ba3cfd5f81b9f3e1ac1742fdff51bfe89991f946
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecNone_VdwLJSh_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_256_single
52  * Electrostatics interaction: None
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_256_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrE,jnrF,jnrG,jnrH;
76     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84     real             scratch[4*DIM];
85     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
89     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     int              nvdwtype;
92     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
96     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
97     __m256           dummy_mask,cutoff_mask;
98     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
99     __m256           one     = _mm256_set1_ps(1.0);
100     __m256           two     = _mm256_set1_ps(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     rcutoff_scalar   = fr->rvdw;
117     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
118     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
119
120     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
121     rvdw             = _mm256_set1_ps(fr->rvdw);
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127     j_coord_offsetC = 0;
128     j_coord_offsetD = 0;
129     j_coord_offsetE = 0;
130     j_coord_offsetF = 0;
131     j_coord_offsetG = 0;
132     j_coord_offsetH = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     for(iidx=0;iidx<4*DIM;iidx++)
138     {
139         scratch[iidx] = 0.0;
140     }
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
158
159         fix0             = _mm256_setzero_ps();
160         fiy0             = _mm256_setzero_ps();
161         fiz0             = _mm256_setzero_ps();
162
163         /* Load parameters for i particles */
164         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
165
166         /* Reset potential sums */
167         vvdwsum          = _mm256_setzero_ps();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             jnrC             = jjnr[jidx+2];
177             jnrD             = jjnr[jidx+3];
178             jnrE             = jjnr[jidx+4];
179             jnrF             = jjnr[jidx+5];
180             jnrG             = jjnr[jidx+6];
181             jnrH             = jjnr[jidx+7];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184             j_coord_offsetC  = DIM*jnrC;
185             j_coord_offsetD  = DIM*jnrD;
186             j_coord_offsetE  = DIM*jnrE;
187             j_coord_offsetF  = DIM*jnrF;
188             j_coord_offsetG  = DIM*jnrG;
189             j_coord_offsetH  = DIM*jnrH;
190
191             /* load j atom coordinates */
192             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
193                                                  x+j_coord_offsetC,x+j_coord_offsetD,
194                                                  x+j_coord_offsetE,x+j_coord_offsetF,
195                                                  x+j_coord_offsetG,x+j_coord_offsetH,
196                                                  &jx0,&jy0,&jz0);
197
198             /* Calculate displacement vector */
199             dx00             = _mm256_sub_ps(ix0,jx0);
200             dy00             = _mm256_sub_ps(iy0,jy0);
201             dz00             = _mm256_sub_ps(iz0,jz0);
202
203             /* Calculate squared distance and things based on it */
204             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
205
206             rinvsq00         = gmx_mm256_inv_ps(rsq00);
207
208             /* Load parameters for j particles */
209             vdwjidx0A        = 2*vdwtype[jnrA+0];
210             vdwjidx0B        = 2*vdwtype[jnrB+0];
211             vdwjidx0C        = 2*vdwtype[jnrC+0];
212             vdwjidx0D        = 2*vdwtype[jnrD+0];
213             vdwjidx0E        = 2*vdwtype[jnrE+0];
214             vdwjidx0F        = 2*vdwtype[jnrF+0];
215             vdwjidx0G        = 2*vdwtype[jnrG+0];
216             vdwjidx0H        = 2*vdwtype[jnrH+0];
217
218             /**************************
219              * CALCULATE INTERACTIONS *
220              **************************/
221
222             if (gmx_mm256_any_lt(rsq00,rcutoff2))
223             {
224
225             /* Compute parameters for interactions between i and j atoms */
226             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
227                                             vdwioffsetptr0+vdwjidx0B,
228                                             vdwioffsetptr0+vdwjidx0C,
229                                             vdwioffsetptr0+vdwjidx0D,
230                                             vdwioffsetptr0+vdwjidx0E,
231                                             vdwioffsetptr0+vdwjidx0F,
232                                             vdwioffsetptr0+vdwjidx0G,
233                                             vdwioffsetptr0+vdwjidx0H,
234                                             &c6_00,&c12_00);
235
236             /* LENNARD-JONES DISPERSION/REPULSION */
237
238             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
239             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
240             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
241             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
242                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
243             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
244
245             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
246
247             /* Update potential sum for this i atom from the interaction with this j atom. */
248             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
249             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
250
251             fscal            = fvdw;
252
253             fscal            = _mm256_and_ps(fscal,cutoff_mask);
254
255             /* Calculate temporary vectorial force */
256             tx               = _mm256_mul_ps(fscal,dx00);
