Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_256_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
91     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
100     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
101     __m256i          vfitab;
102     __m128i          vfitab_lo,vfitab_hi;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105     real             *vftab;
106     __m256           dummy_mask,cutoff_mask;
107     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
108     __m256           one     = _mm256_set1_ps(1.0);
109     __m256           two     = _mm256_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     krf              = _mm256_set1_ps(fr->ic->k_rf);
124     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
125     crf              = _mm256_set1_ps(fr->ic->c_rf);
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
132
133     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
134     rcutoff_scalar   = fr->rcoulomb;
135     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
136     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144     j_coord_offsetE = 0;
145     j_coord_offsetF = 0;
146     j_coord_offsetG = 0;
147     j_coord_offsetH = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
173
174         fix0             = _mm256_setzero_ps();
175         fiy0             = _mm256_setzero_ps();
176         fiz0             = _mm256_setzero_ps();
177
178         /* Load parameters for i particles */
179         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
180         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
181
182         /* Reset potential sums */
183         velecsum         = _mm256_setzero_ps();
184         vvdwsum          = _mm256_setzero_ps();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             jnrE             = jjnr[jidx+4];
196             jnrF             = jjnr[jidx+5];
197             jnrG             = jjnr[jidx+6];
198             jnrH             = jjnr[jidx+7];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203             j_coord_offsetE  = DIM*jnrE;
204             j_coord_offsetF  = DIM*jnrF;
205             j_coord_offsetG  = DIM*jnrG;
206             j_coord_offsetH  = DIM*jnrH;
207
208             /* load j atom coordinates */
209             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
210                                                  x+j_coord_offsetC,x+j_coord_offsetD,
211                                                  x+j_coord_offsetE,x+j_coord_offsetF,
212                                                  x+j_coord_offsetG,x+j_coord_offsetH,
213                                                  &jx0,&jy0,&jz0);
214
215             /* Calculate displacement vector */
216             dx00             = _mm256_sub_ps(ix0,jx0);
217             dy00             = _mm256_sub_ps(iy0,jy0);
218             dz00             = _mm256_sub_ps(iz0,jz0);
219
220             /* Calculate squared distance and things based on it */
221             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
222
223             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
224
225             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
226
227             /* Load parameters for j particles */
228             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
229                                                                  charge+jnrC+0,charge+jnrD+0,
230                                                                  charge+jnrE+0,charge+jnrF+0,
231                                                                  charge+jnrG+0,charge+jnrH+0);
232             vdwjidx0A        = 2*vdwtype[jnrA+0];
233             vdwjidx0B        = 2*vdwtype[jnrB+0];
234             vdwjidx0C        = 2*vdwtype[jnrC+0];
235             vdwjidx0D        = 2*vdwtype[jnrD+0];
236             vdwjidx0E        = 2*vdwtype[jnrE+0];
237             vdwjidx0F        = 2*vdwtype[jnrF+0];
238             vdwjidx0G        = 2*vdwtype[jnrG+0];
239             vdwjidx0H        = 2*vdwtype[jnrH+0];
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             if (gmx_mm256_any_lt(rsq00,rcutoff2))
246             {
247
248             r00              = _mm256_mul_ps(rsq00,rinv00);
249
250             /* Compute parameters for interactions between i and j atoms */
251             qq00             = _mm256_mul_ps(iq0,jq0);
252             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
253                                             vdwioffsetptr0+vdwjidx0B,
254                                             vdwioffsetptr0+vdwjidx0C,
255                                             vdwioffsetptr0+vdwjidx0D,
256                                             vdwioffsetptr0+vdwjidx0E,
257                                             vdwioffsetptr0+vdwjidx0F,
258                                             vdwioffsetptr0+vdwjidx0G,
259                                             vdwioffsetptr0+vdwjidx0H,
260                                             &c6_00,&c12_00);
261
262             /* Calculate table index by multiplying r with table scale and truncate to integer */
263             rt               = _mm256_mul_ps(r00,vftabscale);
264             vfitab           = _mm256_cvttps_epi32(rt);
