Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecNone_VdwLJSh_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_256_single
54  * Electrostatics interaction: None
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
91     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     int              nvdwtype;
94     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
98     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
99     __m256           dummy_mask,cutoff_mask;
100     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
101     __m256           one     = _mm256_set1_ps(1.0);
102     __m256           two     = _mm256_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117
118     rcutoff_scalar   = fr->rvdw;
119     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
120     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
121
122     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
123     rvdw             = _mm256_set1_ps(fr->rvdw);
124
125     /* Avoid stupid compiler warnings */
126     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
127     j_coord_offsetA = 0;
128     j_coord_offsetB = 0;
129     j_coord_offsetC = 0;
130     j_coord_offsetD = 0;
131     j_coord_offsetE = 0;
132     j_coord_offsetF = 0;
133     j_coord_offsetG = 0;
134     j_coord_offsetH = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     for(iidx=0;iidx<4*DIM;iidx++)
140     {
141         scratch[iidx] = 0.0;
142     }
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
160
161         fix0             = _mm256_setzero_ps();
162         fiy0             = _mm256_setzero_ps();
163         fiz0             = _mm256_setzero_ps();
164
165         /* Load parameters for i particles */
166         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
167
168         /* Reset potential sums */
169         vvdwsum          = _mm256_setzero_ps();
170
171         /* Start inner kernel loop */
172         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
173         {
174
175             /* Get j neighbor index, and coordinate index */
176             jnrA             = jjnr[jidx];
177             jnrB             = jjnr[jidx+1];
178             jnrC             = jjnr[jidx+2];
179             jnrD             = jjnr[jidx+3];
180             jnrE             = jjnr[jidx+4];
181             jnrF             = jjnr[jidx+5];
182             jnrG             = jjnr[jidx+6];
183             jnrH             = jjnr[jidx+7];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186             j_coord_offsetC  = DIM*jnrC;
187             j_coord_offsetD  = DIM*jnrD;
188             j_coord_offsetE  = DIM*jnrE;
189             j_coord_offsetF  = DIM*jnrF;
190             j_coord_offsetG  = DIM*jnrG;
191             j_coord_offsetH  = DIM*jnrH;
192
193             /* load j atom coordinates */
194             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
195                                                  x+j_coord_offsetC,x+j_coord_offsetD,
196                                                  x+j_coord_offsetE,x+j_coord_offsetF,
197                                                  x+j_coord_offsetG,x+j_coord_offsetH,
198                                                  &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _mm256_sub_ps(ix0,jx0);
202             dy00             = _mm256_sub_ps(iy0,jy0);
203             dz00             = _mm256_sub_ps(iz0,jz0);
204
205             /* Calculate squared distance and things based on it */
206             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
207
208             rinvsq00         = gmx_mm256_inv_ps(rsq00);
209
210             /* Load parameters for j particles */
211             vdwjidx0A        = 2*vdwtype[jnrA+0];
212             vdwjidx0B        = 2*vdwtype[jnrB+0];
213             vdwjidx0C        = 2*vdwtype[jnrC+0];
214             vdwjidx0D        = 2*vdwtype[jnrD+0];
215             vdwjidx0E        = 2*vdwtype[jnrE+0];
216             vdwjidx0F        = 2*vdwtype[jnrF+0];
217             vdwjidx0G        = 2*vdwtype[jnrG+0];
218             vdwjidx0H        = 2*vdwtype[jnrH+0];
219
220             /**************************
221              * CALCULATE INTERACTIONS *
222              **************************/
223
224             if (gmx_mm256_any_lt(rsq00,rcutoff2))
225             {
226
227             /* Compute parameters for interactions between i and j atoms */
228             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
229                                             vdwioffsetptr0+vdwjidx0B,
230                                             vdwioffsetptr0+vdwjidx0C,
231                                             vdwioffsetptr0+vdwjidx0D,
232                                             vdwioffsetptr0+vdwjidx0E,
233                                             vdwioffsetptr0+vdwjidx0F,
234                                             vdwioffsetptr0+vdwjidx0G,
235                                             vdwioffsetptr0+vdwjidx0H,
236                                             &c6_00,&c12_00);
237
238             /* LENNARD-JONES DISPERSION/REPULSION */
239
240             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
241             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
242             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
243             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
244                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