257             ty               = _mm256_mul_ps(fscal,dy00);
258             tz               = _mm256_mul_ps(fscal,dz00);
259
260             /* Update vectorial force */
261             fix0             = _mm256_add_ps(fix0,tx);
262             fiy0             = _mm256_add_ps(fiy0,ty);
263             fiz0             = _mm256_add_ps(fiz0,tz);
264
265             fjptrA             = f+j_coord_offsetA;
266             fjptrB             = f+j_coord_offsetB;
267             fjptrC             = f+j_coord_offsetC;
268             fjptrD             = f+j_coord_offsetD;
269             fjptrE             = f+j_coord_offsetE;
270             fjptrF             = f+j_coord_offsetF;
271             fjptrG             = f+j_coord_offsetG;
272             fjptrH             = f+j_coord_offsetH;
273             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
274
275             }
276
277             /* Inner loop uses 41 flops */
278         }
279
280         if(jidx<j_index_end)
281         {
282
283             /* Get j neighbor index, and coordinate index */
284             jnrlistA         = jjnr[jidx];
285             jnrlistB         = jjnr[jidx+1];
286             jnrlistC         = jjnr[jidx+2];
287             jnrlistD         = jjnr[jidx+3];
288             jnrlistE         = jjnr[jidx+4];
289             jnrlistF         = jjnr[jidx+5];
290             jnrlistG         = jjnr[jidx+6];
291             jnrlistH         = jjnr[jidx+7];
292             /* Sign of each element will be negative for non-real atoms.
293              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
294              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
295              */
296             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
297                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
298                                             
299             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
300             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
301             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
302             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
303             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
304             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
305             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
306             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
307             j_coord_offsetA  = DIM*jnrA;
308             j_coord_offsetB  = DIM*jnrB;
309             j_coord_offsetC  = DIM*jnrC;
310             j_coord_offsetD  = DIM*jnrD;
311             j_coord_offsetE  = DIM*jnrE;
312             j_coord_offsetF  = DIM*jnrF;
313             j_coord_offsetG  = DIM*jnrG;
314             j_coord_offsetH  = DIM*jnrH;
315
316             /* load j atom coordinates */
317             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
318                                                  x+j_coord_offsetC,x+j_coord_offsetD,
319                                                  x+j_coord_offsetE,x+j_coord_offsetF,
320                                                  x+j_coord_offsetG,x+j_coord_offsetH,
321                                                  &jx0,&jy0,&jz0);
322
323             /* Calculate displacement vector */
324             dx00             = _mm256_sub_ps(ix0,jx0);
325             dy00             = _mm256_sub_ps(iy0,jy0);
326             dz00             = _mm256_sub_ps(iz0,jz0);
327
328             /* Calculate squared distance and things based on it */
329             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
330
331             rinvsq00         = gmx_mm256_inv_ps(rsq00);
332
333             /* Load parameters for j particles */
334             vdwjidx0A        = 2*vdwtype[jnrA+0];
335             vdwjidx0B        = 2*vdwtype[jnrB+0];
336             vdwjidx0C        = 2*vdwtype[jnrC+0];
337             vdwjidx0D        = 2*vdwtype[jnrD+0];
338             vdwjidx0E        = 2*vdwtype[jnrE+0];
339             vdwjidx0F        = 2*vdwtype[jnrF+0];
340             vdwjidx0G        = 2*vdwtype[jnrG+0];
341             vdwjidx0H        = 2*vdwtype[jnrH+0];
342
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             if (gmx_mm256_any_lt(rsq00,rcutoff2))
348             {
349
350             /* Compute parameters for interactions between i and j atoms */
351             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
352                                             vdwioffsetptr0+vdwjidx0B,
353                                             vdwioffsetptr0+vdwjidx0C,
354                                             vdwioffsetptr0+vdwjidx0D,
355                                             vdwioffsetptr0+vdwjidx0E,
356                                             vdwioffsetptr0+vdwjidx0F,
357                                             vdwioffsetptr0+vdwjidx0G,
358                                             vdwioffsetptr0+vdwjidx0H,
359                                             &c6_00,&c12_00);
360
361             /* LENNARD-JONES DISPERSION/REPULSION */
362
363             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
364             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
365             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
366             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
367                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
368             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
369
370             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
374             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
375             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
376
377             fscal            = fvdw;
378
379             fscal            = _mm256_and_ps(fscal,cutoff_mask);
380
381             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
382
383             /* Calculate temporary vectorial force */
384             tx               = _mm256_mul_ps(fscal,dx00);
