4230ca1fd768904256917f34a6fdc556c78eccd7
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
98     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
99     __m256i          vfitab;
100     __m128i          vfitab_lo,vfitab_hi;
101     __m128i          ifour       = _mm_set1_epi32(4);
102     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
103     real             *vftab;
104     __m256           dummy_mask,cutoff_mask;
105     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
106     __m256           one     = _mm256_set1_ps(1.0);
107     __m256           two     = _mm256_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     krf              = _mm256_set1_ps(fr->ic->k_rf);
122     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
123     crf              = _mm256_set1_ps(fr->ic->c_rf);
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     vftab            = kernel_data->table_vdw->data;
129     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
130
131     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
132     rcutoff_scalar   = fr->rcoulomb;
133     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
134     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142     j_coord_offsetE = 0;
143     j_coord_offsetF = 0;
144     j_coord_offsetG = 0;
145     j_coord_offsetH = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
171
172         fix0             = _mm256_setzero_ps();
173         fiy0             = _mm256_setzero_ps();
174         fiz0             = _mm256_setzero_ps();
175
176         /* Load parameters for i particles */
177         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
178         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
179
180         /* Reset potential sums */
181         velecsum         = _mm256_setzero_ps();
182         vvdwsum          = _mm256_setzero_ps();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             jnrE             = jjnr[jidx+4];
194             jnrF             = jjnr[jidx+5];
195             jnrG             = jjnr[jidx+6];
196             jnrH             = jjnr[jidx+7];
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199             j_coord_offsetC  = DIM*jnrC;
200             j_coord_offsetD  = DIM*jnrD;
201             j_coord_offsetE  = DIM*jnrE;
202             j_coord_offsetF  = DIM*jnrF;
203             j_coord_offsetG  = DIM*jnrG;
204             j_coord_offsetH  = DIM*jnrH;
205
206             /* load j atom coordinates */
207             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
208                                                  x+j_coord_offsetC,x+j_coord_offsetD,
209                                                  x+j_coord_offsetE,x+j_coord_offsetF,
210                                                  x+j_coord_offsetG,x+j_coord_offsetH,
211                                                  &jx0,&jy0,&jz0);
212
213             /* Calculate displacement vector */
214             dx00             = _mm256_sub_ps(ix0,jx0);
215             dy00             = _mm256_sub_ps(iy0,jy0);
216             dz00             = _mm256_sub_ps(iz0,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
220
221             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
222
223             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
227                                                                  charge+jnrC+0,charge+jnrD+0,
228                                                                  charge+jnrE+0,charge+jnrF+0,
229                                                                  charge+jnrG+0,charge+jnrH+0);
230             vdwjidx0A        = 2*vdwtype[jnrA+0];
231             vdwjidx0B        = 2*vdwtype[jnrB+0];
232             vdwjidx0C        = 2*vdwtype[jnrC+0];
233             vdwjidx0D        = 2*vdwtype[jnrD+0];
234             vdwjidx0E        = 2*vdwtype[jnrE+0];
235             vdwjidx0F        = 2*vdwtype[jnrF+0];
236             vdwjidx0G        = 2*vdwtype[jnrG+0];
237             vdwjidx0H        = 2*vdwtype[jnrH+0];
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             if (gmx_mm256_any_lt(rsq00,rcutoff2))
244             {
245
246             r00              = _mm256_mul_ps(rsq00,rinv00);
247
248             /* Compute parameters for interactions between i and j atoms */
249             qq00             = _mm256_mul_ps(iq0,jq0);
250             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
251                                             vdwioffsetptr0+vdwjidx0B,
252                                             vdwioffsetptr0+vdwjidx0C,
253                                             vdwioffsetptr0+vdwjidx0D,
254                                             vdwioffsetptr0+vdwjidx0E,
255                                             vdwioffsetptr0+vdwjidx0F,
256                                             vdwioffsetptr0+vdwjidx0G,
257                                             vdwioffsetptr0+vdwjidx0H,
258                                             &c6_00,&c12_00);
259
260             /* Calculate table index by multiplying r with table scale and truncate to integer */
261             rt               = _mm256_mul_ps(r00,vftabscale);
