Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_256_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
93     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
104     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
105     __m256i          vfitab;
106     __m128i          vfitab_lo,vfitab_hi;
107     __m128i          ifour       = _mm_set1_epi32(4);
108     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
109     real             *vftab;
110     __m256           dummy_mask,cutoff_mask;
111     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
112     __m256           one     = _mm256_set1_ps(1.0);
113     __m256           two     = _mm256_set1_ps(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm256_set1_ps(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     krf              = _mm256_set1_ps(fr->ic->k_rf);
128     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
129     crf              = _mm256_set1_ps(fr->ic->c_rf);
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133
134     vftab            = kernel_data->table_vdw->data;
135     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
136
137     /* Setup water-specific parameters */
138     inr              = nlist->iinr[0];
139     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
140     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
141     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
142     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
143
144     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
145     rcutoff_scalar   = fr->rcoulomb;
146     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
147     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
148
149     /* Avoid stupid compiler warnings */
150     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
151     j_coord_offsetA = 0;
152     j_coord_offsetB = 0;
153     j_coord_offsetC = 0;
154     j_coord_offsetD = 0;
155     j_coord_offsetE = 0;
156     j_coord_offsetF = 0;
157     j_coord_offsetG = 0;
158     j_coord_offsetH = 0;
159
160     outeriter        = 0;
161     inneriter        = 0;
162
163     for(iidx=0;iidx<4*DIM;iidx++)
164     {
165         scratch[iidx] = 0.0;
166     }
167
168     /* Start outer loop over neighborlists */
169     for(iidx=0; iidx<nri; iidx++)
170     {
171         /* Load shift vector for this list */
172         i_shift_offset   = DIM*shiftidx[iidx];
173
174         /* Load limits for loop over neighbors */
175         j_index_start    = jindex[iidx];
176         j_index_end      = jindex[iidx+1];
177
178         /* Get outer coordinate index */
179         inr              = iinr[iidx];
180         i_coord_offset   = DIM*inr;
181
182         /* Load i particle coords and add shift vector */
183         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
184                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
185
186         fix0             = _mm256_setzero_ps();
187         fiy0             = _mm256_setzero_ps();
188         fiz0             = _mm256_setzero_ps();
189         fix1             = _mm256_setzero_ps();
190         fiy1             = _mm256_setzero_ps();
191         fiz1             = _mm256_setzero_ps();
192         fix2             = _mm256_setzero_ps();
193         fiy2             = _mm256_setzero_ps();
194         fiz2             = _mm256_setzero_ps();
195
196         /* Reset potential sums */
197         velecsum         = _mm256_setzero_ps();
198         vvdwsum          = _mm256_setzero_ps();
199
200         /* Start inner kernel loop */
201         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
202         {
203
204             /* Get j neighbor index, and coordinate index */
205             jnrA             = jjnr[jidx];
206             jnrB             = jjnr[jidx+1];
207             jnrC             = jjnr[jidx+2];
208             jnrD             = jjnr[jidx+3];
209             jnrE             = jjnr[jidx+4];
210             jnrF             = jjnr[jidx+5];
211             jnrG             = jjnr[jidx+6];
212             jnrH             = jjnr[jidx+7];
213             j_coord_offsetA  = DIM*jnrA;
214             j_coord_offsetB  = DIM*jnrB;
215             j_coord_offsetC  = DIM*jnrC;
216             j_coord_offsetD  = DIM*jnrD;
217             j_coord_offsetE  = DIM*jnrE;
218             j_coord_offsetF  = DIM*jnrF;
219             j_coord_offsetG  = DIM*jnrG;
220             j_coord_offsetH  = DIM*jnrH;
221
222             /* load j atom coordinates */
223             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
224                                                  x+j_coord_offsetC,x+j_coord_offsetD,
225                                                  x+j_coord_offsetE,x+j_coord_offsetF,
226                                                  x+j_coord_offsetG,x+j_coord_offsetH,
227                                                  &jx0,&jy0,&jz0);
228
229             /* Calculate displacement vector */
230             dx00             = _mm256_sub_ps(ix0,jx0);
231             dy00             = _mm256_sub_ps(iy0,jy0);
232             dz00             = _mm256_sub_ps(iz0,jz0);
233             dx10             = _mm256_sub_ps(ix1,jx0);
234             dy10             = _mm256_sub_ps(iy1,jy0);
235             dz10             = _mm256_sub_ps(iz1,jz0);
236             dx20             = _mm256_sub_ps(ix2,jx0);
237             dy20             = _mm256_sub_ps(iy2,jy0);
238             dz20             = _mm256_sub_ps(iz2,jz0);
239
240             /* Calculate squared distance and things based on it */
241             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
242             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
243             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
244
245             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
246             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
247             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
248
249             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
250             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
251             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
252
253             /* Load parameters for j particles */
254             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
255                                                                  charge+jnrC+0,charge+jnrD+0,
256                                                                  charge+jnrE+0,charge+jnrF+0,
257                                                                  charge+jnrG+0,charge+jnrH+0);
258             vdwjidx0A        = 2*vdwtype[jnrA+0];
259             vdwjidx0B        = 2*vdwtype[jnrB+0];
260             vdwjidx0C        = 2*vdwtype[jnrC+0];
261             vdwjidx0D        = 2*vdwtype[jnrD+0];
262             vdwjidx0E        = 2*vdwtype[jnrE+0];
263             vdwjidx0F        = 2*vdwtype[jnrF+0];
264             vdwjidx0G        = 2*vdwtype[jnrG+0];
265             vdwjidx0H        = 2*vdwtype[jnrH+0];
266
267             fjx0             = _mm256_setzero_ps();
268             fjy0             = _mm256_setzero_ps();
269             fjz0             = _mm256_setzero_ps();
270
271             /**************************
272              * CALCULATE INTERACTIONS *
273              **************************/
274
275             if (gmx_mm256_any_lt(rsq00,rcutoff2))
276             {
277
278             r00              = _mm256_mul_ps(rsq00,rinv00);
279
280             /* Compute parameters for interactions between i and j atoms */
281             qq00             = _mm256_mul_ps(iq0,jq0);
282             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
283                                             vdwioffsetptr0+vdwjidx0B,
284                                             vdwioffsetptr0+vdwjidx0C,
285                                             vdwioffsetptr0+vdwjidx0D,
286                                             vdwioffsetptr0+vdwjidx0E,
287                                             vdwioffsetptr0+vdwjidx0F,
288                                             vdwioffsetptr0+vdwjidx0G,
289                                             vdwioffsetptr0+vdwjidx0H,
290                                             &c6_00,&c12_00);
291
292             /* Calculate table index by multiplying r with table scale and truncate to integer */
293             rt               = _mm256_mul_ps(r00,vftabscale);
294             vfitab           = _mm256_cvttps_epi32(rt);
295             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
