Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_256_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     real *           vdwioffsetptr1;
75     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     real *           vdwioffsetptr2;
77     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
79     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
90     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
91     __m256i          vfitab;
92     __m128i          vfitab_lo,vfitab_hi;
93     __m128i          ifour       = _mm_set1_epi32(4);
94     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
95     real             *vftab;
96     __m256           dummy_mask,cutoff_mask;
97     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
98     __m256           one     = _mm256_set1_ps(1.0);
99     __m256           two     = _mm256_set1_ps(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm256_set1_ps(fr->epsfac);
112     charge           = mdatoms->chargeA;
113     krf              = _mm256_set1_ps(fr->ic->k_rf);
114     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
115     crf              = _mm256_set1_ps(fr->ic->c_rf);
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     vftab            = kernel_data->table_vdw->data;
121     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
122
123     /* Setup water-specific parameters */
124     inr              = nlist->iinr[0];
125     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
126     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
127     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
128     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
129
130     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
131     rcutoff_scalar   = fr->rcoulomb;
132     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
133     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139     j_coord_offsetC = 0;
140     j_coord_offsetD = 0;
141     j_coord_offsetE = 0;
142     j_coord_offsetF = 0;
143     j_coord_offsetG = 0;
144     j_coord_offsetH = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
171
172         fix0             = _mm256_setzero_ps();
173         fiy0             = _mm256_setzero_ps();
174         fiz0             = _mm256_setzero_ps();
175         fix1             = _mm256_setzero_ps();
176         fiy1             = _mm256_setzero_ps();
177         fiz1             = _mm256_setzero_ps();
178         fix2             = _mm256_setzero_ps();
179         fiy2             = _mm256_setzero_ps();
180         fiz2             = _mm256_setzero_ps();
181
182         /* Reset potential sums */
183         velecsum         = _mm256_setzero_ps();
184         vvdwsum          = _mm256_setzero_ps();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             jnrE             = jjnr[jidx+4];
196             jnrF             = jjnr[jidx+5];
197             jnrG             = jjnr[jidx+6];
198             jnrH             = jjnr[jidx+7];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203             j_coord_offsetE  = DIM*jnrE;
204             j_coord_offsetF  = DIM*jnrF;
205             j_coord_offsetG  = DIM*jnrG;
206             j_coord_offsetH  = DIM*jnrH;
207
208             /* load j atom coordinates */
209             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
210                                                  x+j_coord_offsetC,x+j_coord_offsetD,
211                                                  x+j_coord_offsetE,x+j_coord_offsetF,
212                                                  x+j_coord_offsetG,x+j_coord_offsetH,
213                                                  &jx0,&jy0,&jz0);
214
215             /* Calculate displacement vector */
216             dx00             = _mm256_sub_ps(ix0,jx0);
217             dy00             = _mm256_sub_ps(iy0,jy0);
218             dz00             = _mm256_sub_ps(iz0,jz0);
219             dx10             = _mm256_sub_ps(ix1,jx0);
220             dy10             = _mm256_sub_ps(iy1,jy0);
221             dz10             = _mm256_sub_ps(iz1,jz0);
222             dx20             = _mm256_sub_ps(ix2,jx0);
223             dy20             = _mm256_sub_ps(iy2,jy0);
224             dz20             = _mm256_sub_ps(iz2,jz0);
225
226             /* Calculate squared distance and things based on it */
227             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
228             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
229             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
230
231             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
232             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
233             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
234
235             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
236             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
237             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
238
239             /* Load parameters for j particles */
240             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
241                                                                  charge+jnrC+0,charge+jnrD+0,
242                                                                  charge+jnrE+0,charge+jnrF+0,
243                                                                  charge+jnrG+0,charge+jnrH+0);
244             vdwjidx0A        = 2*vdwtype[jnrA+0];
245             vdwjidx0B        = 2*vdwtype[jnrB+0];
246             vdwjidx0C        = 2*vdwtype[jnrC+0];
247             vdwjidx0D        = 2*vdwtype[jnrD+0];
248             vdwjidx0E        = 2*vdwtype[jnrE+0];
249             vdwjidx0F        = 2*vdwtype[jnrF+0];
250             vdwjidx0G        = 2*vdwtype[jnrG+0];
251             vdwjidx0H        = 2*vdwtype[jnrH+0];
252
253             fjx0             = _mm256_setzero_ps();
254             fjy0             = _mm256_setzero_ps();
255             fjz0             = _mm256_setzero_ps();
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             if (gmx_mm256_any_lt(rsq00,rcutoff2))
262             {
263
264             r00              = _mm256_mul_ps(rsq00,rinv00);
265
266             /* Compute parameters for interactions between i and j atoms */
267             qq00             = _mm256_mul_ps(iq0,jq0);
268             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
269                                             vdwioffsetptr0+vdwjidx0B,
270                                             vdwioffsetptr0+vdwjidx0C,
271                                             vdwioffsetptr0+vdwjidx0D,
272                                             vdwioffsetptr0+vdwjidx0E,
273                                             vdwioffsetptr0+vdwjidx0F,
274                                             vdwioffsetptr0+vdwjidx0G,
275                                             vdwioffsetptr0+vdwjidx0H,
276                                             &c6_00,&c12_00);
277
278             /* Calculate table index by multiplying r with table scale and truncate to integer */
279             rt               = _mm256_mul_ps(r00,vftabscale);
280             vfitab           = _mm256_cvttps_epi32(rt);
281             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
282             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
283             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
284             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
285             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
286             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
287
288             /* REACTION-FIELD ELECTROSTATICS */
289             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
290             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
291
292             /* CUBIC SPLINE TABLE DISPERSION */
293             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
294                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