265             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
266             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
267             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
268             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
269             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
270             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
271
272             /* REACTION-FIELD ELECTROSTATICS */
273             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
274             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
275
276             /* CUBIC SPLINE TABLE DISPERSION */
277             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
278                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
279             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
280                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
281             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
282                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
283             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
284                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
285             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
286             Heps             = _mm256_mul_ps(vfeps,H);
287             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
288             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
289             vvdw6            = _mm256_mul_ps(c6_00,VV);
290             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
291             fvdw6            = _mm256_mul_ps(c6_00,FF);
292
293             /* CUBIC SPLINE TABLE REPULSION */
294             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
295             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
296             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
297                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
298             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
299                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
300             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
301                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
302             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
303                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
304             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
305             Heps             = _mm256_mul_ps(vfeps,H);
306             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
307             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
308             vvdw12           = _mm256_mul_ps(c12_00,VV);
309             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
310             fvdw12           = _mm256_mul_ps(c12_00,FF);
311             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
312             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
313
314             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
315
316             /* Update potential sum for this i atom from the interaction with this j atom. */
317             velec            = _mm256_and_ps(velec,cutoff_mask);
318             velecsum         = _mm256_add_ps(velecsum,velec);
319             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
320             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
321
322             fscal            = _mm256_add_ps(felec,fvdw);
323
324             fscal            = _mm256_and_ps(fscal,cutoff_mask);
325
326             /* Calculate temporary vectorial force */
327             tx               = _mm256_mul_ps(fscal,dx00);
328             ty               = _mm256_mul_ps(fscal,dy00);
329             tz               = _mm256_mul_ps(fscal,dz00);
330
331             /* Update vectorial force */
332             fix0             = _mm256_add_ps(fix0,tx);
333             fiy0             = _mm256_add_ps(fiy0,ty);
334             fiz0             = _mm256_add_ps(fiz0,tz);
335
336             fjptrA             = f+j_coord_offsetA;
337             fjptrB             = f+j_coord_offsetB;
338             fjptrC             = f+j_coord_offsetC;
339             fjptrD             = f+j_coord_offsetD;
340             fjptrE             = f+j_coord_offsetE;
341             fjptrF             = f+j_coord_offsetF;
342             fjptrG             = f+j_coord_offsetG;
343             fjptrH             = f+j_coord_offsetH;
344             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
345
346             }
347
348             /* Inner loop uses 72 flops */
349         }
350
351         if(jidx<j_index_end)
352         {
353
354             /* Get j neighbor index, and coordinate index */
355             jnrlistA         = jjnr[jidx];
356             jnrlistB         = jjnr[jidx+1];
357             jnrlistC         = jjnr[jidx+2];
358             jnrlistD         = jjnr[jidx+3];
359             jnrlistE         = jjnr[jidx+4];
360             jnrlistF         = jjnr[jidx+5];
361             jnrlistG         = jjnr[jidx+6];
362             jnrlistH         = jjnr[jidx+7];
363             /* Sign of each element will be negative for non-real atoms.