296             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
297             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
298             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
299             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
300             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
301
302             /* REACTION-FIELD ELECTROSTATICS */
303             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
304             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
305
306             /* CUBIC SPLINE TABLE DISPERSION */
307             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
308                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
309             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
310                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
311             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
312                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
313             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
314                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
315             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
316             Heps             = _mm256_mul_ps(vfeps,H);
317             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
318             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
319             vvdw6            = _mm256_mul_ps(c6_00,VV);
320             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
321             fvdw6            = _mm256_mul_ps(c6_00,FF);
322
323             /* CUBIC SPLINE TABLE REPULSION */
324             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
325             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
326             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
327                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
328             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
329                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
330             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
331                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
332             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
333                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
334             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
335             Heps             = _mm256_mul_ps(vfeps,H);
336             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
337             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
338             vvdw12           = _mm256_mul_ps(c12_00,VV);
339             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
340             fvdw12           = _mm256_mul_ps(c12_00,FF);
341             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
342             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
343
344             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velec            = _mm256_and_ps(velec,cutoff_mask);
348             velecsum         = _mm256_add_ps(velecsum,velec);
349             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
350             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
351
352             fscal            = _mm256_add_ps(felec,fvdw);
353
354             fscal            = _mm256_and_ps(fscal,cutoff_mask);
355
356             /* Calculate temporary vectorial force */
357             tx               = _mm256_mul_ps(fscal,dx00);
358             ty               = _mm256_mul_ps(fscal,dy00);
359             tz               = _mm256_mul_ps(fscal,dz00);
360
361             /* Update vectorial force */
362             fix0             = _mm256_add_ps(fix0,tx);
363             fiy0             = _mm256_add_ps(fiy0,ty);
364             fiz0             = _mm256_add_ps(fiz0,tz);
365
366             fjx0             = _mm256_add_ps(fjx0,tx);
367             fjy0             = _mm256_add_ps(fjy0,ty);
368             fjz0             = _mm256_add_ps(fjz0,tz);
369
370             }
371
372             /**************************
373              * CALCULATE INTERACTIONS *
374              **************************/
375
376             if (gmx_mm256_any_lt(rsq10,rcutoff2))
377             {
378
379             /* Compute parameters for interactions between i and j atoms */
380             qq10             = _mm256_mul_ps(iq1,jq0);
381
382             /* REACTION-FIELD ELECTROSTATICS */
383             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
384             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
385
386             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
387
388             /* Update potential sum for this i atom from the interaction with this j atom. */
389             velec            = _mm256_and_ps(velec,cutoff_mask);
390             velecsum         = _mm256_add_ps(velecsum,velec);
391
392             fscal            = felec;
393
394             fscal            = _mm256_and_ps(fscal,cutoff_mask);
395
396             /* Calculate temporary vectorial force */
397             tx               = _mm256_mul_ps(fscal,dx10);
398             ty               = _mm256_mul_ps(fscal,dy10);
399             tz               = _mm256_mul_ps(fscal,dz10);
400
401             /* Update vectorial force */
402             fix1             = _mm256_add_ps(fix1,tx);
403             fiy1             = _mm256_add_ps(fiy1,ty);
404             fiz1             = _mm256_add_ps(fiz1,tz);
405
406             fjx0             = _mm256_add_ps(fjx0,tx);
407             fjy0             = _mm256_add_ps(fjy0,ty);
408             fjz0             = _mm256_add_ps(fjz0,tz);
409
410             }
411
412             /**************************
413              * CALCULATE INTERACTIONS *
414              **************************/
415
416             if (gmx_mm256_any_lt(rsq20,rcutoff2))
417             {
418
419             /* Compute parameters for interactions between i and j atoms */
420             qq20             = _mm256_mul_ps(iq2,jq0);
421
422             /* REACTION-FIELD ELECTROSTATICS */
423             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
424             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
425
426             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
427
428             /* Update potential sum for this i atom from the interaction with this j atom. */
429             velec            = _mm256_and_ps(velec,cutoff_mask);
430             velecsum         = _mm256_add_ps(velecsum,velec);
431
432             fscal            = felec;
433
434             fscal            = _mm256_and_ps(fscal,cutoff_mask);
435
436             /* Calculate temporary vectorial force */
437             tx               = _mm256_mul_ps(fscal,dx20);
438             ty               = _mm256_mul_ps(fscal,dy20);
439             tz               = _mm256_mul_ps(fscal,dz20);
440
441             /* Update vectorial force */
442             fix2             = _mm256_add_ps(fix2,tx);
443             fiy2             = _mm256_add_ps(fiy2,ty);
444             fiz2             = _mm256_add_ps(fiz2,tz);
445
446             fjx0             = _mm256_add_ps(fjx0,tx);
447             fjy0             = _mm256_add_ps(fjy0,ty);
448             fjz0             = _mm256_add_ps(fjz0,tz);
449
450             }
451
452             fjptrA             = f+j_coord_offsetA;
453             fjptrB             = f+j_coord_offsetB;
454             fjptrC             = f+j_coord_offsetC;
455             fjptrD             = f+j_coord_offsetD;
456             fjptrE             = f+j_coord_offsetE;
457             fjptrF             = f+j_coord_offsetF;
458             fjptrG             = f+j_coord_offsetG;
459             fjptrH             = f+j_coord_offsetH;
460
461             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
462
463             /* Inner loop uses 147 flops */
464         }
465
466         if(jidx<j_index_end)
467         {
468
469             /* Get j neighbor index, and coordinate index */
470             jnrlistA         = jjnr[jidx];
471             jnrlistB         = jjnr[jidx+1];
472             jnrlistC         = jjnr[jidx+2];
473             jnrlistD         = jjnr[jidx+3];
474             jnrlistE         = jjnr[jidx+4];
475             jnrlistF         = jjnr[jidx+5];
476             jnrlistG         = jjnr[jidx+6];
477             jnrlistH         = jjnr[jidx+7];
478             /* Sign of each element will be negative for non-real atoms.