262             vfitab           = _mm256_cvttps_epi32(rt);
263             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
264             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
265             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
266             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
267             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
268             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
269
270             /* REACTION-FIELD ELECTROSTATICS */
271             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
272             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
273
274             /* CUBIC SPLINE TABLE DISPERSION */
275             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
276                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
277             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
278                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
279             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
280                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
281             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
282                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
283             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
284             Heps             = _mm256_mul_ps(vfeps,H);
285             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
286             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
287             vvdw6            = _mm256_mul_ps(c6_00,VV);
288             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
289             fvdw6            = _mm256_mul_ps(c6_00,FF);
290
291             /* CUBIC SPLINE TABLE REPULSION */
292             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
293             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
294             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
295                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
296             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
297                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
298             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
299                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
300             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
301                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
302             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
303             Heps             = _mm256_mul_ps(vfeps,H);
304             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
305             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
306             vvdw12           = _mm256_mul_ps(c12_00,VV);
307             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
308             fvdw12           = _mm256_mul_ps(c12_00,FF);
309             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
310             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
311
312             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velec            = _mm256_and_ps(velec,cutoff_mask);
316             velecsum         = _mm256_add_ps(velecsum,velec);
317             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
318             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
319
320             fscal            = _mm256_add_ps(felec,fvdw);
321
322             fscal            = _mm256_and_ps(fscal,cutoff_mask);
323
324             /* Calculate temporary vectorial force */
325             tx               = _mm256_mul_ps(fscal,dx00);
326             ty               = _mm256_mul_ps(fscal,dy00);
327             tz               = _mm256_mul_ps(fscal,dz00);
328
329             /* Update vectorial force */
330             fix0             = _mm256_add_ps(fix0,tx);
331             fiy0             = _mm256_add_ps(fiy0,ty);
332             fiz0             = _mm256_add_ps(fiz0,tz);
333
334             fjptrA             = f+j_coord_offsetA;
335             fjptrB             = f+j_coord_offsetB;
336             fjptrC             = f+j_coord_offsetC;
337             fjptrD             = f+j_coord_offsetD;
338             fjptrE             = f+j_coord_offsetE;
339             fjptrF             = f+j_coord_offsetF;
340             fjptrG             = f+j_coord_offsetG;
341             fjptrH             = f+j_coord_offsetH;
342             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
343
344             }
345
346             /* Inner loop uses 72 flops */
347         }
348
349         if(jidx<j_index_end)
350         {
351
352             /* Get j neighbor index, and coordinate index */
353             jnrlistA         = jjnr[jidx];
354             jnrlistB         = jjnr[jidx+1];
355             jnrlistC         = jjnr[jidx+2];
356             jnrlistD         = jjnr[jidx+3];
357             jnrlistE         = jjnr[jidx+4];
358             jnrlistF         = jjnr[jidx+5];
359             jnrlistG         = jjnr[jidx+6];
360             jnrlistH         = jjnr[jidx+7];
361             /* Sign of each element will be negative for non-real atoms.