364              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
365              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
366              */
367             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
368                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
369                                             
370             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
371             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
372             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
373             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
374             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
375             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
376             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
377             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
378             j_coord_offsetA  = DIM*jnrA;
379             j_coord_offsetB  = DIM*jnrB;
380             j_coord_offsetC  = DIM*jnrC;
381             j_coord_offsetD  = DIM*jnrD;
382             j_coord_offsetE  = DIM*jnrE;
383             j_coord_offsetF  = DIM*jnrF;
384             j_coord_offsetG  = DIM*jnrG;
385             j_coord_offsetH  = DIM*jnrH;
386
387             /* load j atom coordinates */
388             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
389                                                  x+j_coord_offsetC,x+j_coord_offsetD,
390                                                  x+j_coord_offsetE,x+j_coord_offsetF,
391                                                  x+j_coord_offsetG,x+j_coord_offsetH,
392                                                  &jx0,&jy0,&jz0);
393
394             /* Calculate displacement vector */
395             dx00             = _mm256_sub_ps(ix0,jx0);
396             dy00             = _mm256_sub_ps(iy0,jy0);
397             dz00             = _mm256_sub_ps(iz0,jz0);
398
399             /* Calculate squared distance and things based on it */
400             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
401
402             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
403
404             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
405
406             /* Load parameters for j particles */
407             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
408                                                                  charge+jnrC+0,charge+jnrD+0,
409                                                                  charge+jnrE+0,charge+jnrF+0,
410                                                                  charge+jnrG+0,charge+jnrH+0);
411             vdwjidx0A        = 2*vdwtype[jnrA+0];
412             vdwjidx0B        = 2*vdwtype[jnrB+0];
413             vdwjidx0C        = 2*vdwtype[jnrC+0];
414             vdwjidx0D        = 2*vdwtype[jnrD+0];
415             vdwjidx0E        = 2*vdwtype[jnrE+0];
416             vdwjidx0F        = 2*vdwtype[jnrF+0];
417             vdwjidx0G        = 2*vdwtype[jnrG+0];
418             vdwjidx0H        = 2*vdwtype[jnrH+0];
419
420             /**************************
421              * CALCULATE INTERACTIONS *
422              **************************/
423
424             if (gmx_mm256_any_lt(rsq00,rcutoff2))
425             {
426
427             r00              = _mm256_mul_ps(rsq00,rinv00);
428             r00              = _mm256_andnot_ps(dummy_mask,r00);
429
430             /* Compute parameters for interactions between i and j atoms */
431             qq00             = _mm256_mul_ps(iq0,jq0);
432             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
433                                             vdwioffsetptr0+vdwjidx0B,
434                                             vdwioffsetptr0+vdwjidx0C,
435                                             vdwioffsetptr0+vdwjidx0D,
436                                             vdwioffsetptr0+vdwjidx0E,
437                                             vdwioffsetptr0+vdwjidx0F,
438                                             vdwioffsetptr0+vdwjidx0G,
439                                             vdwioffsetptr0+vdwjidx0H,
440                                             &c6_00,&c12_00);
441
442             /* Calculate table index by multiplying r with table scale and truncate to integer */
443             rt               = _mm256_mul_ps(r00,vftabscale);
444             vfitab           = _mm256_cvttps_epi32(rt);
445             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
446             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
447             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
448             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
449             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
450             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
451
452             /* REACTION-FIELD ELECTROSTATICS */
453             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
454             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
455
456             /* CUBIC SPLINE TABLE DISPERSION */
457             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
458                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
459             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
460                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
461             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
462                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
463             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
464                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
465             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
466             Heps             = _mm256_mul_ps(vfeps,H);
467             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
468             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
469             vvdw6            = _mm256_mul_ps(c6_00,VV);
470             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
471             fvdw6            = _mm256_mul_ps(c6_00,FF);
472
473             /* CUBIC SPLINE TABLE REPULSION */
474             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
475             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
476             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
477                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
478             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
479                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
480             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
481                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