479              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
480              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
481              */
482             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
483                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
484                                             
485             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
486             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
487             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
488             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
489             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
490             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
491             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
492             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
493             j_coord_offsetA  = DIM*jnrA;
494             j_coord_offsetB  = DIM*jnrB;
495             j_coord_offsetC  = DIM*jnrC;
496             j_coord_offsetD  = DIM*jnrD;
497             j_coord_offsetE  = DIM*jnrE;
498             j_coord_offsetF  = DIM*jnrF;
499             j_coord_offsetG  = DIM*jnrG;
500             j_coord_offsetH  = DIM*jnrH;
501
502             /* load j atom coordinates */
503             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
504                                                  x+j_coord_offsetC,x+j_coord_offsetD,
505                                                  x+j_coord_offsetE,x+j_coord_offsetF,
506                                                  x+j_coord_offsetG,x+j_coord_offsetH,
507                                                  &jx0,&jy0,&jz0);
508
509             /* Calculate displacement vector */
510             dx00             = _mm256_sub_ps(ix0,jx0);
511             dy00             = _mm256_sub_ps(iy0,jy0);
512             dz00             = _mm256_sub_ps(iz0,jz0);
513             dx10             = _mm256_sub_ps(ix1,jx0);
514             dy10             = _mm256_sub_ps(iy1,jy0);
515             dz10             = _mm256_sub_ps(iz1,jz0);
516             dx20             = _mm256_sub_ps(ix2,jx0);
517             dy20             = _mm256_sub_ps(iy2,jy0);
518             dz20             = _mm256_sub_ps(iz2,jz0);
519
520             /* Calculate squared distance and things based on it */
521             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
522             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
523             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
524
525             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
526             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
527             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
528
529             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
530             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
531             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
532
533             /* Load parameters for j particles */
534             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
535                                                                  charge+jnrC+0,charge+jnrD+0,
536                                                                  charge+jnrE+0,charge+jnrF+0,
537                                                                  charge+jnrG+0,charge+jnrH+0);
538             vdwjidx0A        = 2*vdwtype[jnrA+0];
539             vdwjidx0B        = 2*vdwtype[jnrB+0];
540             vdwjidx0C        = 2*vdwtype[jnrC+0];
541             vdwjidx0D        = 2*vdwtype[jnrD+0];
542             vdwjidx0E        = 2*vdwtype[jnrE+0];
543             vdwjidx0F        = 2*vdwtype[jnrF+0];
544             vdwjidx0G        = 2*vdwtype[jnrG+0];
545             vdwjidx0H        = 2*vdwtype[jnrH+0];
546
547             fjx0             = _mm256_setzero_ps();
548             fjy0             = _mm256_setzero_ps();
549             fjz0             = _mm256_setzero_ps();
550
551             /**************************
552              * CALCULATE INTERACTIONS *
553              **************************/
554
555             if (gmx_mm256_any_lt(rsq00,rcutoff2))
556             {
557
558             r00              = _mm256_mul_ps(rsq00,rinv00);
559             r00              = _mm256_andnot_ps(dummy_mask,r00);
560
561             /* Compute parameters for interactions between i and j atoms */
562             qq00             = _mm256_mul_ps(iq0,jq0);
563             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
564                                             vdwioffsetptr0+vdwjidx0B,
565                                             vdwioffsetptr0+vdwjidx0C,
566                                             vdwioffsetptr0+vdwjidx0D,
567                                             vdwioffsetptr0+vdwjidx0E,
568                                             vdwioffsetptr0+vdwjidx0F,
569                                             vdwioffsetptr0+vdwjidx0G,
570                                             vdwioffsetptr0+vdwjidx0H,
571                                             &c6_00,&c12_00);
572
573             /* Calculate table index by multiplying r with table scale and truncate to integer */
574             rt               = _mm256_mul_ps(r00,vftabscale);
575             vfitab           = _mm256_cvttps_epi32(rt);
576             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
577             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
578             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
579             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
580             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
581             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
582
583             /* REACTION-FIELD ELECTROSTATICS */
584             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
585             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
586
587             /* CUBIC SPLINE TABLE DISPERSION */
588             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
589                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
590             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
591                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
592             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
593                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
594             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
595                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
596             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
597             Heps             = _mm256_mul_ps(vfeps,H);
598             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
599             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
600             vvdw6            = _mm256_mul_ps(c6_00,VV);
601             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
602             fvdw6            = _mm256_mul_ps(c6_00,FF);
603
604             /* CUBIC SPLINE TABLE REPULSION */
605             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
606             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
607             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
608                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
609             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
610                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
611             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
612                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
613             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
614                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
615             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
616             Heps             = _mm256_mul_ps(vfeps,H);
617             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
