Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecNone_VdwLJSw_GeomP1P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_avx_256_single
38  * Electrostatics interaction: None
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
75     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     int              nvdwtype;
78     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
82     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
83     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
84     real             rswitch_scalar,d_scalar;
85     __m256           dummy_mask,cutoff_mask;
86     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
87     __m256           one     = _mm256_set1_ps(1.0);
88     __m256           two     = _mm256_set1_ps(2.0);
89     x                = xx[0];
90     f                = ff[0];
91
92     nri              = nlist->nri;
93     iinr             = nlist->iinr;
94     jindex           = nlist->jindex;
95     jjnr             = nlist->jjnr;
96     shiftidx         = nlist->shift;
97     gid              = nlist->gid;
98     shiftvec         = fr->shift_vec[0];
99     fshift           = fr->fshift[0];
100     nvdwtype         = fr->ntype;
101     vdwparam         = fr->nbfp;
102     vdwtype          = mdatoms->typeA;
103
104     rcutoff_scalar   = fr->rvdw;
105     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
106     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
107
108     rswitch_scalar   = fr->rvdw_switch;
109     rswitch          = _mm256_set1_ps(rswitch_scalar);
110     /* Setup switch parameters */
111     d_scalar         = rcutoff_scalar-rswitch_scalar;
112     d                = _mm256_set1_ps(d_scalar);
113     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
114     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
115     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
116     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
117     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
118     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124     j_coord_offsetC = 0;
125     j_coord_offsetD = 0;
126     j_coord_offsetE = 0;
127     j_coord_offsetF = 0;
128     j_coord_offsetG = 0;
129     j_coord_offsetH = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     for(iidx=0;iidx<4*DIM;iidx++)
135     {
136         scratch[iidx] = 0.0;
137     }
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _mm256_setzero_ps();
157         fiy0             = _mm256_setzero_ps();
158         fiz0             = _mm256_setzero_ps();
159
160         /* Load parameters for i particles */
161         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
162
163         /* Reset potential sums */
164         vvdwsum          = _mm256_setzero_ps();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             jnrC             = jjnr[jidx+2];
174             jnrD             = jjnr[jidx+3];
175             jnrE             = jjnr[jidx+4];
176             jnrF             = jjnr[jidx+5];
177             jnrG             = jjnr[jidx+6];
178             jnrH             = jjnr[jidx+7];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181             j_coord_offsetC  = DIM*jnrC;
182             j_coord_offsetD  = DIM*jnrD;
183             j_coord_offsetE  = DIM*jnrE;
184             j_coord_offsetF  = DIM*jnrF;
185             j_coord_offsetG  = DIM*jnrG;
186             j_coord_offsetH  = DIM*jnrH;
187
188             /* load j atom coordinates */
189             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
190                                                  x+j_coord_offsetC,x+j_coord_offsetD,
191                                                  x+j_coord_offsetE,x+j_coord_offsetF,
192                                                  x+j_coord_offsetG,x+j_coord_offsetH,
193                                                  &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm256_sub_ps(ix0,jx0);
197             dy00             = _mm256_sub_ps(iy0,jy0);
198             dz00             = _mm256_sub_ps(iz0,jz0);
199
200             /* Calculate squared distance and things based on it */
201             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
202
203             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
204
205             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
206
207             /* Load parameters for j particles */
208             vdwjidx0A        = 2*vdwtype[jnrA+0];
209             vdwjidx0B        = 2*vdwtype[jnrB+0];
210             vdwjidx0C        = 2*vdwtype[jnrC+0];
211             vdwjidx0D        = 2*vdwtype[jnrD+0];
212             vdwjidx0E        = 2*vdwtype[jnrE+0];
213             vdwjidx0F        = 2*vdwtype[jnrF+0];
214             vdwjidx0G        = 2*vdwtype[jnrG+0];
215             vdwjidx0H        = 2*vdwtype[jnrH+0];
216
217             /**************************
218              * CALCULATE INTERACTIONS *
219              **************************/
220
221             if (gmx_mm256_any_lt(rsq00,rcutoff2))
222             {
223
224             r00              = _mm256_mul_ps(rsq00,rinv00);
225
226             /* Compute parameters for interactions between i and j atoms */
227             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
228                                             vdwioffsetptr0+vdwjidx0B,
229                                             vdwioffsetptr0+vdwjidx0C,
230                                             vdwioffsetptr0+vdwjidx0D,
231                                             vdwioffsetptr0+vdwjidx0E,
232                                             vdwioffsetptr0+vdwjidx0F,
233                                             vdwioffsetptr0+vdwjidx0G,
234                                             vdwioffsetptr0+vdwjidx0H,