482             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
483                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
484             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
485             Heps             = _mm256_mul_ps(vfeps,H);
486             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
487             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
488             vvdw12           = _mm256_mul_ps(c12_00,VV);
489             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
490             fvdw12           = _mm256_mul_ps(c12_00,FF);
491             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
492             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
493
494             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
495
496             /* Update potential sum for this i atom from the interaction with this j atom. */
497             velec            = _mm256_and_ps(velec,cutoff_mask);
498             velec            = _mm256_andnot_ps(dummy_mask,velec);
499             velecsum         = _mm256_add_ps(velecsum,velec);
500             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
501             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
502             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
503
504             fscal            = _mm256_add_ps(felec,fvdw);
505
506             fscal            = _mm256_and_ps(fscal,cutoff_mask);
507
508             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
509
510             /* Calculate temporary vectorial force */
511             tx               = _mm256_mul_ps(fscal,dx00);
512             ty               = _mm256_mul_ps(fscal,dy00);
513             tz               = _mm256_mul_ps(fscal,dz00);
514
515             /* Update vectorial force */
516             fix0             = _mm256_add_ps(fix0,tx);
517             fiy0             = _mm256_add_ps(fiy0,ty);
518             fiz0             = _mm256_add_ps(fiz0,tz);
519
520             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
521             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
522             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
523             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
524             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
525             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
526             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
527             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
528             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
529
530             }
531
532             /* Inner loop uses 73 flops */
533         }
534
535         /* End of innermost loop */
536
537         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
538                                                  f+i_coord_offset,fshift+i_shift_offset);
539
540         ggid                        = gid[iidx];
541         /* Update potential energies */
542         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
543         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
544
545         /* Increment number of inner iterations */
546         inneriter                  += j_index_end - j_index_start;
547
548         /* Outer loop uses 9 flops */
549     }
550
551     /* Increment number of outer iterations */
552     outeriter        += nri;
553
554     /* Update outer/inner flops */
555
556     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
557 }
558 /*
559  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_256_single
560  * Electrostatics interaction: ReactionField
561  * VdW interaction:            CubicSplineTable
562  * Geometry:                   Particle-Particle
563  * Calculate force/pot:        Force
564  */
565 void
566 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_256_single
567                     (t_nblist                    * gmx_restrict       nlist,
568                      rvec                        * gmx_restrict          xx,
569                      rvec                        * gmx_restrict          ff,
570                      t_forcerec                  * gmx_restrict          fr,
571                      t_mdatoms                   * gmx_restrict     mdatoms,
572                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
573                      t_nrnb                      * gmx_restrict        nrnb)
574 {
575     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
576      * just 0 for non-waters.
577      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
578      * jnr indices corresponding to data put in the four positions in the SIMD register.
579      */
580     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
581     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
582     int              jnrA,jnrB,jnrC,jnrD;
583     int              jnrE,jnrF,jnrG,jnrH;
584     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
585     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
586     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
587     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
588     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
589     real             rcutoff_scalar;
590     real             *shiftvec,*fshift,*x,*f;
591     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
592     real             scratch[4*DIM];
593     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
594     real *           vdwioffsetptr0;
595     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
596     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
597     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
598     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
599     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
600     real             *charge;
601     int              nvdwtype;
602     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
603     int              *vdwtype;
604     real             *vdwparam;
605     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
606     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
607     __m256i          vfitab;
608     __m128i          vfitab_lo,vfitab_hi;
609     __m128i          ifour       = _mm_set1_epi32(4);
610     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
611     real             *vftab;
612     __m256           dummy_mask,cutoff_mask;
613     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
614     __m256           one     = _mm256_set1_ps(1.0);
615     __m256           two     = _mm256_set1_ps(2.0);
616     x                = xx[0];
617     f                = ff[0];
618
619     nri              = nlist->nri;