362              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
363              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
364              */
365             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
366                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
367                                             
368             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
369             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
370             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
371             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
372             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
373             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
374             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
375             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
376             j_coord_offsetA  = DIM*jnrA;
377             j_coord_offsetB  = DIM*jnrB;
378             j_coord_offsetC  = DIM*jnrC;
379             j_coord_offsetD  = DIM*jnrD;
380             j_coord_offsetE  = DIM*jnrE;
381             j_coord_offsetF  = DIM*jnrF;
382             j_coord_offsetG  = DIM*jnrG;
383             j_coord_offsetH  = DIM*jnrH;
384
385             /* load j atom coordinates */
386             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
387                                                  x+j_coord_offsetC,x+j_coord_offsetD,
388                                                  x+j_coord_offsetE,x+j_coord_offsetF,
389                                                  x+j_coord_offsetG,x+j_coord_offsetH,
390                                                  &jx0,&jy0,&jz0);
391
392             /* Calculate displacement vector */
393             dx00             = _mm256_sub_ps(ix0,jx0);
394             dy00             = _mm256_sub_ps(iy0,jy0);
395             dz00             = _mm256_sub_ps(iz0,jz0);
396
397             /* Calculate squared distance and things based on it */
398             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
399
400             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
401
402             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
403
404             /* Load parameters for j particles */
405             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
406                                                                  charge+jnrC+0,charge+jnrD+0,
407                                                                  charge+jnrE+0,charge+jnrF+0,
408                                                                  charge+jnrG+0,charge+jnrH+0);
409             vdwjidx0A        = 2*vdwtype[jnrA+0];
410             vdwjidx0B        = 2*vdwtype[jnrB+0];
411             vdwjidx0C        = 2*vdwtype[jnrC+0];
412             vdwjidx0D        = 2*vdwtype[jnrD+0];
413             vdwjidx0E        = 2*vdwtype[jnrE+0];
414             vdwjidx0F        = 2*vdwtype[jnrF+0];
415             vdwjidx0G        = 2*vdwtype[jnrG+0];
416             vdwjidx0H        = 2*vdwtype[jnrH+0];
417
418             /**************************
419              * CALCULATE INTERACTIONS *
420              **************************/
421
422             if (gmx_mm256_any_lt(rsq00,rcutoff2))
423             {
424
425             r00              = _mm256_mul_ps(rsq00,rinv00);
426             r00              = _mm256_andnot_ps(dummy_mask,r00);
427
428             /* Compute parameters for interactions between i and j atoms */
429             qq00             = _mm256_mul_ps(iq0,jq0);
430             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
431                                             vdwioffsetptr0+vdwjidx0B,
432                                             vdwioffsetptr0+vdwjidx0C,
433                                             vdwioffsetptr0+vdwjidx0D,
434                                             vdwioffsetptr0+vdwjidx0E,
435                                             vdwioffsetptr0+vdwjidx0F,
436                                             vdwioffsetptr0+vdwjidx0G,
437                                             vdwioffsetptr0+vdwjidx0H,
438                                             &c6_00,&c12_00);
439
440             /* Calculate table index by multiplying r with table scale and truncate to integer */
441             rt               = _mm256_mul_ps(r00,vftabscale);
442             vfitab           = _mm256_cvttps_epi32(rt);
443             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
444             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
445             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
446             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
447             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
448             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
449
450             /* REACTION-FIELD ELECTROSTATICS */
451             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
452             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
453
454             /* CUBIC SPLINE TABLE DISPERSION */
455             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
456                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
457             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
458                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
459             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
460                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
461             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
462                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
463             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
464             Heps             = _mm256_mul_ps(vfeps,H);
465             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
466             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
467             vvdw6            = _mm256_mul_ps(c6_00,VV);
468             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
469             fvdw6            = _mm256_mul_ps(c6_00,FF);
470
471             /* CUBIC SPLINE TABLE REPULSION */
472             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
473             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
474             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
475                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
476             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
477                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
478             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
479                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