235                                             &c6_00,&c12_00);
236
237             /* LENNARD-JONES DISPERSION/REPULSION */
238
239             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
240             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
241             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
242             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
243             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
244
245             d                = _mm256_sub_ps(r00,rswitch);
246             d                = _mm256_max_ps(d,_mm256_setzero_ps());
247             d2               = _mm256_mul_ps(d,d);
248             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
249
250             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
251
252             /* Evaluate switch function */
253             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
254             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
255             vvdw             = _mm256_mul_ps(vvdw,sw);
256             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
257
258             /* Update potential sum for this i atom from the interaction with this j atom. */
259             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
260             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
261
262             fscal            = fvdw;
263
264             fscal            = _mm256_and_ps(fscal,cutoff_mask);
265
266             /* Calculate temporary vectorial force */
267             tx               = _mm256_mul_ps(fscal,dx00);
268             ty               = _mm256_mul_ps(fscal,dy00);
269             tz               = _mm256_mul_ps(fscal,dz00);
270
271             /* Update vectorial force */
272             fix0             = _mm256_add_ps(fix0,tx);
273             fiy0             = _mm256_add_ps(fiy0,ty);
274             fiz0             = _mm256_add_ps(fiz0,tz);
275
276             fjptrA             = f+j_coord_offsetA;
277             fjptrB             = f+j_coord_offsetB;
278             fjptrC             = f+j_coord_offsetC;
279             fjptrD             = f+j_coord_offsetD;
280             fjptrE             = f+j_coord_offsetE;
281             fjptrF             = f+j_coord_offsetF;
282             fjptrG             = f+j_coord_offsetG;
283             fjptrH             = f+j_coord_offsetH;
284             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
285
286             }
287
288             /* Inner loop uses 59 flops */
289         }
290
291         if(jidx<j_index_end)
292         {
293
294             /* Get j neighbor index, and coordinate index */
295             jnrlistA         = jjnr[jidx];
296             jnrlistB         = jjnr[jidx+1];
297             jnrlistC         = jjnr[jidx+2];
298             jnrlistD         = jjnr[jidx+3];
299             jnrlistE         = jjnr[jidx+4];
300             jnrlistF         = jjnr[jidx+5];
301             jnrlistG         = jjnr[jidx+6];
302             jnrlistH         = jjnr[jidx+7];
303             /* Sign of each element will be negative for non-real atoms.
304              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
305              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
306              */
307             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
308                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
309                                             
310             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
311             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
312             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
313             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
314             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
315             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
316             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
317             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
318             j_coord_offsetA  = DIM*jnrA;
319             j_coord_offsetB  = DIM*jnrB;
320             j_coord_offsetC  = DIM*jnrC;
321             j_coord_offsetD  = DIM*jnrD;
322             j_coord_offsetE  = DIM*jnrE;
323             j_coord_offsetF  = DIM*jnrF;
324             j_coord_offsetG  = DIM*jnrG;
325             j_coord_offsetH  = DIM*jnrH;
326
327             /* load j atom coordinates */
328             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
329                                                  x+j_coord_offsetC,x+j_coord_offsetD,
330                                                  x+j_coord_offsetE,x+j_coord_offsetF,
331                                                  x+j_coord_offsetG,x+j_coord_offsetH,
332                                                  &jx0,&jy0,&jz0);
333
334             /* Calculate displacement vector */
335             dx00             = _mm256_sub_ps(ix0,jx0);
336             dy00             = _mm256_sub_ps(iy0,jy0);
337             dz00             = _mm256_sub_ps(iz0,jz0);
338
339             /* Calculate squared distance and things based on it */
340             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
341
342             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
343
344             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
345
346             /* Load parameters for j particles */
347             vdwjidx0A        = 2*vdwtype[jnrA+0];
348             vdwjidx0B        = 2*vdwtype[jnrB+0];
349             vdwjidx0C        = 2*vdwtype[jnrC+0];
350             vdwjidx0D        = 2*vdwtype[jnrD+0];
351             vdwjidx0E        = 2*vdwtype[jnrE+0];
352             vdwjidx0F        = 2*vdwtype[jnrF+0];