295             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
296                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
297             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
298                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
299             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
300                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
301             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
302             Heps             = _mm256_mul_ps(vfeps,H);
303             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
304             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
305             vvdw6            = _mm256_mul_ps(c6_00,VV);
306             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
307             fvdw6            = _mm256_mul_ps(c6_00,FF);
308
309             /* CUBIC SPLINE TABLE REPULSION */
310             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
311             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
312             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
313                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
314             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
315                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
316             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
317                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
318             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
319                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
320             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
321             Heps             = _mm256_mul_ps(vfeps,H);
322             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
323             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
324             vvdw12           = _mm256_mul_ps(c12_00,VV);
325             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
326             fvdw12           = _mm256_mul_ps(c12_00,FF);
327             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
328             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
329
330             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
331
332             /* Update potential sum for this i atom from the interaction with this j atom. */
333             velec            = _mm256_and_ps(velec,cutoff_mask);
334             velecsum         = _mm256_add_ps(velecsum,velec);
335             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
336             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
337
338             fscal            = _mm256_add_ps(felec,fvdw);
339
340             fscal            = _mm256_and_ps(fscal,cutoff_mask);
341
342             /* Calculate temporary vectorial force */
343             tx               = _mm256_mul_ps(fscal,dx00);
344             ty               = _mm256_mul_ps(fscal,dy00);
345             tz               = _mm256_mul_ps(fscal,dz00);
346
347             /* Update vectorial force */
348             fix0             = _mm256_add_ps(fix0,tx);
349             fiy0             = _mm256_add_ps(fiy0,ty);
350             fiz0             = _mm256_add_ps(fiz0,tz);
351
352             fjx0             = _mm256_add_ps(fjx0,tx);
353             fjy0             = _mm256_add_ps(fjy0,ty);
354             fjz0             = _mm256_add_ps(fjz0,tz);
355
356             }
357
358             /**************************
359              * CALCULATE INTERACTIONS *
360              **************************/
361
362             if (gmx_mm256_any_lt(rsq10,rcutoff2))
363             {
364
365             /* Compute parameters for interactions between i and j atoms */
366             qq10             = _mm256_mul_ps(iq1,jq0);
367
368             /* REACTION-FIELD ELECTROSTATICS */
369             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
370             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
371
372             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
373
374             /* Update potential sum for this i atom from the interaction with this j atom. */
375             velec            = _mm256_and_ps(velec,cutoff_mask);
376             velecsum         = _mm256_add_ps(velecsum,velec);
377
378             fscal            = felec;
379
380             fscal            = _mm256_and_ps(fscal,cutoff_mask);
381
382             /* Calculate temporary vectorial force */
383             tx               = _mm256_mul_ps(fscal,dx10);
384             ty               = _mm256_mul_ps(fscal,dy10);
385             tz               = _mm256_mul_ps(fscal,dz10);
386
387             /* Update vectorial force */
388             fix1             = _mm256_add_ps(fix1,tx);
389             fiy1             = _mm256_add_ps(fiy1,ty);
390             fiz1             = _mm256_add_ps(fiz1,tz);
391
392             fjx0             = _mm256_add_ps(fjx0,tx);
393             fjy0             = _mm256_add_ps(fjy0,ty);
394             fjz0             = _mm256_add_ps(fjz0,tz);
395
396             }
397
398             /**************************
399              * CALCULATE INTERACTIONS *
400              **************************/
401
402             if (gmx_mm256_any_lt(rsq20,rcutoff2))
403             {
404
405             /* Compute parameters for interactions between i and j atoms */
406             qq20             = _mm256_mul_ps(iq2,jq0);
407
408             /* REACTION-FIELD ELECTROSTATICS */
409             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
410             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
411
412             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
413
414             /* Update potential sum for this i atom from the interaction with this j atom. */
415             velec            = _mm256_and_ps(velec,cutoff_mask);
416             velecsum         = _mm256_add_ps(velecsum,velec);
417
418             fscal            = felec;
419
420             fscal            = _mm256_and_ps(fscal,cutoff_mask);
421
422             /* Calculate temporary vectorial force */
423             tx               = _mm256_mul_ps(fscal,dx20);
424             ty               = _mm256_mul_ps(fscal,dy20);
425             tz               = _mm256_mul_ps(fscal,dz20);
426
427             /* Update vectorial force */
428             fix2             = _mm256_add_ps(fix2,tx);
429             fiy2             = _mm256_add_ps(fiy2,ty);
430             fiz2             = _mm256_add_ps(fiz2,tz);
431
432             fjx0             = _mm256_add_ps(fjx0,tx);
433             fjy0             = _mm256_add_ps(fjy0,ty);
434             fjz0             = _mm256_add_ps(fjz0,tz);
435
436             }
437
438             fjptrA             = f+j_coord_offsetA;
439             fjptrB             = f+j_coord_offsetB;
440             fjptrC             = f+j_coord_offsetC;
441             fjptrD             = f+j_coord_offsetD;
442             fjptrE             = f+j_coord_offsetE;
443             fjptrF             = f+j_coord_offsetF;
444             fjptrG             = f+j_coord_offsetG;
445             fjptrH             = f+j_coord_offsetH;
446
447             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
448
449             /* Inner loop uses 147 flops */
450         }
451
452         if(jidx<j_index_end)
453         {
454
455             /* Get j neighbor index, and coordinate index */
456             jnrlistA         = jjnr[jidx];
457             jnrlistB         = jjnr[jidx+1];
458             jnrlistC         = jjnr[jidx+2];
459             jnrlistD         = jjnr[jidx+3];
460             jnrlistE         = jjnr[jidx+4];
461             jnrlistF         = jjnr[jidx+5];
462             jnrlistG         = jjnr[jidx+6];
463             jnrlistH         = jjnr[jidx+7];
464             /* Sign of each element will be negative for non-real atoms.