620     iinr             = nlist->iinr;
621     jindex           = nlist->jindex;
622     jjnr             = nlist->jjnr;
623     shiftidx         = nlist->shift;
624     gid              = nlist->gid;
625     shiftvec         = fr->shift_vec[0];
626     fshift           = fr->fshift[0];
627     facel            = _mm256_set1_ps(fr->epsfac);
628     charge           = mdatoms->chargeA;
629     krf              = _mm256_set1_ps(fr->ic->k_rf);
630     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
631     crf              = _mm256_set1_ps(fr->ic->c_rf);
632     nvdwtype         = fr->ntype;
633     vdwparam         = fr->nbfp;
634     vdwtype          = mdatoms->typeA;
635
636     vftab            = kernel_data->table_vdw->data;
637     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
638
639     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
640     rcutoff_scalar   = fr->rcoulomb;
641     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
642     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
643
644     /* Avoid stupid compiler warnings */
645     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
646     j_coord_offsetA = 0;
647     j_coord_offsetB = 0;
648     j_coord_offsetC = 0;
649     j_coord_offsetD = 0;
650     j_coord_offsetE = 0;
651     j_coord_offsetF = 0;
652     j_coord_offsetG = 0;
653     j_coord_offsetH = 0;
654
655     outeriter        = 0;
656     inneriter        = 0;
657
658     for(iidx=0;iidx<4*DIM;iidx++)
659     {
660         scratch[iidx] = 0.0;
661     }
662
663     /* Start outer loop over neighborlists */
664     for(iidx=0; iidx<nri; iidx++)
665     {
666         /* Load shift vector for this list */
667         i_shift_offset   = DIM*shiftidx[iidx];
668
669         /* Load limits for loop over neighbors */
670         j_index_start    = jindex[iidx];
671         j_index_end      = jindex[iidx+1];
672
673         /* Get outer coordinate index */
674         inr              = iinr[iidx];
675         i_coord_offset   = DIM*inr;
676
677         /* Load i particle coords and add shift vector */
678         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
679
680         fix0             = _mm256_setzero_ps();
681         fiy0             = _mm256_setzero_ps();
682         fiz0             = _mm256_setzero_ps();
683
684         /* Load parameters for i particles */
685         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
686         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
687
688         /* Start inner kernel loop */
689         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
690         {
691
692             /* Get j neighbor index, and coordinate index */
693             jnrA             = jjnr[jidx];
694             jnrB             = jjnr[jidx+1];
695             jnrC             = jjnr[jidx+2];
696             jnrD             = jjnr[jidx+3];
697             jnrE             = jjnr[jidx+4];
698             jnrF             = jjnr[jidx+5];
699             jnrG             = jjnr[jidx+6];
700             jnrH             = jjnr[jidx+7];
701             j_coord_offsetA  = DIM*jnrA;
702             j_coord_offsetB  = DIM*jnrB;
703             j_coord_offsetC  = DIM*jnrC;
704             j_coord_offsetD  = DIM*jnrD;
705             j_coord_offsetE  = DIM*jnrE;
706             j_coord_offsetF  = DIM*jnrF;
707             j_coord_offsetG  = DIM*jnrG;
708             j_coord_offsetH  = DIM*jnrH;
709
710             /* load j atom coordinates */
711             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
712                                                  x+j_coord_offsetC,x+j_coord_offsetD,
713                                                  x+j_coord_offsetE,x+j_coord_offsetF,
714                                                  x+j_coord_offsetG,x+j_coord_offsetH,
715                                                  &jx0,&jy0,&jz0);
716
717             /* Calculate displacement vector */
718             dx00             = _mm256_sub_ps(ix0,jx0);
719             dy00             = _mm256_sub_ps(iy0,jy0);
720             dz00             = _mm256_sub_ps(iz0,jz0);
721
722             /* Calculate squared distance and things based on it */
723             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
724
725             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
726
727             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
728
729             /* Load parameters for j particles */
730             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
731                                                                  charge+jnrC+0,charge+jnrD+0,
732                                                                  charge+jnrE+0,charge+jnrF+0,
733                                                                  charge+jnrG+0,charge+jnrH+0);
734             vdwjidx0A        = 2*vdwtype[jnrA+0];
735             vdwjidx0B        = 2*vdwtype[jnrB+0];
736             vdwjidx0C        = 2*vdwtype[jnrC+0];
737             vdwjidx0D        = 2*vdwtype[jnrD+0];
738             vdwjidx0E        = 2*vdwtype[jnrE+0];
739             vdwjidx0F        = 2*vdwtype[jnrF+0];
740             vdwjidx0G        = 2*vdwtype[jnrG+0];
741             vdwjidx0H        = 2*vdwtype[jnrH+0];
742
743             /**************************
744              * CALCULATE INTERACTIONS *
745              **************************/
746
747             if (gmx_mm256_any_lt(rsq00,rcutoff2))
748             {
749
750             r00              = _mm256_mul_ps(rsq00,rinv00);
751
752             /* Compute parameters for interactions between i and j atoms */
753             qq00             = _mm256_mul_ps(iq0,jq0);
754             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
755                                             vdwioffsetptr0+vdwjidx0B,
756                                             vdwioffsetptr0+vdwjidx0C,
757                                             vdwioffsetptr0+vdwjidx0D,
758                                             vdwioffsetptr0+vdwjidx0E,
759                                             vdwioffsetptr0+vdwjidx0F,
760                                             vdwioffsetptr0+vdwjidx0G,
761                                             vdwioffsetptr0+vdwjidx0H,
762                                             &c6_00,&c12_00);
763
764             /* Calculate table index by multiplying r with table scale and truncate to integer */
765             rt               = _mm256_mul_ps(r00,vftabscale);
766             vfitab           = _mm256_cvttps_epi32(rt);
767             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
768             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
769             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