353             vdwjidx0G        = 2*vdwtype[jnrG+0];
354             vdwjidx0H        = 2*vdwtype[jnrH+0];
355
356             /**************************
357              * CALCULATE INTERACTIONS *
358              **************************/
359
360             if (gmx_mm256_any_lt(rsq00,rcutoff2))
361             {
362
363             r00              = _mm256_mul_ps(rsq00,rinv00);
364             r00              = _mm256_andnot_ps(dummy_mask,r00);
365
366             /* Compute parameters for interactions between i and j atoms */
367             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
368                                             vdwioffsetptr0+vdwjidx0B,
369                                             vdwioffsetptr0+vdwjidx0C,
370                                             vdwioffsetptr0+vdwjidx0D,
371                                             vdwioffsetptr0+vdwjidx0E,
372                                             vdwioffsetptr0+vdwjidx0F,
373                                             vdwioffsetptr0+vdwjidx0G,
374                                             vdwioffsetptr0+vdwjidx0H,
375                                             &c6_00,&c12_00);
376
377             /* LENNARD-JONES DISPERSION/REPULSION */
378
379             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
380             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
381             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
382             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
383             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
384
385             d                = _mm256_sub_ps(r00,rswitch);
386             d                = _mm256_max_ps(d,_mm256_setzero_ps());
387             d2               = _mm256_mul_ps(d,d);
388             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
389
390             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
391
392             /* Evaluate switch function */
393             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
394             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
395             vvdw             = _mm256_mul_ps(vvdw,sw);
396             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
397
398             /* Update potential sum for this i atom from the interaction with this j atom. */
399             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
400             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
401             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
402
403             fscal            = fvdw;
404
405             fscal            = _mm256_and_ps(fscal,cutoff_mask);
406
407             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
408
409             /* Calculate temporary vectorial force */
410             tx               = _mm256_mul_ps(fscal,dx00);
411             ty               = _mm256_mul_ps(fscal,dy00);
412             tz               = _mm256_mul_ps(fscal,dz00);
413
414             /* Update vectorial force */
415             fix0             = _mm256_add_ps(fix0,tx);
416             fiy0             = _mm256_add_ps(fiy0,ty);
417             fiz0             = _mm256_add_ps(fiz0,tz);
418
419             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
420             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
421             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
422             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
423             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
424             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
425             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
426             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
427             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
428
429             }
430
431             /* Inner loop uses 60 flops */
432         }
433
434         /* End of innermost loop */
435
436         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
437                                                  f+i_coord_offset,fshift+i_shift_offset);
438
439         ggid                        = gid[iidx];
440         /* Update potential energies */
441         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
442
443         /* Increment number of inner iterations */
444         inneriter                  += j_index_end - j_index_start;
445
446         /* Outer loop uses 7 flops */
447     }
448
449     /* Increment number of outer iterations */
450     outeriter        += nri;
451
452     /* Update outer/inner flops */
453
454     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*60);
455 }
456 /*
457  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_avx_256_single
458  * Electrostatics interaction: None
459  * VdW interaction:            LennardJones
460  * Geometry:                   Particle-Particle
461  * Calculate force/pot:        Force
462  */
463 void
464 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_avx_256_single
465                     (t_nblist * gmx_restrict                nlist,
466                      rvec * gmx_restrict                    xx,
467                      rvec * gmx_restrict                    ff,
468                      t_forcerec * gmx_restrict              fr,
469                      t_mdatoms * gmx_restrict               mdatoms,
470                      nb_kernel_data_t * gmx_restrict        kernel_data,
471                      t_nrnb * gmx_restrict                  nrnb)
472 {
473     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
474      * just 0 for non-waters.
475      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
476      * jnr indices corresponding to data put in the four positions in the SIMD register.