465              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
466              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
467              */
468             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
469                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
470                                             
471             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
472             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
473             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
474             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
475             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
476             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
477             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
478             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
479             j_coord_offsetA  = DIM*jnrA;
480             j_coord_offsetB  = DIM*jnrB;
481             j_coord_offsetC  = DIM*jnrC;
482             j_coord_offsetD  = DIM*jnrD;
483             j_coord_offsetE  = DIM*jnrE;
484             j_coord_offsetF  = DIM*jnrF;
485             j_coord_offsetG  = DIM*jnrG;
486             j_coord_offsetH  = DIM*jnrH;
487
488             /* load j atom coordinates */
489             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
490                                                  x+j_coord_offsetC,x+j_coord_offsetD,
491                                                  x+j_coord_offsetE,x+j_coord_offsetF,
492                                                  x+j_coord_offsetG,x+j_coord_offsetH,
493                                                  &jx0,&jy0,&jz0);
494
495             /* Calculate displacement vector */
496             dx00             = _mm256_sub_ps(ix0,jx0);
497             dy00             = _mm256_sub_ps(iy0,jy0);
498             dz00             = _mm256_sub_ps(iz0,jz0);
499             dx10             = _mm256_sub_ps(ix1,jx0);
500             dy10             = _mm256_sub_ps(iy1,jy0);
501             dz10             = _mm256_sub_ps(iz1,jz0);
502             dx20             = _mm256_sub_ps(ix2,jx0);
503             dy20             = _mm256_sub_ps(iy2,jy0);
504             dz20             = _mm256_sub_ps(iz2,jz0);
505
506             /* Calculate squared distance and things based on it */
507             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
508             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
509             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
510
511             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
512             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
513             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
514
515             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
516             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
517             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
518
519             /* Load parameters for j particles */
520             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
521                                                                  charge+jnrC+0,charge+jnrD+0,
522                                                                  charge+jnrE+0,charge+jnrF+0,
523                                                                  charge+jnrG+0,charge+jnrH+0);
524             vdwjidx0A        = 2*vdwtype[jnrA+0];
525             vdwjidx0B        = 2*vdwtype[jnrB+0];
526             vdwjidx0C        = 2*vdwtype[jnrC+0];
527             vdwjidx0D        = 2*vdwtype[jnrD+0];
528             vdwjidx0E        = 2*vdwtype[jnrE+0];
529             vdwjidx0F        = 2*vdwtype[jnrF+0];
530             vdwjidx0G        = 2*vdwtype[jnrG+0];
531             vdwjidx0H        = 2*vdwtype[jnrH+0];
532
533             fjx0             = _mm256_setzero_ps();
534             fjy0             = _mm256_setzero_ps();
535             fjz0             = _mm256_setzero_ps();
536
537             /**************************
538              * CALCULATE INTERACTIONS *
539              **************************/
540
541             if (gmx_mm256_any_lt(rsq00,rcutoff2))
542             {
543
544             r00              = _mm256_mul_ps(rsq00,rinv00);
545             r00              = _mm256_andnot_ps(dummy_mask,r00);
546
547             /* Compute parameters for interactions between i and j atoms */
548             qq00             = _mm256_mul_ps(iq0,jq0);
549             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
550                                             vdwioffsetptr0+vdwjidx0B,
551                                             vdwioffsetptr0+vdwjidx0C,
552                                             vdwioffsetptr0+vdwjidx0D,
553                                             vdwioffsetptr0+vdwjidx0E,
554                                             vdwioffsetptr0+vdwjidx0F,
555                                             vdwioffsetptr0+vdwjidx0G,
556                                             vdwioffsetptr0+vdwjidx0H,
557                                             &c6_00,&c12_00);
558
559             /* Calculate table index by multiplying r with table scale and truncate to integer */
560             rt               = _mm256_mul_ps(r00,vftabscale);
561             vfitab           = _mm256_cvttps_epi32(rt);
562             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
563             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
564             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
565             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
566             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
567             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
568
569             /* REACTION-FIELD ELECTROSTATICS */
570             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
571             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
572
573             /* CUBIC SPLINE TABLE DISPERSION */
574             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
575                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
576             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
577                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
578             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
579                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
580             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
581                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
582             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
583             Heps             = _mm256_mul_ps(vfeps,H);
584             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
585             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
586             vvdw6            = _mm256_mul_ps(c6_00,VV);
587             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
588             fvdw6            = _mm256_mul_ps(c6_00,FF);
589
590             /* CUBIC SPLINE TABLE REPULSION */
591             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
592             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
593             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
594                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
595             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
596                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
597             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
598                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
599             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
600                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
601             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
602             Heps             = _mm256_mul_ps(vfeps,H);