618             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
619             vvdw12           = _mm256_mul_ps(c12_00,VV);
620             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
621             fvdw12           = _mm256_mul_ps(c12_00,FF);
622             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
623             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
624
625             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
626
627             /* Update potential sum for this i atom from the interaction with this j atom. */
628             velec            = _mm256_and_ps(velec,cutoff_mask);
629             velec            = _mm256_andnot_ps(dummy_mask,velec);
630             velecsum         = _mm256_add_ps(velecsum,velec);
631             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
632             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
633             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
634
635             fscal            = _mm256_add_ps(felec,fvdw);
636
637             fscal            = _mm256_and_ps(fscal,cutoff_mask);
638
639             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
640
641             /* Calculate temporary vectorial force */
642             tx               = _mm256_mul_ps(fscal,dx00);
643             ty               = _mm256_mul_ps(fscal,dy00);
644             tz               = _mm256_mul_ps(fscal,dz00);
645
646             /* Update vectorial force */
647             fix0             = _mm256_add_ps(fix0,tx);
648             fiy0             = _mm256_add_ps(fiy0,ty);
649             fiz0             = _mm256_add_ps(fiz0,tz);
650
651             fjx0             = _mm256_add_ps(fjx0,tx);
652             fjy0             = _mm256_add_ps(fjy0,ty);
653             fjz0             = _mm256_add_ps(fjz0,tz);
654
655             }
656
657             /**************************
658              * CALCULATE INTERACTIONS *
659              **************************/
660
661             if (gmx_mm256_any_lt(rsq10,rcutoff2))
662             {
663
664             /* Compute parameters for interactions between i and j atoms */
665             qq10             = _mm256_mul_ps(iq1,jq0);
666
667             /* REACTION-FIELD ELECTROSTATICS */
668             velec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_add_ps(rinv10,_mm256_mul_ps(krf,rsq10)),crf));
669             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
670
671             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
672
673             /* Update potential sum for this i atom from the interaction with this j atom. */
674             velec            = _mm256_and_ps(velec,cutoff_mask);
675             velec            = _mm256_andnot_ps(dummy_mask,velec);
676             velecsum         = _mm256_add_ps(velecsum,velec);
677
678             fscal            = felec;
679
680             fscal            = _mm256_and_ps(fscal,cutoff_mask);
681
682             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
683
684             /* Calculate temporary vectorial force */
685             tx               = _mm256_mul_ps(fscal,dx10);
686             ty               = _mm256_mul_ps(fscal,dy10);
687             tz               = _mm256_mul_ps(fscal,dz10);
688
689             /* Update vectorial force */
690             fix1             = _mm256_add_ps(fix1,tx);
691             fiy1             = _mm256_add_ps(fiy1,ty);
692             fiz1             = _mm256_add_ps(fiz1,tz);
693
694             fjx0             = _mm256_add_ps(fjx0,tx);
695             fjy0             = _mm256_add_ps(fjy0,ty);
696             fjz0             = _mm256_add_ps(fjz0,tz);
697
698             }
699
700             /**************************
701              * CALCULATE INTERACTIONS *
702              **************************/
703
704             if (gmx_mm256_any_lt(rsq20,rcutoff2))
705             {
706
707             /* Compute parameters for interactions between i and j atoms */
708             qq20             = _mm256_mul_ps(iq2,jq0);
709
710             /* REACTION-FIELD ELECTROSTATICS */
711             velec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_add_ps(rinv20,_mm256_mul_ps(krf,rsq20)),crf));
712             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
713
714             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
715
716             /* Update potential sum for this i atom from the interaction with this j atom. */
717             velec            = _mm256_and_ps(velec,cutoff_mask);
718             velec            = _mm256_andnot_ps(dummy_mask,velec);
719             velecsum         = _mm256_add_ps(velecsum,velec);
720
721             fscal            = felec;
722
723             fscal            = _mm256_and_ps(fscal,cutoff_mask);
724
725             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
726
727             /* Calculate temporary vectorial force */
728             tx               = _mm256_mul_ps(fscal,dx20);
729             ty               = _mm256_mul_ps(fscal,dy20);
730             tz               = _mm256_mul_ps(fscal,dz20);
731
732             /* Update vectorial force */
733             fix2             = _mm256_add_ps(fix2,tx);
734             fiy2             = _mm256_add_ps(fiy2,ty);
735             fiz2             = _mm256_add_ps(fiz2,tz);
736
737             fjx0             = _mm256_add_ps(fjx0,tx);
738             fjy0             = _mm256_add_ps(fjy0,ty);
739             fjz0             = _mm256_add_ps(fjz0,tz);
740
741             }
742
743             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
744             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
745             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
746             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
747             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
748             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
749             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
750             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
751
752             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
753
754             /* Inner loop uses 148 flops */
755         }
756
757         /* End of innermost loop */
758
759         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
760                                                  f+i_coord_offset,fshift+i_shift_offset);
761
762         ggid                        = gid[iidx];
763         /* Update potential energies */
764         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
765         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
766
767         /* Increment number of inner iterations */
768         inneriter                  += j_index_end - j_index_start;
769
770         /* Outer loop uses 20 flops */
771     }
772
773     /* Increment number of outer iterations */
774     outeriter        += nri;
775
776     /* Update outer/inner flops */
777
778     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*148);
779 }
780 /*
781  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_256_single
782  * Electrostatics interaction: ReactionField
783  * VdW interaction:            CubicSplineTable
784  * Geometry:                   Water3-Particle
785  * Calculate force/pot:        Force
786  */
787 void
788 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_256_single
789                     (t_nblist                    * gmx_restrict       nlist,
790                      rvec                        * gmx_restrict          xx,
791                      rvec                        * gmx_restrict          ff,
792                      t_forcerec                  * gmx_restrict          fr,
793                      t_mdatoms                   * gmx_restrict     mdatoms,
794                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
795                      t_nrnb                      * gmx_restrict        nrnb)
796 {
797     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
798      * just 0 for non-waters.