477      */
478     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
479     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
480     int              jnrA,jnrB,jnrC,jnrD;
481     int              jnrE,jnrF,jnrG,jnrH;
482     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
483     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
484     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
485     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
486     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
487     real             rcutoff_scalar;
488     real             *shiftvec,*fshift,*x,*f;
489     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
490     real             scratch[4*DIM];
491     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
492     real *           vdwioffsetptr0;
493     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
494     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
495     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
496     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
497     int              nvdwtype;
498     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
499     int              *vdwtype;
500     real             *vdwparam;
501     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
502     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
503     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
504     real             rswitch_scalar,d_scalar;
505     __m256           dummy_mask,cutoff_mask;
506     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
507     __m256           one     = _mm256_set1_ps(1.0);
508     __m256           two     = _mm256_set1_ps(2.0);
509     x                = xx[0];
510     f                = ff[0];
511
512     nri              = nlist->nri;
513     iinr             = nlist->iinr;
514     jindex           = nlist->jindex;
515     jjnr             = nlist->jjnr;
516     shiftidx         = nlist->shift;
517     gid              = nlist->gid;
518     shiftvec         = fr->shift_vec[0];
519     fshift           = fr->fshift[0];
520     nvdwtype         = fr->ntype;
521     vdwparam         = fr->nbfp;
522     vdwtype          = mdatoms->typeA;
523
524     rcutoff_scalar   = fr->rvdw;
525     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
526     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
527
528     rswitch_scalar   = fr->rvdw_switch;
529     rswitch          = _mm256_set1_ps(rswitch_scalar);
530     /* Setup switch parameters */
531     d_scalar         = rcutoff_scalar-rswitch_scalar;
532     d                = _mm256_set1_ps(d_scalar);
533     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
534     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
535     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
536     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
537     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
538     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
539
540     /* Avoid stupid compiler warnings */
541     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
542     j_coord_offsetA = 0;
543     j_coord_offsetB = 0;
544     j_coord_offsetC = 0;
545     j_coord_offsetD = 0;
546     j_coord_offsetE = 0;
547     j_coord_offsetF = 0;
548     j_coord_offsetG = 0;
549     j_coord_offsetH = 0;
550
551     outeriter        = 0;
552     inneriter        = 0;
553
554     for(iidx=0;iidx<4*DIM;iidx++)
555     {
556         scratch[iidx] = 0.0;
557     }
558
559     /* Start outer loop over neighborlists */
560     for(iidx=0; iidx<nri; iidx++)
561     {
562         /* Load shift vector for this list */
563         i_shift_offset   = DIM*shiftidx[iidx];
564
565         /* Load limits for loop over neighbors */
566         j_index_start    = jindex[iidx];
567         j_index_end      = jindex[iidx+1];
568
569         /* Get outer coordinate index */
570         inr              = iinr[iidx];
571         i_coord_offset   = DIM*inr;
572
573         /* Load i particle coords and add shift vector */
574         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
575
576         fix0             = _mm256_setzero_ps();
577         fiy0             = _mm256_setzero_ps();
578         fiz0             = _mm256_setzero_ps();
579
580         /* Load parameters for i particles */
581         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
582
583         /* Start inner kernel loop */
584         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
585         {
586
587             /* Get j neighbor index, and coordinate index */
588             jnrA             = jjnr[jidx];
589             jnrB             = jjnr[jidx+1];
590             jnrC             = jjnr[jidx+2];
591             jnrD             = jjnr[jidx+3];
592             jnrE             = jjnr[jidx+4];
593             jnrF             = jjnr[jidx+5];
594             jnrG             = jjnr[jidx+6];
595             jnrH             = jjnr[jidx+7];
596             j_coord_offsetA  = DIM*jnrA;
597             j_coord_offsetB  = DIM*jnrB;
598             j_coord_offsetC  = DIM*jnrC;
599             j_coord_offsetD  = DIM*jnrD;
600             j_coord_offsetE  = DIM*jnrE;
601             j_coord_offsetF  = DIM*jnrF;
602             j_coord_offsetG  = DIM*jnrG;