245             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
246
247             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
248
249             /* Update potential sum for this i atom from the interaction with this j atom. */
250             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
251             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
252
253             fscal            = fvdw;
254
255             fscal            = _mm256_and_ps(fscal,cutoff_mask);
256
257             /* Calculate temporary vectorial force */
258             tx               = _mm256_mul_ps(fscal,dx00);
259             ty               = _mm256_mul_ps(fscal,dy00);
260             tz               = _mm256_mul_ps(fscal,dz00);
261
262             /* Update vectorial force */
263             fix0             = _mm256_add_ps(fix0,tx);
264             fiy0             = _mm256_add_ps(fiy0,ty);
265             fiz0             = _mm256_add_ps(fiz0,tz);
266
267             fjptrA             = f+j_coord_offsetA;
268             fjptrB             = f+j_coord_offsetB;
269             fjptrC             = f+j_coord_offsetC;
270             fjptrD             = f+j_coord_offsetD;
271             fjptrE             = f+j_coord_offsetE;
272             fjptrF             = f+j_coord_offsetF;
273             fjptrG             = f+j_coord_offsetG;
274             fjptrH             = f+j_coord_offsetH;
275             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
276
277             }
278
279             /* Inner loop uses 41 flops */
280         }
281
282         if(jidx<j_index_end)
283         {
284
285             /* Get j neighbor index, and coordinate index */
286             jnrlistA         = jjnr[jidx];
287             jnrlistB         = jjnr[jidx+1];
288             jnrlistC         = jjnr[jidx+2];
289             jnrlistD         = jjnr[jidx+3];
290             jnrlistE         = jjnr[jidx+4];
291             jnrlistF         = jjnr[jidx+5];
292             jnrlistG         = jjnr[jidx+6];
293             jnrlistH         = jjnr[jidx+7];
294             /* Sign of each element will be negative for non-real atoms.
295              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
296              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
297              */
298             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
299                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
300                                             
301             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
302             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
303             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
304             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
305             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
306             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
307             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
308             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
309             j_coord_offsetA  = DIM*jnrA;
310             j_coord_offsetB  = DIM*jnrB;
311             j_coord_offsetC  = DIM*jnrC;
312             j_coord_offsetD  = DIM*jnrD;
313             j_coord_offsetE  = DIM*jnrE;
314             j_coord_offsetF  = DIM*jnrF;
315             j_coord_offsetG  = DIM*jnrG;
316             j_coord_offsetH  = DIM*jnrH;
317
318             /* load j atom coordinates */
319             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
320                                                  x+j_coord_offsetC,x+j_coord_offsetD,
321                                                  x+j_coord_offsetE,x+j_coord_offsetF,
322                                                  x+j_coord_offsetG,x+j_coord_offsetH,
323                                                  &jx0,&jy0,&jz0);
324
325             /* Calculate displacement vector */
326             dx00             = _mm256_sub_ps(ix0,jx0);
327             dy00             = _mm256_sub_ps(iy0,jy0);
328             dz00             = _mm256_sub_ps(iz0,jz0);
329
330             /* Calculate squared distance and things based on it */
331             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
332
333             rinvsq00         = gmx_mm256_inv_ps(rsq00);
334
335             /* Load parameters for j particles */
336             vdwjidx0A        = 2*vdwtype[jnrA+0];
337             vdwjidx0B        = 2*vdwtype[jnrB+0];
338             vdwjidx0C        = 2*vdwtype[jnrC+0];
339             vdwjidx0D        = 2*vdwtype[jnrD+0];
340             vdwjidx0E        = 2*vdwtype[jnrE+0];
341             vdwjidx0F        = 2*vdwtype[jnrF+0];
342             vdwjidx0G        = 2*vdwtype[jnrG+0];
343             vdwjidx0H        = 2*vdwtype[jnrH+0];
344
345             /**************************
346              * CALCULATE INTERACTIONS *
347              **************************/
348
349             if (gmx_mm256_any_lt(rsq00,rcutoff2))
350             {
351
352             /* Compute parameters for interactions between i and j atoms */
353             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
354                                             vdwioffsetptr0+vdwjidx0B,
355                                             vdwioffsetptr0+vdwjidx0C,
356                                             vdwioffsetptr0+vdwjidx0D,
357                                             vdwioffsetptr0+vdwjidx0E,