480             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
481                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
482             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
483             Heps             = _mm256_mul_ps(vfeps,H);
484             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
485             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
486             vvdw12           = _mm256_mul_ps(c12_00,VV);
487             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
488             fvdw12           = _mm256_mul_ps(c12_00,FF);
489             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
490             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
491
492             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
493
494             /* Update potential sum for this i atom from the interaction with this j atom. */
495             velec            = _mm256_and_ps(velec,cutoff_mask);
496             velec            = _mm256_andnot_ps(dummy_mask,velec);
497             velecsum         = _mm256_add_ps(velecsum,velec);
498             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
499             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
500             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
501
502             fscal            = _mm256_add_ps(felec,fvdw);
503
504             fscal            = _mm256_and_ps(fscal,cutoff_mask);
505
506             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
507
508             /* Calculate temporary vectorial force */
509             tx               = _mm256_mul_ps(fscal,dx00);
510             ty               = _mm256_mul_ps(fscal,dy00);
511             tz               = _mm256_mul_ps(fscal,dz00);
512
513             /* Update vectorial force */
514             fix0             = _mm256_add_ps(fix0,tx);
515             fiy0             = _mm256_add_ps(fiy0,ty);
516             fiz0             = _mm256_add_ps(fiz0,tz);
517
518             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
519             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
520             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
521             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
522             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
523             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
524             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
525             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
526             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
527
528             }
529
530             /* Inner loop uses 73 flops */
531         }
532
533         /* End of innermost loop */
534
535         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
536                                                  f+i_coord_offset,fshift+i_shift_offset);
537
538         ggid                        = gid[iidx];
539         /* Update potential energies */
540         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
541         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
542
543         /* Increment number of inner iterations */
544         inneriter                  += j_index_end - j_index_start;
545
546         /* Outer loop uses 9 flops */
547     }
548
549     /* Increment number of outer iterations */
550     outeriter        += nri;
551
552     /* Update outer/inner flops */
553
554     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
555 }
556 /*
557  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_256_single
558  * Electrostatics interaction: ReactionField
559  * VdW interaction:            CubicSplineTable
560  * Geometry:                   Particle-Particle
561  * Calculate force/pot:        Force
562  */
563 void
564 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_256_single
565                     (t_nblist                    * gmx_restrict       nlist,
566                      rvec                        * gmx_restrict          xx,
567                      rvec                        * gmx_restrict          ff,
568                      t_forcerec                  * gmx_restrict          fr,
569                      t_mdatoms                   * gmx_restrict     mdatoms,
570                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
571                      t_nrnb                      * gmx_restrict        nrnb)
572 {
573     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
574      * just 0 for non-waters.
575      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
576      * jnr indices corresponding to data put in the four positions in the SIMD register.
577      */
578     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
579     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
580     int              jnrA,jnrB,jnrC,jnrD;
581     int              jnrE,jnrF,jnrG,jnrH;
582     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
583     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
584     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
585     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
586     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
587     real             rcutoff_scalar;
588     real             *shiftvec,*fshift,*x,*f;
589     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
590     real             scratch[4*DIM];
591     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
592     real *           vdwioffsetptr0;
593     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
594     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
595     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
596     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
597     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
598     real             *charge;
599     int              nvdwtype;
600     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
601     int              *vdwtype;
602     real             *vdwparam;
603     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
604     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
605     __m256i          vfitab;
606     __m128i          vfitab_lo,vfitab_hi;
607     __m128i          ifour       = _mm_set1_epi32(4);
608     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
609     real             *vftab;
610     __m256           dummy_mask,cutoff_mask;
611     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
612     __m256           one     = _mm256_set1_ps(1.0);
613     __m256           two     = _mm256_set1_ps(2.0);
614     x                = xx[0];
615     f                = ff[0];
616
617     nri              = nlist->nri;
