sub_ps(ix2,jx0);
962             dy20             = _mm256_sub_ps(iy2,jy0);
963             dz20             = _mm256_sub_ps(iz2,jz0);
964
965             /* Calculate squared distance and things based on it */
966             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
967             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
968             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
969
970             rinv00           = avx256_invsqrt_f(rsq00);
971             rinv10           = avx256_invsqrt_f(rsq10);
972             rinv20           = avx256_invsqrt_f(rsq20);
973
974             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
975             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
976             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
977
978             /* Load parameters for j particles */
979             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
980                                                                  charge+jnrC+0,charge+jnrD+0,
981                                                                  charge+jnrE+0,charge+jnrF+0,
982                                                                  charge+jnrG+0,charge+jnrH+0);
983             vdwjidx0A        = 2*vdwtype[jnrA+0];
984             vdwjidx0B        = 2*vdwtype[jnrB+0];
985             vdwjidx0C        = 2*vdwtype[jnrC+0];
986             vdwjidx0D        = 2*vdwtype[jnrD+0];
987             vdwjidx0E        = 2*vdwtype[jnrE+0];
988             vdwjidx0F        = 2*vdwtype[jnrF+0];
989             vdwjidx0G        = 2*vdwtype[jnrG+0];
990             vdwjidx0H        = 2*vdwtype[jnrH+0];
991
992             fjx0             = _mm256_setzero_ps();
993             fjy0             = _mm256_setzero_ps();
994             fjz0             = _mm256_setzero_ps();
995
996             /**************************
997              * CALCULATE INTERACTIONS *
998              **************************/
999
1000             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1001             {
1002
1003             r00              = _mm256_mul_ps(rsq00,rinv00);
1004
1005             /* Compute parameters for interactions between i and j atoms */
1006             qq00             = _mm256_mul_ps(iq0,jq0);
1007             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1008                                             vdwioffsetptr0+vdwjidx0B,
1009                                             vdwioffsetptr0+vdwjidx0C,
1010                                             vdwioffsetptr0+vdwjidx0D,
1011                                             vdwioffsetptr0+vdwjidx0E,
1012                                             vdwioffsetptr0+vdwjidx0F,
1013                                             vdwioffsetptr0+vdwjidx0G,
1014                                             vdwioffsetptr0+vdwjidx0H,
1015                                             &c6_00,&c12_00);
1016
1017             /* Calculate table index by multiplying r with table scale and truncate to integer */
1018             rt               = _mm256_mul_ps(r00,vftabscale);
1019             vfitab           = _mm256_cvttps_epi32(rt);
1020             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1021             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1022             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1023             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1024             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1025             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1026
1027             /* REACTION-FIELD ELECTROSTATICS */
1028             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
1029
1030             /* CUBIC SPLINE TABLE DISPERSION */
1031             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1032                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1033             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1034                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1035             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1036                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1037             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1038                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1039             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1040             Heps             = _mm256_mul_ps(vfeps,H);
1041             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1042             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1043             fvdw6            = _mm256_mul_ps(c6_00,FF);
1044
1045             /* CUBIC SPLINE TABLE REPULSION */
1046             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1047             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1048             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1049                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1050             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1051                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1052             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1053                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1054             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1055                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1056             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1057             Heps             = _mm256_mul_ps(vfeps,H);