358                                             vdwioffsetptr0+vdwjidx0F,
359                                             vdwioffsetptr0+vdwjidx0G,
360                                             vdwioffsetptr0+vdwjidx0H,
361                                             &c6_00,&c12_00);
362
363             /* LENNARD-JONES DISPERSION/REPULSION */
364
365             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
366             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
367             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
368             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
369                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
370             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
371
372             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
373
374             /* Update potential sum for this i atom from the interaction with this j atom. */
375             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
376             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
377             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
378
379             fscal            = fvdw;
380
381             fscal            = _mm256_and_ps(fscal,cutoff_mask);
382
383             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
384
385             /* Calculate temporary vectorial force */
386             tx               = _mm256_mul_ps(fscal,dx00);
387             ty               = _mm256_mul_ps(fscal,dy00);
388             tz               = _mm256_mul_ps(fscal,dz00);
389
390             /* Update vectorial force */
391             fix0             = _mm256_add_ps(fix0,tx);
392             fiy0             = _mm256_add_ps(fiy0,ty);
393             fiz0             = _mm256_add_ps(fiz0,tz);
394
395             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
396             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
397             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
398             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
399             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
400             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
401             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
402             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
403             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
404
405             }
406
407             /* Inner loop uses 41 flops */
408         }
409
410         /* End of innermost loop */
411
412         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
413                                                  f+i_coord_offset,fshift+i_shift_offset);
414
415         ggid                        = gid[iidx];
416         /* Update potential energies */
417         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
418
419         /* Increment number of inner iterations */
420         inneriter                  += j_index_end - j_index_start;
421
422         /* Outer loop uses 7 flops */
423     }
424
425     /* Increment number of outer iterations */
426     outeriter        += nri;
427
428     /* Update outer/inner flops */
429
430     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*41);
431 }
432 /*
433  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_256_single
434  * Electrostatics interaction: None
435  * VdW interaction:            LennardJones
436  * Geometry:                   Particle-Particle
437  * Calculate force/pot:        Force
438  */
439 void
440 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_256_single
441                     (t_nblist                    * gmx_restrict       nlist,
442                      rvec                        * gmx_restrict          xx,
443                      rvec                        * gmx_restrict          ff,
444                      t_forcerec                  * gmx_restrict          fr,
445                      t_mdatoms                   * gmx_restrict     mdatoms,
446                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
447                      t_nrnb                      * gmx_restrict        nrnb)
448 {
449     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
450      * just 0 for non-waters.
451      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
452      * jnr indices corresponding to data put in the four positions in the SIMD register.
453      */
454     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
455     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
456     int              jnrA,jnrB,jnrC,jnrD;
457     int              jnrE,jnrF,jnrG,jnrH;
458     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
459     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
460     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
461     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
462     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
463     real             rcutoff_scalar;
464     real             *shiftvec,*fshift,*x,*f;
465     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
466     real             scratch[4*DIM];
467     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
468     real *           vdwioffsetptr0;
469     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
470     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
471     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