618     iinr             = nlist->iinr;
619     jindex           = nlist->jindex;
620     jjnr             = nlist->jjnr;
621     shiftidx         = nlist->shift;
622     gid              = nlist->gid;
623     shiftvec         = fr->shift_vec[0];
624     fshift           = fr->fshift[0];
625     facel            = _mm256_set1_ps(fr->epsfac);
626     charge           = mdatoms->chargeA;
627     krf              = _mm256_set1_ps(fr->ic->k_rf);
628     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
629     crf              = _mm256_set1_ps(fr->ic->c_rf);
630     nvdwtype         = fr->ntype;
631     vdwparam         = fr->nbfp;
632     vdwtype          = mdatoms->typeA;
633
634     vftab            = kernel_data->table_vdw->data;
635     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
636
637     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
638     rcutoff_scalar   = fr->rcoulomb;
639     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
640     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
641
642     /* Avoid stupid compiler warnings */
643     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
644     j_coord_offsetA = 0;
645     j_coord_offsetB = 0;
646     j_coord_offsetC = 0;
647     j_coord_offsetD = 0;
648     j_coord_offsetE = 0;
649     j_coord_offsetF = 0;
650     j_coord_offsetG = 0;
651     j_coord_offsetH = 0;
652
653     outeriter        = 0;
654     inneriter        = 0;
655
656     for(iidx=0;iidx<4*DIM;iidx++)
657     {
658         scratch[iidx] = 0.0;
659     }
660
661     /* Start outer loop over neighborlists */
662     for(iidx=0; iidx<nri; iidx++)
663     {
664         /* Load shift vector for this list */
665         i_shift_offset   = DIM*shiftidx[iidx];
666
667         /* Load limits for loop over neighbors */
668         j_index_start    = jindex[iidx];
669         j_index_end      = jindex[iidx+1];
670
671         /* Get outer coordinate index */
672         inr              = iinr[iidx];
673         i_coord_offset   = DIM*inr;
674
675         /* Load i particle coords and add shift vector */
676         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
677
678         fix0             = _mm256_setzero_ps();
679         fiy0             = _mm256_setzero_ps();
680         fiz0             = _mm256_setzero_ps();
681
682         /* Load parameters for i particles */
683         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
684         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
685
686         /* Start inner kernel loop */
687         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
688         {
689
690             /* Get j neighbor index, and coordinate index */
691             jnrA             = jjnr[jidx];
692             jnrB             = jjnr[jidx+1];
693             jnrC             = jjnr[jidx+2];
694             jnrD             = jjnr[jidx+3];
695             jnrE             = jjnr[jidx+4];
696             jnrF             = jjnr[jidx+5];
697             jnrG             = jjnr[jidx+6];
698             jnrH             = jjnr[jidx+7];
699             j_coord_offsetA  = DIM*jnrA;
700             j_coord_offsetB  = DIM*jnrB;
701             j_coord_offsetC  = DIM*jnrC;
702             j_coord_offsetD  = DIM*jnrD;
703             j_coord_offsetE  = DIM*jnrE;
704             j_coord_offsetF  = DIM*jnrF;
705             j_coord_offsetG  = DIM*jnrG;
706             j_coord_offsetH  = DIM*jnrH;
707
708             /* load j atom coordinates */
709             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
710                                                  x+j_coord_offsetC,x+j_coord_offsetD,
711                                                  x+j_coord_offsetE,x+j_coord_offsetF,
712                                                  x+j_coord_offsetG,x+j_coord_offsetH,
713                                                  &jx0,&jy0,&jz0);
714
715             /* Calculate displacement vector */
716             dx00             = _mm256_sub_ps(ix0,jx0);
717             dy00             = _mm256_sub_ps(iy0,jy0);
718             dz00             = _mm256_sub_ps(iz0,jz0);
719
720             /* Calculate squared distance and things based on it */
721             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
722
723             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
724
725             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
726
727             /* Load parameters for j particles */
728             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
729                                                                  charge+jnrC+0,charge+jnrD+0,
730                                                                  charge+jnrE+0,charge+jnrF+0,
731                                                                  charge+jnrG+0,charge+jnrH+0);
732             vdwjidx0A        = 2*vdwtype[jnrA+0];
733             vdwjidx0B        = 2*vdwtype[jnrB+0];
734             vdwjidx0C        = 2*vdwtype[jnrC+0];
735             vdwjidx0D        = 2*vdwtype[jnrD+0];
736             vdwjidx0E        = 2*vdwtype[jnrE+0];
737             vdwjidx0F        = 2*vdwtype[jnrF+0];
738             vdwjidx0G        = 2*vdwtype[jnrG+0];
739             vdwjidx0H        = 2*vdwtype[jnrH+0];
740
741             /**************************
742              * CALCULATE INTERACTIONS *
743              **************************/
744
745             if (gmx_mm256_any_lt(rsq00,rcutoff2))
746             {
747
748             r00              = _mm256_mul_ps(rsq00,rinv00);
749
750             /* Compute parameters for interactions between i and j atoms */
751             qq00             = _mm256_mul_ps(iq0,jq0);
752             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
753                                             vdwioffsetptr0+vdwjidx0B,
754                                             vdwioffsetptr0+vdwjidx0C,
755                                             vdwioffsetptr0+vdwjidx0D,
756                                             vdwioffsetptr0+vdwjidx0E,
757                                             vdwioffsetptr0+vdwjidx0F,
758                                             vdwioffsetptr0+vdwjidx0G,
759                                             vdwioffsetptr0+vdwjidx0H,
760                                             &c6_00,&c12_00);
761
762             /* Calculate table index by multiplying r with table scale and truncate to integer */
763             rt               = _mm256_mul_ps(r00,vftabscale);
764             vfitab           = _mm256_cvttps_epi32(rt);
765             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
766             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
767             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