799      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
800      * jnr indices corresponding to data put in the four positions in the SIMD register.
801      */
802     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
803     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
804     int              jnrA,jnrB,jnrC,jnrD;
805     int              jnrE,jnrF,jnrG,jnrH;
806     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
807     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
808     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
809     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
810     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
811     real             rcutoff_scalar;
812     real             *shiftvec,*fshift,*x,*f;
813     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
814     real             scratch[4*DIM];
815     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
816     real *           vdwioffsetptr0;
817     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
818     real *           vdwioffsetptr1;
819     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
820     real *           vdwioffsetptr2;
821     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
822     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
823     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
824     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
825     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
826     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
827     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
828     real             *charge;
829     int              nvdwtype;
830     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
831     int              *vdwtype;
832     real             *vdwparam;
833     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
834     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
835     __m256i          vfitab;
836     __m128i          vfitab_lo,vfitab_hi;
837     __m128i          ifour       = _mm_set1_epi32(4);
838     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
839     real             *vftab;
840     __m256           dummy_mask,cutoff_mask;
841     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
842     __m256           one     = _mm256_set1_ps(1.0);
843     __m256           two     = _mm256_set1_ps(2.0);
844     x                = xx[0];
845     f                = ff[0];
846
847     nri              = nlist->nri;
848     iinr             = nlist->iinr;
849     jindex           = nlist->jindex;
850     jjnr             = nlist->jjnr;
851     shiftidx         = nlist->shift;
852     gid              = nlist->gid;
853     shiftvec         = fr->shift_vec[0];
854     fshift           = fr->fshift[0];
855     facel            = _mm256_set1_ps(fr->epsfac);
856     charge           = mdatoms->chargeA;
857     krf              = _mm256_set1_ps(fr->ic->k_rf);
858     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
859     crf              = _mm256_set1_ps(fr->ic->c_rf);
860     nvdwtype         = fr->ntype;
861     vdwparam         = fr->nbfp;
862     vdwtype          = mdatoms->typeA;
863
864     vftab            = kernel_data->table_vdw->data;
865     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
866
867     /* Setup water-specific parameters */
868     inr              = nlist->iinr[0];
869     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
870     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
871     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
872     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
873
874     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
875     rcutoff_scalar   = fr->rcoulomb;
876     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
877     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
878
879     /* Avoid stupid compiler warnings */
880     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
881     j_coord_offsetA = 0;
882     j_coord_offsetB = 0;
883     j_coord_offsetC = 0;
884     j_coord_offsetD = 0;
885     j_coord_offsetE = 0;
886     j_coord_offsetF = 0;
887     j_coord_offsetG = 0;
888     j_coord_offsetH = 0;
889
890     outeriter        = 0;
891     inneriter        = 0;
892
893     for(iidx=0;iidx<4*DIM;iidx++)
894     {
895         scratch[iidx] = 0.0;
896     }
897
898     /* Start outer loop over neighborlists */
899     for(iidx=0; iidx<nri; iidx++)
900     {
901         /* Load shift vector for this list */
902         i_shift_offset   = DIM*shiftidx[iidx];
903
904         /* Load limits for loop over neighbors */
905         j_index_start    = jindex[iidx];
906         j_index_end      = jindex[iidx+1];
907
908         /* Get outer coordinate index */
909         inr              = iinr[iidx];
910         i_coord_offset   = DIM*inr;
911
912         /* Load i particle coords and add shift vector */
913         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
914                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
915
916         fix0             = _mm256_setzero_ps();
917         fiy0             = _mm256_setzero_ps();
918         fiz0             = _mm256_setzero_ps();
919         fix1             = _mm256_setzero_ps();
920         fiy1             = _mm256_setzero_ps();
921         fiz1             = _mm256_setzero_ps();
922         fix2             = _mm256_setzero_ps();
923         fiy2             = _mm256_setzero_ps();
924         fiz2             = _mm256_setzero_ps();
925
926         /* Start inner kernel loop */
927         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
928         {
929
930             /* Get j neighbor index, and coordinate index */
931             jnrA             = jjnr[jidx];
932             jnrB             = jjnr[jidx+1];
933             jnrC             = jjnr[jidx+2];
934             jnrD             = jjnr[jidx+3];
935             jnrE             = jjnr[jidx+4];
936             jnrF             = jjnr[jidx+5];
937             jnrG             = jjnr[jidx+6];
938             jnrH             = jjnr[jidx+7];
939             j_coord_offsetA  = DIM*jnrA;
940             j_coord_offsetB  = DIM*jnrB;
941             j_coord_offsetC  = DIM*jnrC;
942             j_coord_offsetD  = DIM*jnrD;
943             j_coord_offsetE  = DIM*jnrE;
944             j_coord_offsetF  = DIM*jnrF;
945             j_coord_offsetG  = DIM*jnrG;
946             j_coord_offsetH  = DIM*jnrH;
947
948             /* load j atom coordinates */
949             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
950                                                  x+j_coord_offsetC,x+j_coord_offsetD,
951                                                  x+j_coord_offsetE,x+j_coord_offsetF,
952                                                  x+j_coord_offsetG,x+j_coord_offsetH,
953                                                  &jx0,&jy0,&jz0);
954
955             /* Calculate displacement vector */
956             dx00             = _mm256_sub_ps(ix0,jx0);
957             dy00             = _mm256_sub_ps(iy0,jy0);
958             dz00             = _mm256_sub_ps(iz0,jz0);
959             dx10             = _mm256_sub_ps(ix1,jx0);
960             dy10             = _mm256_sub_ps(iy1,jy0);
961             dz10             = _mm256_sub_ps(iz1,jz0);
962             dx20             = _mm256_sub_ps(ix2,jx0);
963             dy20             = _mm256_sub_ps(iy2,jy0);
964             dz20             = _mm256_sub_ps(iz2,jz0);
965
966             /* Calculate squared distance and things based on it */
967             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
968             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
969             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
970
971             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
