Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecNone_VdwLJSh_GeomP1P1_avx_256_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_256_single
51  * Electrostatics interaction: None
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_256_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrE,jnrF,jnrG,jnrH;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
83     real             scratch[4*DIM];
84     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     real *           vdwioffsetptr0;
86     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
88     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     int              nvdwtype;
91     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
95     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
96     __m256           dummy_mask,cutoff_mask;
97     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
98     __m256           one     = _mm256_set1_ps(1.0);
99     __m256           two     = _mm256_set1_ps(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     rcutoff_scalar   = fr->ic->rvdw;
116     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
117     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
118
119     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
120     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128     j_coord_offsetE = 0;
129     j_coord_offsetF = 0;
130     j_coord_offsetG = 0;
131     j_coord_offsetH = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _mm256_setzero_ps();
159         fiy0             = _mm256_setzero_ps();
160         fiz0             = _mm256_setzero_ps();
161
162         /* Load parameters for i particles */
163         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
164
165         /* Reset potential sums */
166         vvdwsum          = _mm256_setzero_ps();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             jnrC             = jjnr[jidx+2];
176             jnrD             = jjnr[jidx+3];
177             jnrE             = jjnr[jidx+4];
178             jnrF             = jjnr[jidx+5];
179             jnrG             = jjnr[jidx+6];
180             jnrH             = jjnr[jidx+7];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183             j_coord_offsetC  = DIM*jnrC;
184             j_coord_offsetD  = DIM*jnrD;
185             j_coord_offsetE  = DIM*jnrE;
186             j_coord_offsetF  = DIM*jnrF;
187             j_coord_offsetG  = DIM*jnrG;
188             j_coord_offsetH  = DIM*jnrH;
189
190             /* load j atom coordinates */
191             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
192                                                  x+j_coord_offsetC,x+j_coord_offsetD,
193                                                  x+j_coord_offsetE,x+j_coord_offsetF,
194                                                  x+j_coord_offsetG,x+j_coord_offsetH,
195                                                  &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm256_sub_ps(ix0,jx0);
199             dy00             = _mm256_sub_ps(iy0,jy0);
200             dz00             = _mm256_sub_ps(iz0,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
204
205             rinvsq00         = avx256_inv_f(rsq00);
206
207             /* Load parameters for j particles */
208             vdwjidx0A        = 2*vdwtype[jnrA+0];
209             vdwjidx0B        = 2*vdwtype[jnrB+0];
210             vdwjidx0C        = 2*vdwtype[jnrC+0];
211             vdwjidx0D        = 2*vdwtype[jnrD+0];
212             vdwjidx0E        = 2*vdwtype[jnrE+0];
213             vdwjidx0F        = 2*vdwtype[jnrF+0];
214             vdwjidx0G        = 2*vdwtype[jnrG+0];
215             vdwjidx0H        = 2*vdwtype[jnrH+0];
216
217             /**************************
218              * CALCULATE INTERACTIONS *
219              **************************/
220
221             if (gmx_mm256_any_lt(rsq00,rcutoff2))
222             {
223
224             /* Compute parameters for interactions between i and j atoms */
225             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
226                                             vdwioffsetptr0+vdwjidx0B,
227                                             vdwioffsetptr0+vdwjidx0C,
228                                             vdwioffsetptr0+vdwjidx0D,
229                                             vdwioffsetptr0+vdwjidx0E,
230                                             vdwioffsetptr0+vdwjidx0F,
231                                             vdwioffsetptr0+vdwjidx0G,
232                                             vdwioffsetptr0+vdwjidx0H,
233                                             &c6_00,&c12_00);
234
235             /* LENNARD-JONES DISPERSION/REPULSION */
236
237             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
238             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
239             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
240             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
241                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
242             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
243
244             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
245
246             /* Update potential sum for this i atom from the interaction with this j atom. */
247             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
248             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
249
250             fscal            = fvdw;
251
252             fscal            = _mm256_and_ps(fscal,cutoff_mask);
253
254             /* Calculate temporary vectorial force */
255             tx               = _mm256_mul_ps(fscal,dx00);
256             ty               = _mm256_mul_ps(fscal,dy00);
257             tz               = _mm256_mul_ps(fscal,dz00);
258
259             /* Update vectorial force */
260             fix0             = _mm256_add_ps(fix0,tx);
261             fiy0             = _mm256_add_ps(fiy0,ty);
262             fiz0             = _mm256_add_ps(fiz0,tz);
263
264             fjptrA             = f+j_coord_offsetA;
265             fjptrB             = f+j_coord_offsetB;
266             fjptrC             = f+j_coord_offsetC;
267             fjptrD             = f+j_coord_offsetD;
268             fjptrE             = f+j_coord_offsetE;
269             fjptrF             = f+j_coord_offsetF;
270             fjptrG             = f+j_coord_offsetG;
271             fjptrH             = f+j_coord_offsetH;
272             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
273
274             }
275
276             /* Inner loop uses 41 flops */
277         }
278
279         if(jidx<j_index_end)
280         {
281
282             /* Get j neighbor index, and coordinate index */
283             jnrlistA         = jjnr[jidx];
284             jnrlistB         = jjnr[jidx+1];
285             jnrlistC         = jjnr[jidx+2];
286             jnrlistD         = jjnr[jidx+3];
287             jnrlistE         = jjnr[jidx+4];
288             jnrlistF         = jjnr[jidx+5];
289             jnrlistG         = jjnr[jidx+6];
290             jnrlistH         = jjnr[jidx+7];
291             /* Sign of each element will be negative for non-real atoms.