768             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
769             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
770             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
771
772             /* REACTION-FIELD ELECTROSTATICS */
773             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
774
775             /* CUBIC SPLINE TABLE DISPERSION */
776             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
777                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
778             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
779                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
780             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
781                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
782             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
783                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
784             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
785             Heps             = _mm256_mul_ps(vfeps,H);
786             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
787             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
788             fvdw6            = _mm256_mul_ps(c6_00,FF);
789
790             /* CUBIC SPLINE TABLE REPULSION */
791             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
792             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
793             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
794                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
795             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
796                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
797             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
798                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
799             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
800                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
801             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
802             Heps             = _mm256_mul_ps(vfeps,H);
803             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
804             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
805             fvdw12           = _mm256_mul_ps(c12_00,FF);
806             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
807
808             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
809
810             fscal            = _mm256_add_ps(felec,fvdw);
811
812             fscal            = _mm256_and_ps(fscal,cutoff_mask);
813
814             /* Calculate temporary vectorial force */
815             tx               = _mm256_mul_ps(fscal,dx00);
816             ty               = _mm256_mul_ps(fscal,dy00);
817             tz               = _mm256_mul_ps(fscal,dz00);
818
819             /* Update vectorial force */
820             fix0             = _mm256_add_ps(fix0,tx);
821             fiy0             = _mm256_add_ps(fiy0,ty);
822             fiz0             = _mm256_add_ps(fiz0,tz);
823
824             fjptrA             = f+j_coord_offsetA;
825             fjptrB             = f+j_coord_offsetB;
826             fjptrC             = f+j_coord_offsetC;
827             fjptrD             = f+j_coord_offsetD;
828             fjptrE             = f+j_coord_offsetE;
829             fjptrF             = f+j_coord_offsetF;
830             fjptrG             = f+j_coord_offsetG;
831             fjptrH             = f+j_coord_offsetH;
832             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
833
834             }
835
836             /* Inner loop uses 57 flops */
837         }
838
839         if(jidx<j_index_end)
840         {
841
842             /* Get j neighbor index, and coordinate index */
843             jnrlistA         = jjnr[jidx];
844             jnrlistB         = jjnr[jidx+1];
845             jnrlistC         = jjnr[jidx+2];
846             jnrlistD         = jjnr[jidx+3];
847             jnrlistE         = jjnr[jidx+4];
848             jnrlistF         = jjnr[jidx+5];
849             jnrlistG         = jjnr[jidx+6];
850             jnrlistH         = jjnr[jidx+7];
851             /* Sign of each element will be negative for non-real atoms.
852              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
853              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
854              */
855             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
856                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
857                                             
858             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
859             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
860             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
861             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
862             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
863             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
864             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
865             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
866             j_coord_offsetA  = DIM*jnrA;
867             j_coord_offsetB  = DIM*jnrB;
868             j_coord_offsetC  = DIM*jnrC;
869             j_coord_offsetD  = DIM*jnrD;
870             j_coord_offsetE  = DIM*jnrE;
871             j_coord_offsetF  = DIM*jnrF;
872             j_coord_offsetG  = DIM*jnrG;
873             j_coord_offsetH  = DIM*jnrH;
874
875             /* load j atom coordinates */
876             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
877                                                  x+j_coord_offsetC,x+j_coord_offsetD,
878                                                  x+j_coord_offsetE,x+j_coord_offsetF,
879                                                  x+j_coord_offsetG,x+j_coord_offsetH,
880                                                  &jx0,&jy0,&jz0);
881
882             /* Calculate displacement vector */
883             dx00             = _mm256_sub_ps(ix0,jx0);
884             dy00             = _mm256_sub_ps(iy0,jy0);
885             dz00             = _mm256_sub_ps(iz0,jz0);
886
887             /* Calculate squared distance and things based on it */
888             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
889
890             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
891
892             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
893
894             /* Load parameters for j particles */
895             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
896                                                                  charge+jnrC+0,charge+jnrD+0,