972             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
973             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
974
975             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
976             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
977             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
978
979             /* Load parameters for j particles */
980             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
981                                                                  charge+jnrC+0,charge+jnrD+0,
982                                                                  charge+jnrE+0,charge+jnrF+0,
983                                                                  charge+jnrG+0,charge+jnrH+0);
984             vdwjidx0A        = 2*vdwtype[jnrA+0];
985             vdwjidx0B        = 2*vdwtype[jnrB+0];
986             vdwjidx0C        = 2*vdwtype[jnrC+0];
987             vdwjidx0D        = 2*vdwtype[jnrD+0];
988             vdwjidx0E        = 2*vdwtype[jnrE+0];
989             vdwjidx0F        = 2*vdwtype[jnrF+0];
990             vdwjidx0G        = 2*vdwtype[jnrG+0];
991             vdwjidx0H        = 2*vdwtype[jnrH+0];
992
993             fjx0             = _mm256_setzero_ps();
994             fjy0             = _mm256_setzero_ps();
995             fjz0             = _mm256_setzero_ps();
996
997             /**************************
998              * CALCULATE INTERACTIONS *
999              **************************/
1000
1001             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1002             {
1003
1004             r00              = _mm256_mul_ps(rsq00,rinv00);
1005
1006             /* Compute parameters for interactions between i and j atoms */
1007             qq00             = _mm256_mul_ps(iq0,jq0);
1008             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1009                                             vdwioffsetptr0+vdwjidx0B,
1010                                             vdwioffsetptr0+vdwjidx0C,
1011                                             vdwioffsetptr0+vdwjidx0D,
1012                                             vdwioffsetptr0+vdwjidx0E,
1013                                             vdwioffsetptr0+vdwjidx0F,
1014                                             vdwioffsetptr0+vdwjidx0G,
1015                                             vdwioffsetptr0+vdwjidx0H,
1016                                             &c6_00,&c12_00);
1017
1018             /* Calculate table index by multiplying r with table scale and truncate to integer */
1019             rt               = _mm256_mul_ps(r00,vftabscale);
1020             vfitab           = _mm256_cvttps_epi32(rt);
1021             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1022             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1023             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1024             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1025             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1026             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1027
1028             /* REACTION-FIELD ELECTROSTATICS */
1029             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
1030
1031             /* CUBIC SPLINE TABLE DISPERSION */
1032             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1033                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1034             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1035                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1036             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1037                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1038             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1039                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1040             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1041             Heps             = _mm256_mul_ps(vfeps,H);
1042             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1043             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1044             fvdw6            = _mm256_mul_ps(c6_00,FF);
1045
1046             /* CUBIC SPLINE TABLE REPULSION */
1047             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1048             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1049             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1050                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1051             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1052                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1053             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1054                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1055             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1056                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1057             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1058             Heps             = _mm256_mul_ps(vfeps,H);
1059             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1060             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1061             fvdw12           = _mm256_mul_ps(c12_00,FF);
1062             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1063
1064             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1065
1066             fscal            = _mm256_add_ps(felec,fvdw);
1067
1068             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1069
1070             /* Calculate temporary vectorial force */
1071             tx               = _mm256_mul_ps(fscal,dx00);
1072             ty               = _mm256_mul_ps(fscal,dy00);
1073             tz               = _mm256_mul_ps(fscal,dz00);
1074
1075             /* Update vectorial force */
1076             fix0             = _mm256_add_ps(fix0,tx);
1077             fiy0             = _mm256_add_ps(fiy0,ty);
1078             fiz0             = _mm256_add_ps(fiz0,tz);
1079
1080             fjx0             = _mm256_add_ps(fjx0,tx);
1081             fjy0             = _mm256_add_ps(fjy0,ty);
1082             fjz0             = _mm256_add_ps(fjz0,tz);
1083
1084             }
1085
1086             /**************************
1087              * CALCULATE INTERACTIONS *
1088              **************************/
1089
1090             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1091             {
1092
1093             /* Compute parameters for interactions between i and j atoms */
1094             qq10             = _mm256_mul_ps(iq1,jq0);
1095
1096             /* REACTION-FIELD ELECTROSTATICS */
1097             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1098
1099             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1100
1101             fscal            = felec;
1102
1103             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1104
1105             /* Calculate temporary vectorial force */
1106             tx               = _mm256_mul_ps(fscal,dx10);
1107             ty               = _mm256_mul_ps(fscal,dy10);
1108             tz               = _mm256_mul_ps(fscal,dz10);
1109
1110             /* Update vectorial force */
1111             fix1             = _mm256_add_ps(fix1,tx);
1112             fiy1             = _mm256_add_ps(fiy1,ty);
1113             fiz1             = _mm256_add_ps(fiz1,tz);
1114
1115             fjx0             = _mm256_add_ps(fjx0,tx);
1116             fjy0             = _mm256_add_ps(fjy0,ty);
1117             fjz0             = _mm256_add_ps(fjz0,tz);
1118
1119             }
1120
1121             /**************************
1122              * CALCULATE INTERACTIONS *
1123              **************************/
1124
1125             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1126             {