770             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
771             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
772             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
773
774             /* REACTION-FIELD ELECTROSTATICS */
775             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
776
777             /* CUBIC SPLINE TABLE DISPERSION */
778             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
779                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
780             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
781                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
782             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
783                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
784             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
785                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
786             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
787             Heps             = _mm256_mul_ps(vfeps,H);
788             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
789             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
790             fvdw6            = _mm256_mul_ps(c6_00,FF);
791
792             /* CUBIC SPLINE TABLE REPULSION */
793             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
794             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
795             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
796                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
797             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
798                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
799             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
800                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
801             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
802                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
803             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
804             Heps             = _mm256_mul_ps(vfeps,H);
805             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
806             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
807             fvdw12           = _mm256_mul_ps(c12_00,FF);
808             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
809
810             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
811
812             fscal            = _mm256_add_ps(felec,fvdw);
813
814             fscal            = _mm256_and_ps(fscal,cutoff_mask);
815
816             /* Calculate temporary vectorial force */
817             tx               = _mm256_mul_ps(fscal,dx00);
818             ty               = _mm256_mul_ps(fscal,dy00);
819             tz               = _mm256_mul_ps(fscal,dz00);
820
821             /* Update vectorial force */
822             fix0             = _mm256_add_ps(fix0,tx);
823             fiy0             = _mm256_add_ps(fiy0,ty);
824             fiz0             = _mm256_add_ps(fiz0,tz);
825
826             fjptrA             = f+j_coord_offsetA;
827             fjptrB             = f+j_coord_offsetB;
828             fjptrC             = f+j_coord_offsetC;
829             fjptrD             = f+j_coord_offsetD;
830             fjptrE             = f+j_coord_offsetE;
831             fjptrF             = f+j_coord_offsetF;
832             fjptrG             = f+j_coord_offsetG;
833             fjptrH             = f+j_coord_offsetH;
834             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
835
836             }
837
838             /* Inner loop uses 57 flops */
839         }
840
841         if(jidx<j_index_end)
842         {
843
844             /* Get j neighbor index, and coordinate index */
845             jnrlistA         = jjnr[jidx];
846             jnrlistB         = jjnr[jidx+1];
847             jnrlistC         = jjnr[jidx+2];
848             jnrlistD         = jjnr[jidx+3];
849             jnrlistE         = jjnr[jidx+4];
850             jnrlistF         = jjnr[jidx+5];
851             jnrlistG         = jjnr[jidx+6];
852             jnrlistH         = jjnr[jidx+7];
853             /* Sign of each element will be negative for non-real atoms.
854              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
855              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
856              */
857             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
858                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
859                                             
860             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
861             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
862             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
863             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
864             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
865             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
866             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
867             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
868             j_coord_offsetA  = DIM*jnrA;
869             j_coord_offsetB  = DIM*jnrB;
870             j_coord_offsetC  = DIM*jnrC;
871             j_coord_offsetD  = DIM*jnrD;
872             j_coord_offsetE  = DIM*jnrE;
873             j_coord_offsetF  = DIM*jnrF;
874             j_coord_offsetG  = DIM*jnrG;
875             j_coord_offsetH  = DIM*jnrH;
876
877             /* load j atom coordinates */
878             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
879                                                  x+j_coord_offsetC,x+j_coord_offsetD,
880                                                  x+j_coord_offsetE,x+j_coord_offsetF,
881                                                  x+j_coord_offsetG,x+j_coord_offsetH,
882                                                  &jx0,&jy0,&jz0);
883
884             /* Calculate displacement vector */
885             dx00             = _mm256_sub_ps(ix0,jx0);
886             dy00             = _mm256_sub_ps(iy0,jy0);
887             dz00             = _mm256_sub_ps(iz0,jz0);
888
889             /* Calculate squared distance and things based on it */
890             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
891
892             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
893
894             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
895
896             /* Load parameters for j particles */
897             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
898                                                                  charge+jnrC+0,charge+jnrD+0,