603             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
604             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
605             vvdw12           = _mm256_mul_ps(c12_00,VV);
606             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
607             fvdw12           = _mm256_mul_ps(c12_00,FF);
608             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
609             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
610
611             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
612
613             /* Update potential sum for this i atom from the interaction with this j atom. */
614             velec            = _mm256_and_ps(velec,cutoff_mask);
615             velec            = _mm256_andnot_ps(dummy_mask,velec);
616             velecsum         = _mm256_add_ps(velecsum,velec);
617             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
618             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
619             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
620
621             fscal            = _mm256_add_ps(felec,fvdw);
622
623             fscal            = _mm256_and_ps(fscal,cutoff_mask);
624
625             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
626
627             /* Calculate temporary vectorial force */
628             tx               = _mm256_mul_ps(fscal,dx00);
629             ty               = _mm256_mul_ps(fscal,dy00);
630             tz               = _mm256_mul_ps(fscal,dz00);
631
632             /* Update vectorial force */
633             fix0             = _mm256_add_ps(fix0,tx);
634             fiy0             = _mm256_add_ps(fiy0,ty);
635             fiz0             = _mm256_add_ps(fiz0,tz);
636
637             fjx0             = _mm256_add_ps(fjx0,tx);
638             fjy0             = _mm256_add_ps(fjy0,ty);
639             fjz0             = _mm256_add_ps(fjz0,tz);
640
641             }
642
643             /**************************
644              * CALCULATE INTERACTIONS *
645              **************************/
646
647             if (gmx_mm256_any_lt(rsq10,rcutoff2))
648             {
649
650             /* Compute parameters for interactions between i and j atoms */
651             qq10             = _mm256_mul_ps(iq1,jq0);
652
653             /* REACTION-FIELD ELECTROSTATICS */
654             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
655             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
656
657             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
658
659             /* Update potential sum for this i atom from the interaction with this j atom. */
660             velec            = _mm256_and_ps(velec,cutoff_mask);
661             velec            = _mm256_andnot_ps(dummy_mask,velec);
662             velecsum         = _mm256_add_ps(velecsum,velec);
663
664             fscal            = felec;
665
666             fscal            = _mm256_and_ps(fscal,cutoff_mask);
667
668             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
669
670             /* Calculate temporary vectorial force */
671             tx               = _mm256_mul_ps(fscal,dx10);
672             ty               = _mm256_mul_ps(fscal,dy10);
673             tz               = _mm256_mul_ps(fscal,dz10);
674
675             /* Update vectorial force */
676             fix1             = _mm256_add_ps(fix1,tx);
677             fiy1             = _mm256_add_ps(fiy1,ty);
678             fiz1             = _mm256_add_ps(fiz1,tz);
679
680             fjx0             = _mm256_add_ps(fjx0,tx);
681             fjy0             = _mm256_add_ps(fjy0,ty);
682             fjz0             = _mm256_add_ps(fjz0,tz);
683
684             }
685
686             /**************************
687              * CALCULATE INTERACTIONS *
688              **************************/
689
690             if (gmx_mm256_any_lt(rsq20,rcutoff2))
691             {
692
693             /* Compute parameters for interactions between i and j atoms */
694             qq20             = _mm256_mul_ps(iq2,jq0);
695
696             /* REACTION-FIELD ELECTROSTATICS */
697             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
698             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
699
700             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
701
702             /* Update potential sum for this i atom from the interaction with this j atom. */
703             velec            = _mm256_and_ps(velec,cutoff_mask);
704             velec            = _mm256_andnot_ps(dummy_mask,velec);
705             velecsum         = _mm256_add_ps(velecsum,velec);
706
707             fscal            = felec;
708
709             fscal            = _mm256_and_ps(fscal,cutoff_mask);
710
711             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
712
713             /* Calculate temporary vectorial force */
714             tx               = _mm256_mul_ps(fscal,dx20);
715             ty               = _mm256_mul_ps(fscal,dy20);
716             tz               = _mm256_mul_ps(fscal,dz20);
717
718             /* Update vectorial force */
719             fix2             = _mm256_add_ps(fix2,tx);
720             fiy2             = _mm256_add_ps(fiy2,ty);
721             fiz2             = _mm256_add_ps(fiz2,tz);
722
723             fjx0             = _mm256_add_ps(fjx0,tx);
724             fjy0             = _mm256_add_ps(fjy0,ty);
725             fjz0             = _mm256_add_ps(fjz0,tz);
726
727             }
728
729             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
730             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
731             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
732             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
733             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
734             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
735             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
736             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
737
738             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
739
740             /* Inner loop uses 148 flops */
741         }
742
743         /* End of innermost loop */
744
745         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
746                                                  f+i_coord_offset,fshift+i_shift_offset);
747
748         ggid                        = gid[iidx];
749         /* Update potential energies */
750         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
751         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
752
753         /* Increment number of inner iterations */
754         inneriter                  += j_index_end - j_index_start;
755
756         /* Outer loop uses 20 flops */
757     }
758
759     /* Increment number of outer iterations */
760     outeriter        += nri;
761
762     /* Update outer/inner flops */
763
764     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*148);
765 }
766 /*
767  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_256_single
768  * Electrostatics interaction: ReactionField
769  * VdW interaction:            CubicSplineTable
770  * Geometry:                   Water3-Particle
771  * Calculate force/pot:        Force
772  */
773 void
774 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_256_single
775                     (t_nblist * gmx_restrict                nlist,
776                      rvec * gmx_restrict                    xx,
777                      rvec * gmx_restrict                    ff,
778                      t_forcerec * gmx_restrict              fr,
779                      t_mdatoms * gmx_restrict               mdatoms,
780                      nb_kernel_data_t * gmx_restrict        kernel_data,
781                      t_nrnb * gmx_restrict                  nrnb)
782 {
783     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
784      * just 0 for non-waters.