1127
1128             /* Compute parameters for interactions between i and j atoms */
1129             qq20             = _mm256_mul_ps(iq2,jq0);
1130
1131             /* REACTION-FIELD ELECTROSTATICS */
1132             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1133
1134             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1135
1136             fscal            = felec;
1137
1138             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1139
1140             /* Calculate temporary vectorial force */
1141             tx               = _mm256_mul_ps(fscal,dx20);
1142             ty               = _mm256_mul_ps(fscal,dy20);
1143             tz               = _mm256_mul_ps(fscal,dz20);
1144
1145             /* Update vectorial force */
1146             fix2             = _mm256_add_ps(fix2,tx);
1147             fiy2             = _mm256_add_ps(fiy2,ty);
1148             fiz2             = _mm256_add_ps(fiz2,tz);
1149
1150             fjx0             = _mm256_add_ps(fjx0,tx);
1151             fjy0             = _mm256_add_ps(fjy0,ty);
1152             fjz0             = _mm256_add_ps(fjz0,tz);
1153
1154             }
1155
1156             fjptrA             = f+j_coord_offsetA;
1157             fjptrB             = f+j_coord_offsetB;
1158             fjptrC             = f+j_coord_offsetC;
1159             fjptrD             = f+j_coord_offsetD;
1160             fjptrE             = f+j_coord_offsetE;
1161             fjptrF             = f+j_coord_offsetF;
1162             fjptrG             = f+j_coord_offsetG;
1163             fjptrH             = f+j_coord_offsetH;
1164
1165             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1166
1167             /* Inner loop uses 120 flops */
1168         }
1169
1170         if(jidx<j_index_end)
1171         {
1172
1173             /* Get j neighbor index, and coordinate index */
1174             jnrlistA         = jjnr[jidx];
1175             jnrlistB         = jjnr[jidx+1];
1176             jnrlistC         = jjnr[jidx+2];
1177             jnrlistD         = jjnr[jidx+3];
1178             jnrlistE         = jjnr[jidx+4];
1179             jnrlistF         = jjnr[jidx+5];
1180             jnrlistG         = jjnr[jidx+6];
1181             jnrlistH         = jjnr[jidx+7];
1182             /* Sign of each element will be negative for non-real atoms.
1183              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1184              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1185              */
1186             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1187                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1188                                             
1189             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1190             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1191             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1192             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1193             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1194             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1195             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1196             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1197             j_coord_offsetA  = DIM*jnrA;
1198             j_coord_offsetB  = DIM*jnrB;
1199             j_coord_offsetC  = DIM*jnrC;
1200             j_coord_offsetD  = DIM*jnrD;
1201             j_coord_offsetE  = DIM*jnrE;
1202             j_coord_offsetF  = DIM*jnrF;
1203             j_coord_offsetG  = DIM*jnrG;
1204             j_coord_offsetH  = DIM*jnrH;
1205
1206             /* load j atom coordinates */
1207             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1208                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1209                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1210                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1211                                                  &jx0,&jy0,&jz0);
1212
1213             /* Calculate displacement vector */
1214             dx00             = _mm256_sub_ps(ix0,jx0);
1215             dy00             = _mm256_sub_ps(iy0,jy0);
1216             dz00             = _mm256_sub_ps(iz0,jz0);
1217             dx10             = _mm256_sub_ps(ix1,jx0);
1218             dy10             = _mm256_sub_ps(iy1,jy0);
1219             dz10             = _mm256_sub_ps(iz1,jz0);
1220             dx20             = _mm256_sub_ps(ix2,jx0);
1221             dy20             = _mm256_sub_ps(iy2,jy0);
1222             dz20             = _mm256_sub_ps(iz2,jz0);
1223
1224             /* Calculate squared distance and things based on it */
1225             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1226             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1227             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1228
1229             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1230             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1231             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1232
1233             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1234             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1235             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1236
1237             /* Load parameters for j particles */
1238             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1239                                                                  charge+jnrC+0,charge+jnrD+0,
1240                                                                  charge+jnrE+0,charge+jnrF+0,
1241                                                                  charge+jnrG+0,charge+jnrH+0);
1242             vdwjidx0A        = 2*vdwtype[jnrA+0];
1243             vdwjidx0B        = 2*vdwtype[jnrB+0];
1244             vdwjidx0C        = 2*vdwtype[jnrC+0];
1245             vdwjidx0D        = 2*vdwtype[jnrD+0];
1246             vdwjidx0E        = 2*vdwtype[jnrE+0];
1247             vdwjidx0F        = 2*vdwtype[jnrF+0];
1248             vdwjidx0G        = 2*vdwtype[jnrG+0];
1249             vdwjidx0H        = 2*vdwtype[jnrH+0];
1250
1251             fjx0             = _mm256_setzero_ps();
1252             fjy0             = _mm256_setzero_ps();
1253             fjz0             = _mm256_setzero_ps();
1254
1255             /**************************
1256              * CALCULATE INTERACTIONS *
1257              **************************/
1258
1259             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1260             {
1261
1262             r00              = _mm256_mul_ps(rsq00,rinv00);
1263             r00              = _mm256_andnot_ps(dummy_mask,r00);
1264
1265             /* Compute parameters for interactions between i and j atoms */
1266             qq00             = _mm256_mul_ps(iq0,jq0);
1267             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1268                                             vdwioffsetptr0+vdwjidx0B,
1269                                             vdwioffsetptr0+vdwjidx0C,
1270                                             vdwioffsetptr0+vdwjidx0D,
1271                                             vdwioffsetptr0+vdwjidx0E,
1272                                             vdwioffsetptr0+vdwjidx0F,
1273                                             vdwioffsetptr0+vdwjidx0G,
1274                                             vdwioffsetptr0+vdwjidx0H,
1275                                             &c6_00,&c12_00);
1276
1277             /* Calculate table index by multiplying r with table scale and truncate to integer */
1278             rt               = _mm256_mul_ps(r00,vftabscale);
1279             vfitab           = _mm256_cvttps_epi32(rt);