1058             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1059             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1060             fvdw12           = _mm256_mul_ps(c12_00,FF);
1061             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1062
1063             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1064
1065             fscal            = _mm256_add_ps(felec,fvdw);
1066
1067             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1068
1069             /* Calculate temporary vectorial force */
1070             tx               = _mm256_mul_ps(fscal,dx00);
1071             ty               = _mm256_mul_ps(fscal,dy00);
1072             tz               = _mm256_mul_ps(fscal,dz00);
1073
1074             /* Update vectorial force */
1075             fix0             = _mm256_add_ps(fix0,tx);
1076             fiy0             = _mm256_add_ps(fiy0,ty);
1077             fiz0             = _mm256_add_ps(fiz0,tz);
1078
1079             fjx0             = _mm256_add_ps(fjx0,tx);
1080             fjy0             = _mm256_add_ps(fjy0,ty);
1081             fjz0             = _mm256_add_ps(fjz0,tz);
1082
1083             }
1084
1085             /**************************
1086              * CALCULATE INTERACTIONS *
1087              **************************/
1088
1089             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1090             {
1091
1092             /* Compute parameters for interactions between i and j atoms */
1093             qq10             = _mm256_mul_ps(iq1,jq0);
1094
1095             /* REACTION-FIELD ELECTROSTATICS */
1096             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1097
1098             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1099
1100             fscal            = felec;
1101
1102             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1103
1104             /* Calculate temporary vectorial force */
1105             tx               = _mm256_mul_ps(fscal,dx10);
1106             ty               = _mm256_mul_ps(fscal,dy10);
1107             tz               = _mm256_mul_ps(fscal,dz10);
1108
1109             /* Update vectorial force */
1110             fix1             = _mm256_add_ps(fix1,tx);
1111             fiy1             = _mm256_add_ps(fiy1,ty);
1112             fiz1             = _mm256_add_ps(fiz1,tz);
1113
1114             fjx0             = _mm256_add_ps(fjx0,tx);
1115             fjy0             = _mm256_add_ps(fjy0,ty);
1116             fjz0             = _mm256_add_ps(fjz0,tz);
1117
1118             }
1119
1120             /**************************
1121              * CALCULATE INTERACTIONS *
1122              **************************/
1123
1124             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1125             {
1126
1127             /* Compute parameters for interactions between i and j atoms */
1128             qq20             = _mm256_mul_ps(iq2,jq0);
1129
1130             /* REACTION-FIELD ELECTROSTATICS */
1131             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1132
1133             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1134
1135             fscal            = felec;
1136
1137             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1138
1139             /* Calculate temporary vectorial force */
1140             tx               = _mm256_mul_ps(fscal,dx20);
1141             ty               = _mm256_mul_ps(fscal,dy20);
1142             tz               = _mm256_mul_ps(fscal,dz20);
1143
1144             /* Update vectorial force */
1145             fix2             = _mm256_add_ps(fix2,tx);
1146             fiy2             = _mm256_add_ps(fiy2,ty);
1147             fiz2             = _mm256_add_ps(fiz2,tz);
1148
1149             fjx0             = _mm256_add_ps(fjx0,tx);
1150             fjy0             = _mm256_add_ps(fjy0,ty);
1151             fjz0             = _mm256_add_ps(fjz0,tz);
1152
1153             }
1154
1155             fjptrA             = f+j_coord_offsetA;
1156             fjptrB             = f+j_coord_offsetB;
1157             fjptrC             = f+j_coord_offsetC;
1158             fjptrD             = f+j_coord_offsetD;
1159             fjptrE             = f+j_coord_offsetE;
1160             fjptrF             = f+j_coord_offsetF;
1161             fjptrG             = f+j_coord_offsetG;
1162             fjptrH             = f+j_coord_offsetH;
1163
1164             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1165
1166             /* Inner loop uses 120 flops */
1167         }
1168
1169         if(jidx<j_index_end)
1170         {
1171
1172             /* Get j neighbor index, and coordinate index */
1173             jnrlistA         = jjnr[jidx];
1174             jnrlistB         = jjnr[jidx+1];
1175             jnrlistC         = jjnr[jidx+2];
1176             jnrlistD         = jjnr[jidx+3];
1177             jnrlistE         = jjnr[jidx+4];
1178             jnrlistF         = jjnr[jidx+5];
1179             jnrlistG         = jjnr[jidx+6];
1180             jnrlistH         = jjnr[jidx+7];
1181             /* Sign of each element will be negative for non-real atoms.