603             j_coord_offsetH  = DIM*jnrH;
604
605             /* load j atom coordinates */
606             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
607                                                  x+j_coord_offsetC,x+j_coord_offsetD,
608                                                  x+j_coord_offsetE,x+j_coord_offsetF,
609                                                  x+j_coord_offsetG,x+j_coord_offsetH,
610                                                  &jx0,&jy0,&jz0);
611
612             /* Calculate displacement vector */
613             dx00             = _mm256_sub_ps(ix0,jx0);
614             dy00             = _mm256_sub_ps(iy0,jy0);
615             dz00             = _mm256_sub_ps(iz0,jz0);
616
617             /* Calculate squared distance and things based on it */
618             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
619
620             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
621
622             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
623
624             /* Load parameters for j particles */
625             vdwjidx0A        = 2*vdwtype[jnrA+0];
626             vdwjidx0B        = 2*vdwtype[jnrB+0];
627             vdwjidx0C        = 2*vdwtype[jnrC+0];
628             vdwjidx0D        = 2*vdwtype[jnrD+0];
629             vdwjidx0E        = 2*vdwtype[jnrE+0];
630             vdwjidx0F        = 2*vdwtype[jnrF+0];
631             vdwjidx0G        = 2*vdwtype[jnrG+0];
632             vdwjidx0H        = 2*vdwtype[jnrH+0];
633
634             /**************************
635              * CALCULATE INTERACTIONS *
636              **************************/
637
638             if (gmx_mm256_any_lt(rsq00,rcutoff2))
639             {
640
641             r00              = _mm256_mul_ps(rsq00,rinv00);
642
643             /* Compute parameters for interactions between i and j atoms */
644             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
645                                             vdwioffsetptr0+vdwjidx0B,
646                                             vdwioffsetptr0+vdwjidx0C,
647                                             vdwioffsetptr0+vdwjidx0D,
648                                             vdwioffsetptr0+vdwjidx0E,
649                                             vdwioffsetptr0+vdwjidx0F,
650                                             vdwioffsetptr0+vdwjidx0G,
651                                             vdwioffsetptr0+vdwjidx0H,
652                                             &c6_00,&c12_00);
653
654             /* LENNARD-JONES DISPERSION/REPULSION */
655
656             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
657             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
658             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
659             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
660             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
661
662             d                = _mm256_sub_ps(r00,rswitch);
663             d                = _mm256_max_ps(d,_mm256_setzero_ps());
664             d2               = _mm256_mul_ps(d,d);
665             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
666
667             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
668
669             /* Evaluate switch function */
670             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
671             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
672             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
673
674             fscal            = fvdw;
675
676             fscal            = _mm256_and_ps(fscal,cutoff_mask);
677
678             /* Calculate temporary vectorial force */
679             tx               = _mm256_mul_ps(fscal,dx00);
680             ty               = _mm256_mul_ps(fscal,dy00);
681             tz               = _mm256_mul_ps(fscal,dz00);
682
683             /* Update vectorial force */
684             fix0             = _mm256_add_ps(fix0,tx);
685             fiy0             = _mm256_add_ps(fiy0,ty);
686             fiz0             = _mm256_add_ps(fiz0,tz);
687
688             fjptrA             = f+j_coord_offsetA;
689             fjptrB             = f+j_coord_offsetB;
690             fjptrC             = f+j_coord_offsetC;
691             fjptrD             = f+j_coord_offsetD;
692             fjptrE             = f+j_coord_offsetE;
693             fjptrF             = f+j_coord_offsetF;
694             fjptrG             = f+j_coord_offsetG;
695             fjptrH             = f+j_coord_offsetH;
696             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
697
698             }
699
700             /* Inner loop uses 56 flops */
701         }
702
703         if(jidx<j_index_end)
704         {
705
706             /* Get j neighbor index, and coordinate index */
707             jnrlistA         = jjnr[jidx];
708             jnrlistB         = jjnr[jidx+1];
709             jnrlistC         = jjnr[jidx+2];
710             jnrlistD         = jjnr[jidx+3];
711             jnrlistE         = jjnr[jidx+4];
712             jnrlistF         = jjnr[jidx+5];
713             jnrlistG         = jjnr[jidx+6];
714             jnrlistH         = jjnr[jidx+7];
715             /* Sign of each element will be negative for non-real atoms.