385             ty               = _mm256_mul_ps(fscal,dy00);
386             tz               = _mm256_mul_ps(fscal,dz00);
387
388             /* Update vectorial force */
389             fix0             = _mm256_add_ps(fix0,tx);
390             fiy0             = _mm256_add_ps(fiy0,ty);
391             fiz0             = _mm256_add_ps(fiz0,tz);
392
393             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
394             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
395             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
396             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
397             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
398             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
399             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
400             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
401             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
402
403             }
404
405             /* Inner loop uses 41 flops */
406         }
407
408         /* End of innermost loop */
409
410         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
411                                                  f+i_coord_offset,fshift+i_shift_offset);
412
413         ggid                        = gid[iidx];
414         /* Update potential energies */
415         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
416
417         /* Increment number of inner iterations */
418         inneriter                  += j_index_end - j_index_start;
419
420         /* Outer loop uses 7 flops */
421     }
422
423     /* Increment number of outer iterations */
424     outeriter        += nri;
425
426     /* Update outer/inner flops */
427
428     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*41);
429 }
430 /*
431  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_256_single
432  * Electrostatics interaction: None
433  * VdW interaction:            LennardJones
434  * Geometry:                   Particle-Particle
435  * Calculate force/pot:        Force
436  */
437 void
438 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_256_single
439                     (t_nblist                    * gmx_restrict       nlist,
440                      rvec                        * gmx_restrict          xx,
441                      rvec                        * gmx_restrict          ff,
442                      t_forcerec                  * gmx_restrict          fr,
443                      t_mdatoms                   * gmx_restrict     mdatoms,
444                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
445                      t_nrnb                      * gmx_restrict        nrnb)
446 {
447     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
448      * just 0 for non-waters.
449      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
450      * jnr indices corresponding to data put in the four positions in the SIMD register.
451      */
452     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
453     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
454     int              jnrA,jnrB,jnrC,jnrD;
455     int              jnrE,jnrF,jnrG,jnrH;
456     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
457     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
458     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
459     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
460     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
461     real             rcutoff_scalar;
462     real             *shiftvec,*fshift,*x,*f;
463     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
464     real             scratch[4*DIM];
465     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
466     real *           vdwioffsetptr0;
467     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
468     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
469     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
470     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
471     int              nvdwtype;
472     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
473     int              *vdwtype;
474     real             *vdwparam;
475     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
476     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
477     __m256           dummy_mask,cutoff_mask;
478     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
479     __m256           one     = _mm256_set1_ps(1.0);
480     __m256           two     = _mm256_set1_ps(2.0);
481     x                = xx[0];
482     f                = ff[0];
483
484     nri              = nlist->nri;
485     iinr             = nlist->iinr;
486     jindex           = nlist->jindex;
487     jjnr             = nlist->jjnr;
488     shiftidx         = nlist->shift;
489     gid              = nlist->gid;
490     shiftvec         = fr->shift_vec[0];
491     fshift           = fr->fshift[0];
492     nvdwtype         = fr->ntype;
493     vdwparam         = fr->nbfp;
494     vdwtype          = mdatoms->typeA;
495
496     rcutoff_scalar   = fr->rvdw;
497     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
498     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
499
500     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
501     rvdw             = _mm256_set1_ps(fr->rvdw);
502
503     /* Avoid stupid compiler warnings */
504     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
505     j_coord_offsetA = 0;
506     j_coord_offsetB = 0;
507     j_coord_offsetC = 0;
508     j_coord_offsetD = 0;
509     j_coord_offsetE = 0;
510     j_coord_offsetF = 0;
511     j_coord_offsetG = 0;
512     j_coord_offsetH = 0;
513
514     outeriter        = 0;
515     inneriter        = 0;
516
517     for(iidx=0;iidx<4*DIM;iidx++)
518     {
519         scratch[iidx] = 0.0;
520     }
521
522     /* Start outer loop over neighborlists */
523     for(iidx=0; iidx<nri; iidx++)
524     {
525         /* Load shift vector for this list */