785      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
786      * jnr indices corresponding to data put in the four positions in the SIMD register.
787      */
788     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
789     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
790     int              jnrA,jnrB,jnrC,jnrD;
791     int              jnrE,jnrF,jnrG,jnrH;
792     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
793     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
794     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
795     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
796     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
797     real             rcutoff_scalar;
798     real             *shiftvec,*fshift,*x,*f;
799     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
800     real             scratch[4*DIM];
801     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
802     real *           vdwioffsetptr0;
803     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
804     real *           vdwioffsetptr1;
805     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
806     real *           vdwioffsetptr2;
807     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
808     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
809     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
810     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
811     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
812     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
813     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
814     real             *charge;
815     int              nvdwtype;
816     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
817     int              *vdwtype;
818     real             *vdwparam;
819     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
820     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
821     __m256i          vfitab;
822     __m128i          vfitab_lo,vfitab_hi;
823     __m128i          ifour       = _mm_set1_epi32(4);
824     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
825     real             *vftab;
826     __m256           dummy_mask,cutoff_mask;
827     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
828     __m256           one     = _mm256_set1_ps(1.0);
829     __m256           two     = _mm256_set1_ps(2.0);
830     x                = xx[0];
831     f                = ff[0];
832
833     nri              = nlist->nri;
834     iinr             = nlist->iinr;
835     jindex           = nlist->jindex;
836     jjnr             = nlist->jjnr;
837     shiftidx         = nlist->shift;
838     gid              = nlist->gid;
839     shiftvec         = fr->shift_vec[0];
840     fshift           = fr->fshift[0];
841     facel            = _mm256_set1_ps(fr->epsfac);
842     charge           = mdatoms->chargeA;
843     krf              = _mm256_set1_ps(fr->ic->k_rf);
844     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
845     crf              = _mm256_set1_ps(fr->ic->c_rf);
846     nvdwtype         = fr->ntype;
847     vdwparam         = fr->nbfp;
848     vdwtype          = mdatoms->typeA;
849
850     vftab            = kernel_data->table_vdw->data;
851     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
852
853     /* Setup water-specific parameters */
854     inr              = nlist->iinr[0];
855     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
856     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
857     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
858     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
859
860     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
861     rcutoff_scalar   = fr->rcoulomb;
862     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
863     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
864
865     /* Avoid stupid compiler warnings */
866     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
867     j_coord_offsetA = 0;
868     j_coord_offsetB = 0;
869     j_coord_offsetC = 0;
870     j_coord_offsetD = 0;
871     j_coord_offsetE = 0;
872     j_coord_offsetF = 0;
873     j_coord_offsetG = 0;
874     j_coord_offsetH = 0;
875
876     outeriter        = 0;
877     inneriter        = 0;
878
879     for(iidx=0;iidx<4*DIM;iidx++)
880     {
881         scratch[iidx] = 0.0;
882     }
883
884     /* Start outer loop over neighborlists */
885     for(iidx=0; iidx<nri; iidx++)
886     {
887         /* Load shift vector for this list */
888         i_shift_offset   = DIM*shiftidx[iidx];
889
890         /* Load limits for loop over neighbors */
891         j_index_start    = jindex[iidx];
892         j_index_end      = jindex[iidx+1];
893
894         /* Get outer coordinate index */
895         inr              = iinr[iidx];
896         i_coord_offset   = DIM*inr;
897
898         /* Load i particle coords and add shift vector */
899         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
900                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
901
902         fix0             = _mm256_setzero_ps();
903         fiy0             = _mm256_setzero_ps();
904         fiz0             = _mm256_setzero_ps();
905         fix1             = _mm256_setzero_ps();
906         fiy1             = _mm256_setzero_ps();
907         fiz1             = _mm256_setzero_ps();
908         fix2             = _mm256_setzero_ps();
909         fiy2             = _mm256_setzero_ps();
910         fiz2             = _mm256_setzero_ps();
911
912         /* Start inner kernel loop */
913         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
914         {
915
916             /* Get j neighbor index, and coordinate index */
917             jnrA             = jjnr[jidx];
918             jnrB             = jjnr[jidx+1];
919             jnrC             = jjnr[jidx+2];
920             jnrD             = jjnr[jidx+3];
921             jnrE             = jjnr[jidx+4];
922             jnrF             = jjnr[jidx+5];
923             jnrG             = jjnr[jidx+6];
924             jnrH             = jjnr[jidx+7];
925             j_coord_offsetA  = DIM*jnrA;
926             j_coord_offsetB  = DIM*jnrB;
927             j_coord_offsetC  = DIM*jnrC;
928             j_coord_offsetD  = DIM*jnrD;
929             j_coord_offsetE  = DIM*jnrE;
930             j_coord_offsetF  = DIM*jnrF;
931             j_coord_offsetG  = DIM*jnrG;
932             j_coord_offsetH  = DIM*jnrH;
933
934             /* load j atom coordinates */
935             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
936                                                  x+j_coord_offsetC,x+j_coord_offsetD,
937                                                  x+j_coord_offsetE,x+j_coord_offsetF,
938                                                  x+j_coord_offsetG,x+j_coord_offsetH,
939                                                  &jx0,&jy0,&jz0);
940
941             /* Calculate displacement vector */
942             dx00             = _mm256_sub_ps(ix0,jx0);
943             dy00             = _mm256_sub_ps(iy0,jy0);
944             dz00             = _mm256_sub_ps(iz0,jz0);
945             dx10             = _mm256_sub_ps(ix1,jx0);
946             dy10             = _mm256_sub_ps(iy1,jy0);
947             dz10             = _mm256_sub_ps(iz1,jz0);
948             dx20             = _mm256_sub_ps(ix2,jx0);
949             dy20             = _mm256_sub_ps(iy2,jy0);
950             dz20             = _mm256_sub_ps(iz2,jz0);
951
952             /* Calculate squared distance and things based on it */
953             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
954             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
955             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
956
957             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