292              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
293              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
294              */
295             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
296                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
297                                             
298             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
299             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
300             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
301             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
302             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
303             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
304             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
305             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
306             j_coord_offsetA  = DIM*jnrA;
307             j_coord_offsetB  = DIM*jnrB;
308             j_coord_offsetC  = DIM*jnrC;
309             j_coord_offsetD  = DIM*jnrD;
310             j_coord_offsetE  = DIM*jnrE;
311             j_coord_offsetF  = DIM*jnrF;
312             j_coord_offsetG  = DIM*jnrG;
313             j_coord_offsetH  = DIM*jnrH;
314
315             /* load j atom coordinates */
316             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
317                                                  x+j_coord_offsetC,x+j_coord_offsetD,
318                                                  x+j_coord_offsetE,x+j_coord_offsetF,
319                                                  x+j_coord_offsetG,x+j_coord_offsetH,
320                                                  &jx0,&jy0,&jz0);
321
322             /* Calculate displacement vector */
323             dx00             = _mm256_sub_ps(ix0,jx0);
324             dy00             = _mm256_sub_ps(iy0,jy0);
325             dz00             = _mm256_sub_ps(iz0,jz0);
326
327             /* Calculate squared distance and things based on it */
328             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
329
330             rinvsq00         = avx256_inv_f(rsq00);
331
332             /* Load parameters for j particles */
333             vdwjidx0A        = 2*vdwtype[jnrA+0];
334             vdwjidx0B        = 2*vdwtype[jnrB+0];
335             vdwjidx0C        = 2*vdwtype[jnrC+0];
336             vdwjidx0D        = 2*vdwtype[jnrD+0];
337             vdwjidx0E        = 2*vdwtype[jnrE+0];
338             vdwjidx0F        = 2*vdwtype[jnrF+0];
339             vdwjidx0G        = 2*vdwtype[jnrG+0];
340             vdwjidx0H        = 2*vdwtype[jnrH+0];
341
342             /**************************
343              * CALCULATE INTERACTIONS *
344              **************************/
345
346             if (gmx_mm256_any_lt(rsq00,rcutoff2))
347             {
348
349             /* Compute parameters for interactions between i and j atoms */
350             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
351                                             vdwioffsetptr0+vdwjidx0B,
352                                             vdwioffsetptr0+vdwjidx0C,
353                                             vdwioffsetptr0+vdwjidx0D,
354                                             vdwioffsetptr0+vdwjidx0E,
355                                             vdwioffsetptr0+vdwjidx0F,
356                                             vdwioffsetptr0+vdwjidx0G,
357                                             vdwioffsetptr0+vdwjidx0H,
358                                             &c6_00,&c12_00);
359
360             /* LENNARD-JONES DISPERSION/REPULSION */
361
362             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
363             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
364             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
365             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
366                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
367             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
368
369             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
373             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
374             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
375
376             fscal            = fvdw;
377
378             fscal            = _mm256_and_ps(fscal,cutoff_mask);
379
380             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
381
382             /* Calculate temporary vectorial force */
383             tx               = _mm256_mul_ps(fscal,dx00);
384             ty               = _mm256_mul_ps(fscal,dy00);
385             tz               = _mm256_mul_ps(fscal,dz00);
386
387             /* Update vectorial force */
388             fix0             = _mm256_add_ps(fix0,tx);
389             fiy0             = _mm256_add_ps(fiy0,ty);
390             fiz0             = _mm256_add_ps(fiz0,tz);
391
392             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
393             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
394             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
395             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
396             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
397             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
398             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
399             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
400             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