526         i_shift_offset   = DIM*shiftidx[iidx];
527
528         /* Load limits for loop over neighbors */
529         j_index_start    = jindex[iidx];
530         j_index_end      = jindex[iidx+1];
531
532         /* Get outer coordinate index */
533         inr              = iinr[iidx];
534         i_coord_offset   = DIM*inr;
535
536         /* Load i particle coords and add shift vector */
537         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
538
539         fix0             = _mm256_setzero_ps();
540         fiy0             = _mm256_setzero_ps();
541         fiz0             = _mm256_setzero_ps();
542
543         /* Load parameters for i particles */
544         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
545
546         /* Start inner kernel loop */
547         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
548         {
549
550             /* Get j neighbor index, and coordinate index */
551             jnrA             = jjnr[jidx];
552             jnrB             = jjnr[jidx+1];
553             jnrC             = jjnr[jidx+2];
554             jnrD             = jjnr[jidx+3];
555             jnrE             = jjnr[jidx+4];
556             jnrF             = jjnr[jidx+5];
557             jnrG             = jjnr[jidx+6];
558             jnrH             = jjnr[jidx+7];
559             j_coord_offsetA  = DIM*jnrA;
560             j_coord_offsetB  = DIM*jnrB;
561             j_coord_offsetC  = DIM*jnrC;
562             j_coord_offsetD  = DIM*jnrD;
563             j_coord_offsetE  = DIM*jnrE;
564             j_coord_offsetF  = DIM*jnrF;
565             j_coord_offsetG  = DIM*jnrG;
566             j_coord_offsetH  = DIM*jnrH;
567
568             /* load j atom coordinates */
569             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
570                                                  x+j_coord_offsetC,x+j_coord_offsetD,
571                                                  x+j_coord_offsetE,x+j_coord_offsetF,
572                                                  x+j_coord_offsetG,x+j_coord_offsetH,
573                                                  &jx0,&jy0,&jz0);
574
575             /* Calculate displacement vector */
576             dx00             = _mm256_sub_ps(ix0,jx0);
577             dy00             = _mm256_sub_ps(iy0,jy0);
578             dz00             = _mm256_sub_ps(iz0,jz0);
579
580             /* Calculate squared distance and things based on it */
581             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
582
583             rinvsq00         = gmx_mm256_inv_ps(rsq00);
584
585             /* Load parameters for j particles */
586             vdwjidx0A        = 2*vdwtype[jnrA+0];
587             vdwjidx0B        = 2*vdwtype[jnrB+0];
588             vdwjidx0C        = 2*vdwtype[jnrC+0];
589             vdwjidx0D        = 2*vdwtype[jnrD+0];
590             vdwjidx0E        = 2*vdwtype[jnrE+0];
591             vdwjidx0F        = 2*vdwtype[jnrF+0];
592             vdwjidx0G        = 2*vdwtype[jnrG+0];
593             vdwjidx0H        = 2*vdwtype[jnrH+0];
594
595             /**************************
596              * CALCULATE INTERACTIONS *
597              **************************/
598
599             if (gmx_mm256_any_lt(rsq00,rcutoff2))
600             {
601
602             /* Compute parameters for interactions between i and j atoms */
603             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
604                                             vdwioffsetptr0+vdwjidx0B,
605                                             vdwioffsetptr0+vdwjidx0C,
606                                             vdwioffsetptr0+vdwjidx0D,
607                                             vdwioffsetptr0+vdwjidx0E,
608                                             vdwioffsetptr0+vdwjidx0F,
609                                             vdwioffsetptr0+vdwjidx0G,
610                                             vdwioffsetptr0+vdwjidx0H,
611                                             &c6_00,&c12_00);
612
613             /* LENNARD-JONES DISPERSION/REPULSION */
614
615             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
616             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
617
618             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
619
620             fscal            = fvdw;
621
622             fscal            = _mm256_and_ps(fscal,cutoff_mask);
623
624             /* Calculate temporary vectorial force */
625             tx               = _mm256_mul_ps(fscal,dx00);
626             ty               = _mm256_mul_ps(fscal,dy00);
627             tz               = _mm256_mul_ps(fscal,dz00);
628
629             /* Update vectorial force */
630             fix0             = _mm256_add_ps(fix0,tx);
631             fiy0             = _mm256_add_ps(fiy0,ty);
632             fiz0             = _mm256_add_ps(fiz0,tz);
633
634             fjptrA             = f+j_coord_offsetA;
635             fjptrB             = f+j_coord_offsetB;
636             fjptrC             = f+j_coord_offsetC;
637             fjptrD             = f+j_coord_offsetD;
638             fjptrE             = f+j_coord_offsetE;
639             fjptrF             = f+j_coord_offsetF;
640             fjptrG             = f+j_coord_offsetG;
641             fjptrH             = f+j_coord_offsetH;
642             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
643
644             }
645
646             /* Inner loop uses 30 flops */
647         }
648
649         if(jidx<j_index_end)
650         {
651
652             /* Get j neighbor index, and coordinate index */
653             jnrlistA         = jjnr[jidx];
654             jnrlistB         = jjnr[jidx+1];
655             jnrlistC         = jjnr[jidx+2];
656             jnrlistD         = jjnr[jidx+3];
657             jnrlistE         = jjnr[jidx+4];
658             jnrlistF         = jjnr[jidx+5];
659             jnrlistG         = jjnr[jidx+6];
660             jnrlistH         = jjnr[jidx+7];
661             /* Sign of each element will be negative for non-real atoms.