1280             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1281             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1282             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1283             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1284             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1285             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1286
1287             /* REACTION-FIELD ELECTROSTATICS */
1288             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
1289
1290             /* CUBIC SPLINE TABLE DISPERSION */
1291             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1292                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1293             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1294                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1295             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1296                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1297             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1298                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1299             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1300             Heps             = _mm256_mul_ps(vfeps,H);
1301             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1302             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1303             fvdw6            = _mm256_mul_ps(c6_00,FF);
1304
1305             /* CUBIC SPLINE TABLE REPULSION */
1306             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1307             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1308             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1309                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1310             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1311                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1312             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1313                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1314             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1315                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1316             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1317             Heps             = _mm256_mul_ps(vfeps,H);
1318             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1319             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1320             fvdw12           = _mm256_mul_ps(c12_00,FF);
1321             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1322
1323             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1324
1325             fscal            = _mm256_add_ps(felec,fvdw);
1326
1327             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1328
1329             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1330
1331             /* Calculate temporary vectorial force */
1332             tx               = _mm256_mul_ps(fscal,dx00);
1333             ty               = _mm256_mul_ps(fscal,dy00);
1334             tz               = _mm256_mul_ps(fscal,dz00);
1335
1336             /* Update vectorial force */
1337             fix0             = _mm256_add_ps(fix0,tx);
1338             fiy0             = _mm256_add_ps(fiy0,ty);
1339             fiz0             = _mm256_add_ps(fiz0,tz);
1340
1341             fjx0             = _mm256_add_ps(fjx0,tx);
1342             fjy0             = _mm256_add_ps(fjy0,ty);
1343             fjz0             = _mm256_add_ps(fjz0,tz);
1344
1345             }
1346
1347             /**************************
1348              * CALCULATE INTERACTIONS *
1349              **************************/
1350
1351             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1352             {
1353
1354             /* Compute parameters for interactions between i and j atoms */
1355             qq10             = _mm256_mul_ps(iq1,jq0);
1356
1357             /* REACTION-FIELD ELECTROSTATICS */
1358             felec            = _mm256_mul_ps(qq10,_mm256_sub_ps(_mm256_mul_ps(rinv10,rinvsq10),krf2));
1359
1360             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1361
1362             fscal            = felec;
1363
1364             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1365
1366             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1367
1368             /* Calculate temporary vectorial force */
1369             tx               = _mm256_mul_ps(fscal,dx10);
1370             ty               = _mm256_mul_ps(fscal,dy10);
1371             tz               = _mm256_mul_ps(fscal,dz10);
1372
1373             /* Update vectorial force */
1374             fix1             = _mm256_add_ps(fix1,tx);
1375             fiy1             = _mm256_add_ps(fiy1,ty);
1376             fiz1             = _mm256_add_ps(fiz1,tz);
1377
1378             fjx0             = _mm256_add_ps(fjx0,tx);
1379             fjy0             = _mm256_add_ps(fjy0,ty);
1380             fjz0             = _mm256_add_ps(fjz0,tz);
1381
1382             }
1383
1384             /**************************
1385              * CALCULATE INTERACTIONS *
1386              **************************/
1387
1388             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1389             {
1390
1391             /* Compute parameters for interactions between i and j atoms */
1392             qq20             = _mm256_mul_ps(iq2,jq0);
1393
1394             /* REACTION-FIELD ELECTROSTATICS */
1395             felec            = _mm256_mul_ps(qq20,_mm256_sub_ps(_mm256_mul_ps(rinv20,rinvsq20),krf2));
1396
1397             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1398
1399             fscal            = felec;
1400
1401             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1402
1403             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1404
1405             /* Calculate temporary vectorial force */
1406             tx               = _mm256_mul_ps(fscal,dx20);
1407             ty               = _mm256_mul_ps(fscal,dy20);
1408             tz               = _mm256_mul_ps(fscal,dz20);
1409
1410             /* Update vectorial force */
1411             fix2             = _mm256_add_ps(fix2,tx);
1412             fiy2             = _mm256_add_ps(fiy2,ty);
1413             fiz2             = _mm256_add_ps(fiz2,tz);
1414
1415             fjx0             = _mm256_add_ps(fjx0,tx);
1416             fjy0             = _mm256_add_ps(fjy0,ty);
1417             fjz0             = _mm256_add_ps(fjz0,tz);
1418
1419             }
1420
1421             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1422             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1423             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1424             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1425             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1426             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1427             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1428             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1429
1430             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1431
1432             /* Inner loop uses 121 flops */
1433         }
1434
1435         /* End of innermost loop */
1436
1437         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1438                                                  f+i_coord_offset,fshift+i_shift_offset);
1439
1440         /* Increment number of inner iterations */
1441         inneriter                  += j_index_end - j_index_start;
1442
1443         /* Outer loop uses 18 flops */
1444     }
1445
1446     /* Increment number of outer iterations */
1447     outeriter        += nri;
1448
1449     /* Update outer/inner flops */
1450
1451     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*121);
1452 }