958             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
959             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
960
961             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
962             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
963             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
964
965             /* Load parameters for j particles */
966             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
967                                                                  charge+jnrC+0,charge+jnrD+0,
968                                                                  charge+jnrE+0,charge+jnrF+0,
969                                                                  charge+jnrG+0,charge+jnrH+0);
970             vdwjidx0A        = 2*vdwtype[jnrA+0];
971             vdwjidx0B        = 2*vdwtype[jnrB+0];
972             vdwjidx0C        = 2*vdwtype[jnrC+0];
973             vdwjidx0D        = 2*vdwtype[jnrD+0];
974             vdwjidx0E        = 2*vdwtype[jnrE+0];
975             vdwjidx0F        = 2*vdwtype[jnrF+0];
976             vdwjidx0G        = 2*vdwtype[jnrG+0];
977             vdwjidx0H        = 2*vdwtype[jnrH+0];
978
979             fjx0             = _mm256_setzero_ps();
980             fjy0             = _mm256_setzero_ps();
981             fjz0             = _mm256_setzero_ps();
982
983             /**************************
984              * CALCULATE INTERACTIONS *
985              **************************/
986
987             if (gmx_mm256_any_lt(rsq00,rcutoff2))
988             {
989
990             r00              = _mm256_mul_ps(rsq00,rinv00);
991
992             /* Compute parameters for interactions between i and j atoms */
993             qq00             = _mm256_mul_ps(iq0,jq0);
994             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
995                                             vdwioffsetptr0+vdwjidx0B,
996                                             vdwioffsetptr0+vdwjidx0C,
997                                             vdwioffsetptr0+vdwjidx0D,
998                                             vdwioffsetptr0+vdwjidx0E,
999                                             vdwioffsetptr0+vdwjidx0F,
1000                                             vdwioffsetptr0+vdwjidx0G,
1001                                             vdwioffsetptr0+vdwjidx0H,
1002                                             &c6_00,&c12_00);
1003
1004             /* Calculate table index by multiplying r with table scale and truncate to integer */
1005             rt               = _mm256_mul_ps(r00,vftabscale);
1006             vfitab           = _mm256_cvttps_epi32(rt);
1007             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1008             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1009             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1010             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1011             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1012             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1013
1014             /* REACTION-FIELD ELECTROSTATICS */
1015             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
1016
1017             /* CUBIC SPLINE TABLE DISPERSION */
1018             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1019                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1020             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1021                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1022             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1023                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1024             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1025                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1026             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1027             Heps             = _mm256_mul_ps(vfeps,H);
1028             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1029             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1030             fvdw6            = _mm256_mul_ps(c6_00,FF);
1031
1032             /* CUBIC SPLINE TABLE REPULSION */
1033             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1034             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1035             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1036                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1037             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1038                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1039             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1040                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1041             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1042                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1043             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1044             Heps             = _mm256_mul_ps(vfeps,H);
1045             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1046             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1047             fvdw12           = _mm256_mul_ps(c12_00,FF);
1048             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1049
1050             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1051
1052             fscal            = _mm256_add_ps(felec,fvdw);
1053
1054             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1055
1056             /* Calculate temporary vectorial force */
1057             tx               = _mm256_mul_ps(fscal,dx00);
1058             ty               = _mm256_mul_ps(fscal,dy00);
1059             tz               = _mm256_mul_ps(fscal,dz00);
1060
1061             /* Update vectorial force */
1062             fix0             = _mm256_add_ps(fix0,tx);
1063             fiy0             = _mm256_add_ps(fiy0,ty);
1064             fiz0             = _mm256_add_ps(fiz0,tz);
1065
1066             fjx0             = _mm256_add_ps(fjx0,tx);
1067             fjy0             = _mm256_add_ps(fjy0,ty);
1068             fjz0             = _mm256_add_ps(fjz0,tz);
1069
1070             }
1071
1072             /**************************
1073              * CALCULATE INTERACTIONS *
1074              **************************/
1075
1076             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1077             {
1078
1079             /* Compute parameters for interactions between i and j atoms */
1080             qq10             = _mm256_mul_ps(iq1,jq0);
1081
1082             /* REACTION-FIELD ELECTROSTATICS */
1083             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1084
1085             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1086
1087             fscal            = felec;
1088
1089             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1090
1091             /* Calculate temporary vectorial force */
1092             tx               = _mm256_mul_ps(fscal,dx10);
1093             ty               = _mm256_mul_ps(fscal,dy10);
1094             tz               = _mm256_mul_ps(fscal,dz10);
1095
1096             /* Update vectorial force */
1097             fix1             = _mm256_add_ps(fix1,tx);
1098             fiy1             = _mm256_add_ps(fiy1,ty);
1099             fiz1             = _mm256_add_ps(fiz1,tz);
1100
1101             fjx0             = _mm256_add_ps(fjx0,tx);
1102             fjy0             = _mm256_add_ps(fjy0,ty);
1103             fjz0             = _mm256_add_ps(fjz0,tz);
1104
1105             }
1106
1107             /**************************
1108              * CALCULATE INTERACTIONS *
1109              **************************/
1110
1111             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1112             {