401
402             }
403
404             /* Inner loop uses 41 flops */
405         }
406
407         /* End of innermost loop */
408
409         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
410                                                  f+i_coord_offset,fshift+i_shift_offset);
411
412         ggid                        = gid[iidx];
413         /* Update potential energies */
414         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
415
416         /* Increment number of inner iterations */
417         inneriter                  += j_index_end - j_index_start;
418
419         /* Outer loop uses 7 flops */
420     }
421
422     /* Increment number of outer iterations */
423     outeriter        += nri;
424
425     /* Update outer/inner flops */
426
427     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*41);
428 }
429 /*
430  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_256_single
431  * Electrostatics interaction: None
432  * VdW interaction:            LennardJones
433  * Geometry:                   Particle-Particle
434  * Calculate force/pot:        Force
435  */
436 void
437 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_256_single
438                     (t_nblist                    * gmx_restrict       nlist,
439                      rvec                        * gmx_restrict          xx,
440                      rvec                        * gmx_restrict          ff,
441                      struct t_forcerec           * gmx_restrict          fr,
442                      t_mdatoms                   * gmx_restrict     mdatoms,
443                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
444                      t_nrnb                      * gmx_restrict        nrnb)
445 {
446     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
447      * just 0 for non-waters.
448      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
449      * jnr indices corresponding to data put in the four positions in the SIMD register.
450      */
451     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
452     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
453     int              jnrA,jnrB,jnrC,jnrD;
454     int              jnrE,jnrF,jnrG,jnrH;
455     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
456     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
457     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
458     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
459     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
460     real             rcutoff_scalar;
461     real             *shiftvec,*fshift,*x,*f;
462     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
463     real             scratch[4*DIM];
464     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
465     real *           vdwioffsetptr0;
466     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
467     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
468     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
469     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
470     int              nvdwtype;
471     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
472     int              *vdwtype;
473     real             *vdwparam;
474     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
475     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
476     __m256           dummy_mask,cutoff_mask;
477     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
478     __m256           one     = _mm256_set1_ps(1.0);
479     __m256           two     = _mm256_set1_ps(2.0);
480     x                = xx[0];
481     f                = ff[0];
482
483     nri              = nlist->nri;
484     iinr             = nlist->iinr;
485     jindex           = nlist->jindex;
486     jjnr             = nlist->jjnr;
487     shiftidx         = nlist->shift;
488     gid              = nlist->gid;
489     shiftvec         = fr->shift_vec[0];
490     fshift           = fr->fshift[0];
491     nvdwtype         = fr->ntype;
492     vdwparam         = fr->nbfp;
493     vdwtype          = mdatoms->typeA;
494
495     rcutoff_scalar   = fr->ic->rvdw;
496     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
497     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
498
499     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
500     rvdw             = _mm256_set1_ps(fr->ic->rvdw);
501
502     /* Avoid stupid compiler warnings */
503     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
504     j_coord_offsetA = 0;
505     j_coord_offsetB = 0;
506     j_coord_offsetC = 0;
507     j_coord_offsetD = 0;
508     j_coord_offsetE = 0;
509     j_coord_offsetF = 0;
510     j_coord_offsetG = 0;
511     j_coord_offsetH = 0;
512
513     outeriter        = 0;
514     inneriter        = 0;
515
516     for(iidx=0;iidx<4*DIM;iidx++)
517     {
518         scratch[iidx] = 0.0;
519     }
520
521     /* Start outer loop over neighborlists */
522     for(iidx=0; iidx<nri; iidx++)
523     {
524         /* Load shift vector for this list */
525         i_shift_offset   = DIM*shiftidx[iidx];
526
527         /* Load limits for loop over neighbors */
528         j_index_start    = jindex[iidx];
529         j_index_end      = jindex[iidx+1];
530
531         /* Get outer coordinate index */
532         inr              = iinr[iidx];
533         i_coord_offset   = DIM*inr;
534
535         /* Load i particle coords and add shift vector */
536         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
537
538         fix0             = _mm256_setzero_ps();