899                                                                  charge+jnrE+0,charge+jnrF+0,
900                                                                  charge+jnrG+0,charge+jnrH+0);
901             vdwjidx0A        = 2*vdwtype[jnrA+0];
902             vdwjidx0B        = 2*vdwtype[jnrB+0];
903             vdwjidx0C        = 2*vdwtype[jnrC+0];
904             vdwjidx0D        = 2*vdwtype[jnrD+0];
905             vdwjidx0E        = 2*vdwtype[jnrE+0];
906             vdwjidx0F        = 2*vdwtype[jnrF+0];
907             vdwjidx0G        = 2*vdwtype[jnrG+0];
908             vdwjidx0H        = 2*vdwtype[jnrH+0];
909
910             /**************************
911              * CALCULATE INTERACTIONS *
912              **************************/
913
914             if (gmx_mm256_any_lt(rsq00,rcutoff2))
915             {
916
917             r00              = _mm256_mul_ps(rsq00,rinv00);
918             r00              = _mm256_andnot_ps(dummy_mask,r00);
919
920             /* Compute parameters for interactions between i and j atoms */
921             qq00             = _mm256_mul_ps(iq0,jq0);
922             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
923                                             vdwioffsetptr0+vdwjidx0B,
924                                             vdwioffsetptr0+vdwjidx0C,
925                                             vdwioffsetptr0+vdwjidx0D,
926                                             vdwioffsetptr0+vdwjidx0E,
927                                             vdwioffsetptr0+vdwjidx0F,
928                                             vdwioffsetptr0+vdwjidx0G,
929                                             vdwioffsetptr0+vdwjidx0H,
930                                             &c6_00,&c12_00);
931
932             /* Calculate table index by multiplying r with table scale and truncate to integer */
933             rt               = _mm256_mul_ps(r00,vftabscale);
934             vfitab           = _mm256_cvttps_epi32(rt);
935             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
936             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
937             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
938             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
939             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
940             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
941
942             /* REACTION-FIELD ELECTROSTATICS */
943             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
944
945             /* CUBIC SPLINE TABLE DISPERSION */
946             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
947                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
948             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
949                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
950             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
951                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
952             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
953                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
954             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
955             Heps             = _mm256_mul_ps(vfeps,H);
956             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
957             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
958             fvdw6            = _mm256_mul_ps(c6_00,FF);
959
960             /* CUBIC SPLINE TABLE REPULSION */
961             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
962             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
963             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
964                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
965             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
966                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
967             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
968                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
969             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
970                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
971             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
972             Heps             = _mm256_mul_ps(vfeps,H);
973             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
974             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
975             fvdw12           = _mm256_mul_ps(c12_00,FF);
976             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
977
978             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
979
980             fscal            = _mm256_add_ps(felec,fvdw);
981
982             fscal            = _mm256_and_ps(fscal,cutoff_mask);
983
984             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
985
986             /* Calculate temporary vectorial force */
987             tx               = _mm256_mul_ps(fscal,dx00);
988             ty               = _mm256_mul_ps(fscal,dy00);
989             tz               = _mm256_mul_ps(fscal,dz00);
990
991             /* Update vectorial force */
992             fix0             = _mm256_add_ps(fix0,tx);
993             fiy0             = _mm256_add_ps(fiy0,ty);
994             fiz0             = _mm256_add_ps(fiz0,tz);
995
996             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
997             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
998             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
999             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1000             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1001             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1002             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1003             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1004             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
1005
1006             }
1007
1008             /* Inner loop uses 58 flops */
1009         }
1010
1011         /* End of innermost loop */
1012
1013         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
1014                                                  f+i_coord_offset,fshift+i_shift_offset);
1015
1016         /* Increment number of inner iterations */
1017         inneriter                  += j_index_end - j_index_start;
1018
1019         /* Outer loop uses 7 flops */
1020     }
1021
1022     /* Increment number of outer iterations */
1023     outeriter        += nri;
1024
1025     /* Update outer/inner flops */
1026
1027     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*58);
1028 }