897                                                                  charge+jnrE+0,charge+jnrF+0,
898                                                                  charge+jnrG+0,charge+jnrH+0);
899             vdwjidx0A        = 2*vdwtype[jnrA+0];
900             vdwjidx0B        = 2*vdwtype[jnrB+0];
901             vdwjidx0C        = 2*vdwtype[jnrC+0];
902             vdwjidx0D        = 2*vdwtype[jnrD+0];
903             vdwjidx0E        = 2*vdwtype[jnrE+0];
904             vdwjidx0F        = 2*vdwtype[jnrF+0];
905             vdwjidx0G        = 2*vdwtype[jnrG+0];
906             vdwjidx0H        = 2*vdwtype[jnrH+0];
907
908             /**************************
909              * CALCULATE INTERACTIONS *
910              **************************/
911
912             if (gmx_mm256_any_lt(rsq00,rcutoff2))
913             {
914
915             r00              = _mm256_mul_ps(rsq00,rinv00);
916             r00              = _mm256_andnot_ps(dummy_mask,r00);
917
918             /* Compute parameters for interactions between i and j atoms */
919             qq00             = _mm256_mul_ps(iq0,jq0);
920             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
921                                             vdwioffsetptr0+vdwjidx0B,
922                                             vdwioffsetptr0+vdwjidx0C,
923                                             vdwioffsetptr0+vdwjidx0D,
924                                             vdwioffsetptr0+vdwjidx0E,
925                                             vdwioffsetptr0+vdwjidx0F,
926                                             vdwioffsetptr0+vdwjidx0G,
927                                             vdwioffsetptr0+vdwjidx0H,
928                                             &c6_00,&c12_00);
929
930             /* Calculate table index by multiplying r with table scale and truncate to integer */
931             rt               = _mm256_mul_ps(r00,vftabscale);
932             vfitab           = _mm256_cvttps_epi32(rt);
933             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
934             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
935             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
936             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
937             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
938             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
939
940             /* REACTION-FIELD ELECTROSTATICS */
941             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
942
943             /* CUBIC SPLINE TABLE DISPERSION */
944             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
945                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
946             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
947                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
948             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
949                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
950             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
951                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
952             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
953             Heps             = _mm256_mul_ps(vfeps,H);
954             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
955             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
956             fvdw6            = _mm256_mul_ps(c6_00,FF);
957
958             /* CUBIC SPLINE TABLE REPULSION */
959             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
960             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
961             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
962                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
963             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
964                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
965             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
966                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
967             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
968                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
969             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
970             Heps             = _mm256_mul_ps(vfeps,H);
971             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
972             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
973             fvdw12           = _mm256_mul_ps(c12_00,FF);
974             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
975
976             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
977
978             fscal            = _mm256_add_ps(felec,fvdw);
979
980             fscal            = _mm256_and_ps(fscal,cutoff_mask);
981
982             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
983
984             /* Calculate temporary vectorial force */
985             tx               = _mm256_mul_ps(fscal,dx00);
986             ty               = _mm256_mul_ps(fscal,dy00);
987             tz               = _mm256_mul_ps(fscal,dz00);
988
989             /* Update vectorial force */
990             fix0             = _mm256_add_ps(fix0,tx);
991             fiy0             = _mm256_add_ps(fiy0,ty);
992             fiz0             = _mm256_add_ps(fiz0,tz);
993
994             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
995             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
996             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
997             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
998             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
999             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1000             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1001             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1002             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
1003
1004             }
1005
1006             /* Inner loop uses 58 flops */
1007         }
1008
1009         /* End of innermost loop */
1010
1011         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
1012                                                  f+i_coord_offset,fshift+i_shift_offset);
1013
1014         /* Increment number of inner iterations */
1015         inneriter                  += j_index_end - j_index_start;
1016
1017         /* Outer loop uses 7 flops */
1018     }
1019
1020     /* Increment number of outer iterations */
1021     outeriter        += nri;
1022
1023     /* Update outer/inner flops */
1024
1025     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*58);
1026 }