472     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
473     int              nvdwtype;
474     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
475     int              *vdwtype;
476     real             *vdwparam;
477     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
478     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
479     __m256           dummy_mask,cutoff_mask;
480     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
481     __m256           one     = _mm256_set1_ps(1.0);
482     __m256           two     = _mm256_set1_ps(2.0);
483     x                = xx[0];
484     f                = ff[0];
485
486     nri              = nlist->nri;
487     iinr             = nlist->iinr;
488     jindex           = nlist->jindex;
489     jjnr             = nlist->jjnr;
490     shiftidx         = nlist->shift;
491     gid              = nlist->gid;
492     shiftvec         = fr->shift_vec[0];
493     fshift           = fr->fshift[0];
494     nvdwtype         = fr->ntype;
495     vdwparam         = fr->nbfp;
496     vdwtype          = mdatoms->typeA;
497
498     rcutoff_scalar   = fr->rvdw;
499     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
500     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
501
502     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
503     rvdw             = _mm256_set1_ps(fr->rvdw);
504
505     /* Avoid stupid compiler warnings */
506     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
507     j_coord_offsetA = 0;
508     j_coord_offsetB = 0;
509     j_coord_offsetC = 0;
510     j_coord_offsetD = 0;
511     j_coord_offsetE = 0;
512     j_coord_offsetF = 0;
513     j_coord_offsetG = 0;
514     j_coord_offsetH = 0;
515
516     outeriter        = 0;
517     inneriter        = 0;
518
519     for(iidx=0;iidx<4*DIM;iidx++)
520     {
521         scratch[iidx] = 0.0;
522     }
523
524     /* Start outer loop over neighborlists */
525     for(iidx=0; iidx<nri; iidx++)
526     {
527         /* Load shift vector for this list */
528         i_shift_offset   = DIM*shiftidx[iidx];
529
530         /* Load limits for loop over neighbors */
531         j_index_start    = jindex[iidx];
532         j_index_end      = jindex[iidx+1];
533
534         /* Get outer coordinate index */
535         inr              = iinr[iidx];
536         i_coord_offset   = DIM*inr;
537
538         /* Load i particle coords and add shift vector */
539         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
540
541         fix0             = _mm256_setzero_ps();
542         fiy0             = _mm256_setzero_ps();
543         fiz0             = _mm256_setzero_ps();
544
545         /* Load parameters for i particles */
546         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
547
548         /* Start inner kernel loop */
549         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
550         {
551
552             /* Get j neighbor index, and coordinate index */
553             jnrA             = jjnr[jidx];
554             jnrB             = jjnr[jidx+1];
555             jnrC             = jjnr[jidx+2];
556             jnrD             = jjnr[jidx+3];
557             jnrE             = jjnr[jidx+4];
558             jnrF             = jjnr[jidx+5];
559             jnrG             = jjnr[jidx+6];
560             jnrH             = jjnr[jidx+7];
561             j_coord_offsetA  = DIM*jnrA;
562             j_coord_offsetB  = DIM*jnrB;
563             j_coord_offsetC  = DIM*jnrC;
564             j_coord_offsetD  = DIM*jnrD;
565             j_coord_offsetE  = DIM*jnrE;
566             j_coord_offsetF  = DIM*jnrF;
567             j_coord_offsetG  = DIM*jnrG;
568             j_coord_offsetH  = DIM*jnrH;
569
570             /* load j atom coordinates */
571             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
572                                                  x+j_coord_offsetC,x+j_coord_offsetD,
573                                                  x+j_coord_offsetE,x+j_coord_offsetF,
574                                                  x+j_coord_offsetG,x+j_coord_offsetH,
575                                                  &jx0,&jy0,&jz0);
576
577             /* Calculate displacement vector */
578             dx00             = _mm256_sub_ps(ix0,jx0);
579             dy00             = _mm256_sub_ps(iy0,jy0);
580             dz00             = _mm256_sub_ps(iz0,jz0);
581
582             /* Calculate squared distance and things based on it */
583             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
584
585             rinvsq00         = gmx_mm256_inv_ps(rsq00);
586
587             /* Load parameters for j particles */
588             vdwjidx0A        = 2*vdwtype[jnrA+0];
589             vdwjidx0B        = 2*vdwtype[jnrB+0];
590             vdwjidx0C        = 2*vdwtype[jnrC+0];
591             vdwjidx0D        = 2*vdwtype[jnrD+0];
592             vdwjidx0E        = 2*vdwtype[jnrE+0];
593             vdwjidx0F        = 2*vdwtype[jnrF+0];
594             vdwjidx0G        = 2*vdwtype[jnrG+0];
595             vdwjidx0H        = 2*vdwtype[jnrH+0];
596
597             /**************************
598              * CALCULATE INTERACTIONS *
599              **************************/
600
601             if (gmx_mm256_any_lt(rsq00,rcutoff2))
602             {
603
604             /* Compute parameters for interactions between i and j atoms */
605             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