1182              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1183              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1184              */
1185             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1186                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1187                                             
1188             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1189             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1190             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1191             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1192             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1193             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1194             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1195             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1196             j_coord_offsetA  = DIM*jnrA;
1197             j_coord_offsetB  = DIM*jnrB;
1198             j_coord_offsetC  = DIM*jnrC;
1199             j_coord_offsetD  = DIM*jnrD;
1200             j_coord_offsetE  = DIM*jnrE;
1201             j_coord_offsetF  = DIM*jnrF;
1202             j_coord_offsetG  = DIM*jnrG;
1203             j_coord_offsetH  = DIM*jnrH;
1204
1205             /* load j atom coordinates */
1206             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1207                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1208                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1209                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1210                                                  &jx0,&jy0,&jz0);
1211
1212             /* Calculate displacement vector */
1213             dx00             = _mm256_sub_ps(ix0,jx0);
1214             dy00             = _mm256_sub_ps(iy0,jy0);
1215             dz00             = _mm256_sub_ps(iz0,jz0);
1216             dx10             = _mm256_sub_ps(ix1,jx0);
1217             dy10             = _mm256_sub_ps(iy1,jy0);
1218             dz10             = _mm256_sub_ps(iz1,jz0);
1219             dx20             = _mm256_sub_ps(ix2,jx0);
1220             dy20             = _mm256_sub_ps(iy2,jy0);
1221             dz20             = _mm256_sub_ps(iz2,jz0);
1222
1223             /* Calculate squared distance and things based on it */
1224             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1225             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1226             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1227
1228             rinv00           = avx256_invsqrt_f(rsq00);
1229             rinv10           = avx256_invsqrt_f(rsq10);
1230             rinv20           = avx256_invsqrt_f(rsq20);
1231
1232             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1233             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1234             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1235
1236             /* Load parameters for j particles */
1237             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1238                                                                  charge+jnrC+0,charge+jnrD+0,
1239                                                                  charge+jnrE+0,charge+jnrF+0,
1240                                                                  charge+jnrG+0,charge+jnrH+0);
1241             vdwjidx0A        = 2*vdwtype[jnrA+0];
1242             vdwjidx0B        = 2*vdwtype[jnrB+0];
1243             vdwjidx0C        = 2*vdwtype[jnrC+0];
1244             vdwjidx0D        = 2*vdwtype[jnrD+0];
1245             vdwjidx0E        = 2*vdwtype[jnrE+0];
1246             vdwjidx0F        = 2*vdwtype[jnrF+0];
1247             vdwjidx0G        = 2*vdwtype[jnrG+0];
1248             vdwjidx0H        = 2*vdwtype[jnrH+0];
1249
1250             fjx0             = _mm256_setzero_ps();
1251             fjy0             = _mm256_setzero_ps();
1252             fjz0             = _mm256_setzero_ps();
1253
1254             /**************************
1255              * CALCULATE INTERACTIONS *
1256              **************************/
1257
1258             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1259             {
1260
1261             r00              = _mm256_mul_ps(rsq00,rinv00);
1262             r00              = _mm256_andnot_ps(dummy_mask,r00);
1263
1264             /* Compute parameters for interactions between i and j atoms */
1265             qq00             = _mm256_mul_ps(iq0,jq0);
1266             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1267                                             vdwioffsetptr0+vdwjidx0B,
1268                                             vdwioffsetptr0+vdwjidx0C,
1269                                             vdwioffsetptr0+vdwjidx0D,
1270                                             vdwioffsetptr0+vdwjidx0E,
1271                                             vdwioffsetptr0+vdwjidx0F,
1272                                             vdwioffsetptr0+vdwjidx0G,
1273                                             vdwioffsetptr0+vdwjidx0H,
1274                                             &c6_00,&c12_00);
1275
1276             /* Calculate table index by multiplying r with table scale and truncate to integer */
1277             rt               = _mm256_mul_ps(r00,vftabscale);
1278             vfitab           = _mm256_cvttps_epi32(rt);
1279             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1280             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1281             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1282             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1283             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1284             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1285
1286             /* REACTION-FIELD ELECTROSTATICS */
1287             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
1288
1289             /* CUBIC SPLINE TABLE DISPERSION */
1290             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1291                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1292             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1293                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1294             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1295                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1296             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1297                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1298             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1299             Heps             = _mm256_mul_ps(vfeps,H);