662              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
663              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
664              */
665             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
666                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
667                                             
668             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
669             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
670             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
671             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
672             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
673             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
674             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
675             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
676             j_coord_offsetA  = DIM*jnrA;
677             j_coord_offsetB  = DIM*jnrB;
678             j_coord_offsetC  = DIM*jnrC;
679             j_coord_offsetD  = DIM*jnrD;
680             j_coord_offsetE  = DIM*jnrE;
681             j_coord_offsetF  = DIM*jnrF;
682             j_coord_offsetG  = DIM*jnrG;
683             j_coord_offsetH  = DIM*jnrH;
684
685             /* load j atom coordinates */
686             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
687                                                  x+j_coord_offsetC,x+j_coord_offsetD,
688                                                  x+j_coord_offsetE,x+j_coord_offsetF,
689                                                  x+j_coord_offsetG,x+j_coord_offsetH,
690                                                  &jx0,&jy0,&jz0);
691
692             /* Calculate displacement vector */
693             dx00             = _mm256_sub_ps(ix0,jx0);
694             dy00             = _mm256_sub_ps(iy0,jy0);
695             dz00             = _mm256_sub_ps(iz0,jz0);
696
697             /* Calculate squared distance and things based on it */
698             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
699
700             rinvsq00         = gmx_mm256_inv_ps(rsq00);
701
702             /* Load parameters for j particles */
703             vdwjidx0A        = 2*vdwtype[jnrA+0];
704             vdwjidx0B        = 2*vdwtype[jnrB+0];
705             vdwjidx0C        = 2*vdwtype[jnrC+0];
706             vdwjidx0D        = 2*vdwtype[jnrD+0];
707             vdwjidx0E        = 2*vdwtype[jnrE+0];
708             vdwjidx0F        = 2*vdwtype[jnrF+0];
709             vdwjidx0G        = 2*vdwtype[jnrG+0];
710             vdwjidx0H        = 2*vdwtype[jnrH+0];
711
712             /**************************
713              * CALCULATE INTERACTIONS *
714              **************************/
715
716             if (gmx_mm256_any_lt(rsq00,rcutoff2))
717             {
718
719             /* Compute parameters for interactions between i and j atoms */
720             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
721                                             vdwioffsetptr0+vdwjidx0B,
722                                             vdwioffsetptr0+vdwjidx0C,
723                                             vdwioffsetptr0+vdwjidx0D,
724                                             vdwioffsetptr0+vdwjidx0E,
725                                             vdwioffsetptr0+vdwjidx0F,
726                                             vdwioffsetptr0+vdwjidx0G,
727                                             vdwioffsetptr0+vdwjidx0H,
728                                             &c6_00,&c12_00);
729
730             /* LENNARD-JONES DISPERSION/REPULSION */
731
732             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
733             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
734
735             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
736
737             fscal            = fvdw;
738
739             fscal            = _mm256_and_ps(fscal,cutoff_mask);
740
741             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
742
743             /* Calculate temporary vectorial force */
744             tx               = _mm256_mul_ps(fscal,dx00);
745             ty               = _mm256_mul_ps(fscal,dy00);
746             tz               = _mm256_mul_ps(fscal,dz00);
747
748             /* Update vectorial force */
749             fix0             = _mm256_add_ps(fix0,tx);
750             fiy0             = _mm256_add_ps(fiy0,ty);
751             fiz0             = _mm256_add_ps(fiz0,tz);
752
753             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
754             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
755             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
756             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
757             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
758             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
759             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
760             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
761             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
762
763             }
764
765             /* Inner loop uses 30 flops */
766         }
767
768         /* End of innermost loop */
769
770         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
771                                                  f+i_coord_offset,fshift+i_shift_offset);
772
773         /* Increment number of inner iterations */
774         inneriter                  += j_index_end - j_index_start;
775
776         /* Outer loop uses 6 flops */
777     }
778
779     /* Increment number of outer iterations */
780     outeriter        += nri;
781
782     /* Update outer/inner flops */
783
784     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*30);
785 }