539         fiy0             = _mm256_setzero_ps();
540         fiz0             = _mm256_setzero_ps();
541
542         /* Load parameters for i particles */
543         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
544
545         /* Start inner kernel loop */
546         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
547         {
548
549             /* Get j neighbor index, and coordinate index */
550             jnrA             = jjnr[jidx];
551             jnrB             = jjnr[jidx+1];
552             jnrC             = jjnr[jidx+2];
553             jnrD             = jjnr[jidx+3];
554             jnrE             = jjnr[jidx+4];
555             jnrF             = jjnr[jidx+5];
556             jnrG             = jjnr[jidx+6];
557             jnrH             = jjnr[jidx+7];
558             j_coord_offsetA  = DIM*jnrA;
559             j_coord_offsetB  = DIM*jnrB;
560             j_coord_offsetC  = DIM*jnrC;
561             j_coord_offsetD  = DIM*jnrD;
562             j_coord_offsetE  = DIM*jnrE;
563             j_coord_offsetF  = DIM*jnrF;
564             j_coord_offsetG  = DIM*jnrG;
565             j_coord_offsetH  = DIM*jnrH;
566
567             /* load j atom coordinates */
568             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
569                                                  x+j_coord_offsetC,x+j_coord_offsetD,
570                                                  x+j_coord_offsetE,x+j_coord_offsetF,
571                                                  x+j_coord_offsetG,x+j_coord_offsetH,
572                                                  &jx0,&jy0,&jz0);
573
574             /* Calculate displacement vector */
575             dx00             = _mm256_sub_ps(ix0,jx0);
576             dy00             = _mm256_sub_ps(iy0,jy0);
577             dz00             = _mm256_sub_ps(iz0,jz0);
578
579             /* Calculate squared distance and things based on it */
580             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
581
582             rinvsq00         = avx256_inv_f(rsq00);
583
584             /* Load parameters for j particles */
585             vdwjidx0A        = 2*vdwtype[jnrA+0];
586             vdwjidx0B        = 2*vdwtype[jnrB+0];
587             vdwjidx0C        = 2*vdwtype[jnrC+0];
588             vdwjidx0D        = 2*vdwtype[jnrD+0];
589             vdwjidx0E        = 2*vdwtype[jnrE+0];
590             vdwjidx0F        = 2*vdwtype[jnrF+0];
591             vdwjidx0G        = 2*vdwtype[jnrG+0];
592             vdwjidx0H        = 2*vdwtype[jnrH+0];
593
594             /**************************
595              * CALCULATE INTERACTIONS *
596              **************************/
597
598             if (gmx_mm256_any_lt(rsq00,rcutoff2))
599             {
600
601             /* Compute parameters for interactions between i and j atoms */
602             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
603                                             vdwioffsetptr0+vdwjidx0B,
604                                             vdwioffsetptr0+vdwjidx0C,
605                                             vdwioffsetptr0+vdwjidx0D,
606                                             vdwioffsetptr0+vdwjidx0E,
607                                             vdwioffsetptr0+vdwjidx0F,
608                                             vdwioffsetptr0+vdwjidx0G,
609                                             vdwioffsetptr0+vdwjidx0H,
610                                             &c6_00,&c12_00);
611
612             /* LENNARD-JONES DISPERSION/REPULSION */
613
614             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
615             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
616
617             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
618
619             fscal            = fvdw;
620
621             fscal            = _mm256_and_ps(fscal,cutoff_mask);
622
623             /* Calculate temporary vectorial force */
624             tx               = _mm256_mul_ps(fscal,dx00);
625             ty               = _mm256_mul_ps(fscal,dy00);
626             tz               = _mm256_mul_ps(fscal,dz00);
627
628             /* Update vectorial force */
629             fix0             = _mm256_add_ps(fix0,tx);
630             fiy0             = _mm256_add_ps(fiy0,ty);
631             fiz0             = _mm256_add_ps(fiz0,tz);
632
633             fjptrA             = f+j_coord_offsetA;
634             fjptrB             = f+j_coord_offsetB;
635             fjptrC             = f+j_coord_offsetC;
636             fjptrD             = f+j_coord_offsetD;
637             fjptrE             = f+j_coord_offsetE;
638             fjptrF             = f+j_coord_offsetF;
639             fjptrG             = f+j_coord_offsetG;
640             fjptrH             = f+j_coord_offsetH;
641             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
642
643             }
644
645             /* Inner loop uses 30 flops */
646         }
647
648         if(jidx<j_index_end)
649         {
650
651             /* Get j neighbor index, and coordinate index */
652             jnrlistA         = jjnr[jidx];
653             jnrlistB         = jjnr[jidx+1];
654             jnrlistC         = jjnr[jidx+2];
655             jnrlistD         = jjnr[jidx+3];
656             jnrlistE         = jjnr[jidx+4];
657             jnrlistF         = jjnr[jidx+5];
658             jnrlistG         = jjnr[jidx+6];
659             jnrlistH         = jjnr[jidx+7];
660             /* Sign of each element will be negative for non-real atoms.