716              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
717              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
718              */
719             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
720                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
721                                             
722             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
723             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
724             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
725             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
726             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
727             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
728             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
729             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
730             j_coord_offsetA  = DIM*jnrA;
731             j_coord_offsetB  = DIM*jnrB;
732             j_coord_offsetC  = DIM*jnrC;
733             j_coord_offsetD  = DIM*jnrD;
734             j_coord_offsetE  = DIM*jnrE;
735             j_coord_offsetF  = DIM*jnrF;
736             j_coord_offsetG  = DIM*jnrG;
737             j_coord_offsetH  = DIM*jnrH;
738
739             /* load j atom coordinates */
740             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
741                                                  x+j_coord_offsetC,x+j_coord_offsetD,
742                                                  x+j_coord_offsetE,x+j_coord_offsetF,
743                                                  x+j_coord_offsetG,x+j_coord_offsetH,
744                                                  &jx0,&jy0,&jz0);
745
746             /* Calculate displacement vector */
747             dx00             = _mm256_sub_ps(ix0,jx0);
748             dy00             = _mm256_sub_ps(iy0,jy0);
749             dz00             = _mm256_sub_ps(iz0,jz0);
750
751             /* Calculate squared distance and things based on it */
752             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
753
754             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
755
756             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
757
758             /* Load parameters for j particles */
759             vdwjidx0A        = 2*vdwtype[jnrA+0];
760             vdwjidx0B        = 2*vdwtype[jnrB+0];
761             vdwjidx0C        = 2*vdwtype[jnrC+0];
762             vdwjidx0D        = 2*vdwtype[jnrD+0];
763             vdwjidx0E        = 2*vdwtype[jnrE+0];
764             vdwjidx0F        = 2*vdwtype[jnrF+0];
765             vdwjidx0G        = 2*vdwtype[jnrG+0];
766             vdwjidx0H        = 2*vdwtype[jnrH+0];
767
768             /**************************
769              * CALCULATE INTERACTIONS *
770              **************************/
771
772             if (gmx_mm256_any_lt(rsq00,rcutoff2))
773             {
774
775             r00              = _mm256_mul_ps(rsq00,rinv00);
776             r00              = _mm256_andnot_ps(dummy_mask,r00);
777
778             /* Compute parameters for interactions between i and j atoms */
779             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
780                                             vdwioffsetptr0+vdwjidx0B,
781                                             vdwioffsetptr0+vdwjidx0C,
782                                             vdwioffsetptr0+vdwjidx0D,
783                                             vdwioffsetptr0+vdwjidx0E,
784                                             vdwioffsetptr0+vdwjidx0F,
785                                             vdwioffsetptr0+vdwjidx0G,
786                                             vdwioffsetptr0+vdwjidx0H,
787                                             &c6_00,&c12_00);
788
789             /* LENNARD-JONES DISPERSION/REPULSION */
790
791             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
792             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
793             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
794             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
795             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
796
797             d                = _mm256_sub_ps(r00,rswitch);
798             d                = _mm256_max_ps(d,_mm256_setzero_ps());
799             d2               = _mm256_mul_ps(d,d);
800             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
801
802             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
803
804             /* Evaluate switch function */
805             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
806             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
807             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
808
809             fscal            = fvdw;
810
811             fscal            = _mm256_and_ps(fscal,cutoff_mask);
812
813             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
814
815             /* Calculate temporary vectorial force */
816             tx               = _mm256_mul_ps(fscal,dx00);
817             ty               = _mm256_mul_ps(fscal,dy00);
818             tz               = _mm256_mul_ps(fscal,dz00);
819
820             /* Update vectorial force */
821             fix0             = _mm256_add_ps(fix0,tx);
822             fiy0             = _mm256_add_ps(fiy0,ty);
823             fiz0             = _mm256_add_ps(fiz0,tz);
824
825             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
826             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
827             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
828             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
829             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
830             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
831             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
832             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
833             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
834
835             }
836
837             /* Inner loop uses 57 flops */
838         }
839
840         /* End of innermost loop */
841
842         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
843                                                  f+i_coord_offset,fshift+i_shift_offset);
844
845         /* Increment number of inner iterations */
846         inneriter                  += j_index_end - j_index_start;
847
848         /* Outer loop uses 6 flops */
849     }
850
851     /* Increment number of outer iterations */
852     outeriter        += nri;
853
854     /* Update outer/inner flops */
855
856     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*57);
857 }