1113
1114             /* Compute parameters for interactions between i and j atoms */
1115             qq20             = _mm256_mul_ps(iq2,jq0);
1116
1117             /* REACTION-FIELD ELECTROSTATICS */
1118             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1119
1120             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1121
1122             fscal            = felec;
1123
1124             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1125
1126             /* Calculate temporary vectorial force */
1127             tx               = _mm256_mul_ps(fscal,dx20);
1128             ty               = _mm256_mul_ps(fscal,dy20);
1129             tz               = _mm256_mul_ps(fscal,dz20);
1130
1131             /* Update vectorial force */
1132             fix2             = _mm256_add_ps(fix2,tx);
1133             fiy2             = _mm256_add_ps(fiy2,ty);
1134             fiz2             = _mm256_add_ps(fiz2,tz);
1135
1136             fjx0             = _mm256_add_ps(fjx0,tx);
1137             fjy0             = _mm256_add_ps(fjy0,ty);
1138             fjz0             = _mm256_add_ps(fjz0,tz);
1139
1140             }
1141
1142             fjptrA             = f+j_coord_offsetA;
1143             fjptrB             = f+j_coord_offsetB;
1144             fjptrC             = f+j_coord_offsetC;
1145             fjptrD             = f+j_coord_offsetD;
1146             fjptrE             = f+j_coord_offsetE;
1147             fjptrF             = f+j_coord_offsetF;
1148             fjptrG             = f+j_coord_offsetG;
1149             fjptrH             = f+j_coord_offsetH;
1150
1151             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1152
1153             /* Inner loop uses 120 flops */
1154         }
1155
1156         if(jidx<j_index_end)
1157         {
1158
1159             /* Get j neighbor index, and coordinate index */
1160             jnrlistA         = jjnr[jidx];
1161             jnrlistB         = jjnr[jidx+1];
1162             jnrlistC         = jjnr[jidx+2];
1163             jnrlistD         = jjnr[jidx+3];
1164             jnrlistE         = jjnr[jidx+4];
1165             jnrlistF         = jjnr[jidx+5];
1166             jnrlistG         = jjnr[jidx+6];
1167             jnrlistH         = jjnr[jidx+7];
1168             /* Sign of each element will be negative for non-real atoms.
1169              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1170              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1171              */
1172             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1173                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1174                                             
1175             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1176             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1177             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1178             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1179             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1180             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1181             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1182             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1183             j_coord_offsetA  = DIM*jnrA;
1184             j_coord_offsetB  = DIM*jnrB;
1185             j_coord_offsetC  = DIM*jnrC;
1186             j_coord_offsetD  = DIM*jnrD;
1187             j_coord_offsetE  = DIM*jnrE;
1188             j_coord_offsetF  = DIM*jnrF;
1189             j_coord_offsetG  = DIM*jnrG;
1190             j_coord_offsetH  = DIM*jnrH;
1191
1192             /* load j atom coordinates */
1193             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1194                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1195                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1196                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1197                                                  &jx0,&jy0,&jz0);
1198
1199             /* Calculate displacement vector */
1200             dx00             = _mm256_sub_ps(ix0,jx0);
1201             dy00             = _mm256_sub_ps(iy0,jy0);
1202             dz00             = _mm256_sub_ps(iz0,jz0);
1203             dx10             = _mm256_sub_ps(ix1,jx0);
1204             dy10             = _mm256_sub_ps(iy1,jy0);
1205             dz10             = _mm256_sub_ps(iz1,jz0);
1206             dx20             = _mm256_sub_ps(ix2,jx0);
1207             dy20             = _mm256_sub_ps(iy2,jy0);
1208             dz20             = _mm256_sub_ps(iz2,jz0);
1209
1210             /* Calculate squared distance and things based on it */
1211             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1212             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1213             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1214
1215             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1216             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1217             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1218
1219             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1220             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1221             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1222
1223             /* Load parameters for j particles */
1224             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1225                                                                  charge+jnrC+0,charge+jnrD+0,
1226                                                                  charge+jnrE+0,charge+jnrF+0,
1227                                                                  charge+jnrG+0,charge+jnrH+0);
1228             vdwjidx0A        = 2*vdwtype[jnrA+0];
1229             vdwjidx0B        = 2*vdwtype[jnrB+0];
1230             vdwjidx0C        = 2*vdwtype[jnrC+0];
1231             vdwjidx0D        = 2*vdwtype[jnrD+0];
1232             vdwjidx0E        = 2*vdwtype[jnrE+0];
1233             vdwjidx0F        = 2*vdwtype[jnrF+0];
1234             vdwjidx0G        = 2*vdwtype[jnrG+0];
1235             vdwjidx0H        = 2*vdwtype[jnrH+0];
1236
1237             fjx0             = _mm256_setzero_ps();
1238             fjy0             = _mm256_setzero_ps();
1239             fjz0             = _mm256_setzero_ps();
1240
1241             /**************************
1242              * CALCULATE INTERACTIONS *
1243              **************************/
1244
1245             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1246             {
1247
1248             r00              = _mm256_mul_ps(rsq00,rinv00);
1249             r00              = _mm256_andnot_ps(dummy_mask,r00);
1250
1251             /* Compute parameters for interactions between i and j atoms */
1252             qq00             = _mm256_mul_ps(iq0,jq0);
1253             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1254                                             vdwioffsetptr0+vdwjidx0B,
1255                                             vdwioffsetptr0+vdwjidx0C,
1256                                             vdwioffsetptr0+vdwjidx0D,
1257                                             vdwioffsetptr0+vdwjidx0E,
1258                                             vdwioffsetptr0+vdwjidx0F,
1259                                             vdwioffsetptr0+vdwjidx0G,
1260                                             vdwioffsetptr0+vdwjidx0H,
1261                                             &c6_00,&c12_00);
1262
1263             /* Calculate table index by multiplying r with table scale and truncate to integer */
1264             rt               = _mm256_mul_ps(r00,vftabscale);
1265             vfitab           = _mm256_cvttps_epi32(rt);