661              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
662              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
663              */
664             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
665                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
666                                             
667             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
668             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
669             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
670             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
671             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
672             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
673             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
674             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
675             j_coord_offsetA  = DIM*jnrA;
676             j_coord_offsetB  = DIM*jnrB;
677             j_coord_offsetC  = DIM*jnrC;
678             j_coord_offsetD  = DIM*jnrD;
679             j_coord_offsetE  = DIM*jnrE;
680             j_coord_offsetF  = DIM*jnrF;
681             j_coord_offsetG  = DIM*jnrG;
682             j_coord_offsetH  = DIM*jnrH;
683
684             /* load j atom coordinates */
685             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
686                                                  x+j_coord_offsetC,x+j_coord_offsetD,
687                                                  x+j_coord_offsetE,x+j_coord_offsetF,
688                                                  x+j_coord_offsetG,x+j_coord_offsetH,
689                                                  &jx0,&jy0,&jz0);
690
691             /* Calculate displacement vector */
692             dx00             = _mm256_sub_ps(ix0,jx0);
693             dy00             = _mm256_sub_ps(iy0,jy0);
694             dz00             = _mm256_sub_ps(iz0,jz0);
695
696             /* Calculate squared distance and things based on it */
697             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
698
699             rinvsq00         = avx256_inv_f(rsq00);
700
701             /* Load parameters for j particles */
702             vdwjidx0A        = 2*vdwtype[jnrA+0];
703             vdwjidx0B        = 2*vdwtype[jnrB+0];
704             vdwjidx0C        = 2*vdwtype[jnrC+0];
705             vdwjidx0D        = 2*vdwtype[jnrD+0];
706             vdwjidx0E        = 2*vdwtype[jnrE+0];
707             vdwjidx0F        = 2*vdwtype[jnrF+0];
708             vdwjidx0G        = 2*vdwtype[jnrG+0];
709             vdwjidx0H        = 2*vdwtype[jnrH+0];
710
711             /**************************
712              * CALCULATE INTERACTIONS *
713              **************************/
714
715             if (gmx_mm256_any_lt(rsq00,rcutoff2))
716             {
717
718             /* Compute parameters for interactions between i and j atoms */
719             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
720                                             vdwioffsetptr0+vdwjidx0B,
721                                             vdwioffsetptr0+vdwjidx0C,
722                                             vdwioffsetptr0+vdwjidx0D,
723                                             vdwioffsetptr0+vdwjidx0E,
724                                             vdwioffsetptr0+vdwjidx0F,
725                                             vdwioffsetptr0+vdwjidx0G,
726                                             vdwioffsetptr0+vdwjidx0H,
727                                             &c6_00,&c12_00);
728
729             /* LENNARD-JONES DISPERSION/REPULSION */
730
731             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
732             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
733
734             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
735
736             fscal            = fvdw;
737
738             fscal            = _mm256_and_ps(fscal,cutoff_mask);
739
740             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
741
742             /* Calculate temporary vectorial force */
743             tx               = _mm256_mul_ps(fscal,dx00);
744             ty               = _mm256_mul_ps(fscal,dy00);
745             tz               = _mm256_mul_ps(fscal,dz00);
746
747             /* Update vectorial force */
748             fix0             = _mm256_add_ps(fix0,tx);
749             fiy0             = _mm256_add_ps(fiy0,ty);
750             fiz0             = _mm256_add_ps(fiz0,tz);
751
752             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
753             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
754             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
755             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
756             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
757             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
758             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
759             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
760             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
761
762             }
763
764             /* Inner loop uses 30 flops */
765         }
766
767         /* End of innermost loop */
768
769         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
770                                                  f+i_coord_offset,fshift+i_shift_offset);
771
772         /* Increment number of inner iterations */
773         inneriter                  += j_index_end - j_index_start;
774
775         /* Outer loop uses 6 flops */
776     }
777
778     /* Increment number of outer iterations */
779     outeriter        += nri;
780
781     /* Update outer/inner flops */
782
783     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*30);
784 }