1300             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1301             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1302             fvdw6            = _mm256_mul_ps(c6_00,FF);
1303
1304             /* CUBIC SPLINE TABLE REPULSION */
1305             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1306             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1307             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1308                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1309             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1310                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1311             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1312                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1313             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1314                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1315             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1316             Heps             = _mm256_mul_ps(vfeps,H);
1317             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1318             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1319             fvdw12           = _mm256_mul_ps(c12_00,FF);
1320             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1321
1322             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1323
1324             fscal            = _mm256_add_ps(felec,fvdw);
1325
1326             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1327
1328             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1329
1330             /* Calculate temporary vectorial force */
1331             tx               = _mm256_mul_ps(fscal,dx00);
1332             ty               = _mm256_mul_ps(fscal,dy00);
1333             tz               = _mm256_mul_ps(fscal,dz00);
1334
1335             /* Update vectorial force */
1336             fix0             = _mm256_add_ps(fix0,tx);
1337             fiy0             = _mm256_add_ps(fiy0,ty);
1338             fiz0             = _mm256_add_ps(fiz0,tz);
1339
1340             fjx0             = _mm256_add_ps(fjx0,tx);
1341             fjy0             = _mm256_add_ps(fjy0,ty);
1342             fjz0             = _mm256_add_ps(fjz0,tz);
1343
1344             }
1345
1346             /**************************
1347              * CALCULATE INTERACTIONS *
1348              **************************/
1349
1350             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1351             {
1352
1353             /* Compute parameters for interactions between i and j atoms */
1354             qq10             = _mm256_mul_ps(iq1,jq0);
1355
1356             /* REACTION-FIELD ELECTROSTATICS */
1357             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1358
1359             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1360
1361             fscal            = felec;
1362
1363             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1364
1365             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1366
1367             /* Calculate temporary vectorial force */
1368             tx               = _mm256_mul_ps(fscal,dx10);
1369             ty               = _mm256_mul_ps(fscal,dy10);
1370             tz               = _mm256_mul_ps(fscal,dz10);
1371
1372             /* Update vectorial force */
1373             fix1             = _mm256_add_ps(fix1,tx);
1374             fiy1             = _mm256_add_ps(fiy1,ty);
1375             fiz1             = _mm256_add_ps(fiz1,tz);
1376
1377             fjx0             = _mm256_add_ps(fjx0,tx);
1378             fjy0             = _mm256_add_ps(fjy0,ty);
1379             fjz0             = _mm256_add_ps(fjz0,tz);
1380
1381             }
1382
1383             /**************************
1384              * CALCULATE INTERACTIONS *
1385              **************************/
1386
1387             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1388             {
1389
1390             /* Compute parameters for interactions between i and j atoms */
1391             qq20             = _mm256_mul_ps(iq2,jq0);
1392
1393             /* REACTION-FIELD ELECTROSTATICS */
1394             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1395
1396             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1397
1398             fscal            = felec;
1399
1400             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1401
1402             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1403
1404             /* Calculate temporary vectorial force */
1405             tx               = _mm256_mul_ps(fscal,dx20);
1406             ty               = _mm256_mul_ps(fscal,dy20);
1407             tz               = _mm256_mul_ps(fscal,dz20);
1408
1409             /* Update vectorial force */
1410             fix2             = _mm256_add_ps(fix2,tx);
1411             fiy2             = _mm256_add_ps(fiy2,ty);
1412             fiz2             = _mm256_add_ps(fiz2,tz);
1413
1414             fjx0             = _mm256_add_ps(fjx0,tx);
1415             fjy0             = _mm256_add_ps(fjy0,ty);
1416             fjz0             = _mm256_add_ps(fjz0,tz);
1417
1418             }
1419
1420             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1421             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1422             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1423             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1424             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1425             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1426             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1427             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1428
1429             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1430
1431             /* Inner loop uses 121 flops */
1432         }
1433
1434         /* End of innermost loop */
1435
1436         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1437                                                  f+i_coord_offset,fshift+i_shift_offset);
1438
1439         /* Increment number of inner iterations */
1440         inneriter                  += j_index_end - j_index_start;
1441
1442         /* Outer loop uses 18 flops */
1443     }
1444
1445     /* Increment number of outer iterations */
1446     outeriter        += nri;
1447
1448     /* Update outer/inner flops */
1449
1450     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*121);
1451 }