1266             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1267             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1268             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1269             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1270             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1271             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1272
1273             /* REACTION-FIELD ELECTROSTATICS */
1274             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
1275
1276             /* CUBIC SPLINE TABLE DISPERSION */
1277             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1278                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1279             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1280                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1281             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1282                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1283             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1284                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1285             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1286             Heps             = _mm256_mul_ps(vfeps,H);
1287             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1288             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1289             fvdw6            = _mm256_mul_ps(c6_00,FF);
1290
1291             /* CUBIC SPLINE TABLE REPULSION */
1292             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1293             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1294             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1295                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1296             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1297                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1298             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1299                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1300             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1301                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1302             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1303             Heps             = _mm256_mul_ps(vfeps,H);
1304             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1305             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1306             fvdw12           = _mm256_mul_ps(c12_00,FF);
1307             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1308
1309             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1310
1311             fscal            = _mm256_add_ps(felec,fvdw);
1312
1313             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1314
1315             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1316
1317             /* Calculate temporary vectorial force */
1318             tx               = _mm256_mul_ps(fscal,dx00);
1319             ty               = _mm256_mul_ps(fscal,dy00);
1320             tz               = _mm256_mul_ps(fscal,dz00);
1321
1322             /* Update vectorial force */
1323             fix0             = _mm256_add_ps(fix0,tx);
1324             fiy0             = _mm256_add_ps(fiy0,ty);
1325             fiz0             = _mm256_add_ps(fiz0,tz);
1326
1327             fjx0             = _mm256_add_ps(fjx0,tx);
1328             fjy0             = _mm256_add_ps(fjy0,ty);
1329             fjz0             = _mm256_add_ps(fjz0,tz);
1330
1331             }
1332
1333             /**************************
1334              * CALCULATE INTERACTIONS *
1335              **************************/
1336
1337             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1338             {
1339
1340             /* Compute parameters for interactions between i and j atoms */
1341             qq10             = _mm256_mul_ps(iq1,jq0);
1342
1343             /* REACTION-FIELD ELECTROSTATICS */
1344             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1345
1346             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1347
1348             fscal            = felec;
1349
1350             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1351
1352             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1353
1354             /* Calculate temporary vectorial force */
1355             tx               = _mm256_mul_ps(fscal,dx10);
1356             ty               = _mm256_mul_ps(fscal,dy10);
1357             tz               = _mm256_mul_ps(fscal,dz10);
1358
1359             /* Update vectorial force */
1360             fix1             = _mm256_add_ps(fix1,tx);
1361             fiy1             = _mm256_add_ps(fiy1,ty);
1362             fiz1             = _mm256_add_ps(fiz1,tz);
1363
1364             fjx0             = _mm256_add_ps(fjx0,tx);
1365             fjy0             = _mm256_add_ps(fjy0,ty);
1366             fjz0             = _mm256_add_ps(fjz0,tz);
1367
1368             }
1369
1370             /**************************
1371              * CALCULATE INTERACTIONS *
1372              **************************/
1373
1374             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1375             {
1376
1377             /* Compute parameters for interactions between i and j atoms */
1378             qq20             = _mm256_mul_ps(iq2,jq0);
1379
1380             /* REACTION-FIELD ELECTROSTATICS */
1381             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1382
1383             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1384
1385             fscal            = felec;
1386
1387             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1388
1389             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1390
1391             /* Calculate temporary vectorial force */
1392             tx               = _mm256_mul_ps(fscal,dx20);
1393             ty               = _mm256_mul_ps(fscal,dy20);
1394             tz               = _mm256_mul_ps(fscal,dz20);
1395
1396             /* Update vectorial force */
1397             fix2             = _mm256_add_ps(fix2,tx);
1398             fiy2             = _mm256_add_ps(fiy2,ty);
1399             fiz2             = _mm256_add_ps(fiz2,tz);
1400
1401             fjx0             = _mm256_add_ps(fjx0,tx);
1402             fjy0             = _mm256_add_ps(fjy0,ty);
1403             fjz0             = _mm256_add_ps(fjz0,tz);
1404
1405             }
1406
1407             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1408             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1409             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1410             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1411             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1412             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1413             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1414             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1415
1416             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1417
1418             /* Inner loop uses 121 flops */
1419         }
1420
1421         /* End of innermost loop */
1422
1423         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1424                                                  f+i_coord_offset,fshift+i_shift_offset);
1425
1426         /* Increment number of inner iterations */
1427         inneriter                  += j_index_end - j_index_start;
1428
1429         /* Outer loop uses 18 flops */
1430     }
1431
1432     /* Increment number of outer iterations */
1433     outeriter        += nri;
1434
1435     /* Update outer/inner flops */
1436
1437     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*121);
1438 }