606                                             vdwioffsetptr0+vdwjidx0B,
607                                             vdwioffsetptr0+vdwjidx0C,
608                                             vdwioffsetptr0+vdwjidx0D,
609                                             vdwioffsetptr0+vdwjidx0E,
610                                             vdwioffsetptr0+vdwjidx0F,
611                                             vdwioffsetptr0+vdwjidx0G,
612                                             vdwioffsetptr0+vdwjidx0H,
613                                             &c6_00,&c12_00);
614
615             /* LENNARD-JONES DISPERSION/REPULSION */
616
617             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
618             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
619
620             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
621
622             fscal            = fvdw;
623
624             fscal            = _mm256_and_ps(fscal,cutoff_mask);
625
626             /* Calculate temporary vectorial force */
627             tx               = _mm256_mul_ps(fscal,dx00);
628             ty               = _mm256_mul_ps(fscal,dy00);
629             tz               = _mm256_mul_ps(fscal,dz00);
630
631             /* Update vectorial force */
632             fix0             = _mm256_add_ps(fix0,tx);
633             fiy0             = _mm256_add_ps(fiy0,ty);
634             fiz0             = _mm256_add_ps(fiz0,tz);
635
636             fjptrA             = f+j_coord_offsetA;
637             fjptrB             = f+j_coord_offsetB;
638             fjptrC             = f+j_coord_offsetC;
639             fjptrD             = f+j_coord_offsetD;
640             fjptrE             = f+j_coord_offsetE;
641             fjptrF             = f+j_coord_offsetF;
642             fjptrG             = f+j_coord_offsetG;
643             fjptrH             = f+j_coord_offsetH;
644             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
645
646             }
647
648             /* Inner loop uses 30 flops */
649         }
650
651         if(jidx<j_index_end)
652         {
653
654             /* Get j neighbor index, and coordinate index */
655             jnrlistA         = jjnr[jidx];
656             jnrlistB         = jjnr[jidx+1];
657             jnrlistC         = jjnr[jidx+2];
658             jnrlistD         = jjnr[jidx+3];
659             jnrlistE         = jjnr[jidx+4];
660             jnrlistF         = jjnr[jidx+5];
661             jnrlistG         = jjnr[jidx+6];
662             jnrlistH         = jjnr[jidx+7];
663             /* Sign of each element will be negative for non-real atoms.
664              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
665              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
666              */
667             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
668                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
669                                             
670             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
671             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
672             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
673             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
674             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
675             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
676             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
677             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
678             j_coord_offsetA  = DIM*jnrA;
679             j_coord_offsetB  = DIM*jnrB;
680             j_coord_offsetC  = DIM*jnrC;
681             j_coord_offsetD  = DIM*jnrD;
682             j_coord_offsetE  = DIM*jnrE;
683             j_coord_offsetF  = DIM*jnrF;
684             j_coord_offsetG  = DIM*jnrG;
685             j_coord_offsetH  = DIM*jnrH;
686
687             /* load j atom coordinates */
688             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
689                                                  x+j_coord_offsetC,x+j_coord_offsetD,
690                                                  x+j_coord_offsetE,x+j_coord_offsetF,
691                                                  x+j_coord_offsetG,x+j_coord_offsetH,
692                                                  &jx0,&jy0,&jz0);
693
694             /* Calculate displacement vector */
695             dx00             = _mm256_sub_ps(ix0,jx0);
696             dy00             = _mm256_sub_ps(iy0,jy0);
697             dz00             = _mm256_sub_ps(iz0,jz0);
698
699             /* Calculate squared distance and things based on it */
700             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
701
702             rinvsq00         = gmx_mm256_inv_ps(rsq00);
703
704             /* Load parameters for j particles */
705             vdwjidx0A        = 2*vdwtype[jnrA+0];
706             vdwjidx0B        = 2*vdwtype[jnrB+0];
707             vdwjidx0C        = 2*vdwtype[jnrC+0];
708             vdwjidx0D        = 2*vdwtype[jnrD+0];
709             vdwjidx0E        = 2*vdwtype[jnrE+0];
710             vdwjidx0F        = 2*vdwtype[jnrF+0];
711             vdwjidx0G        = 2*vdwtype[jnrG+0];
712             vdwjidx0H        = 2*vdwtype[jnrH+0];
713
714             /**************************
715              * CALCULATE INTERACTIONS *
716              **************************/
717
718             if (gmx_mm256_any_lt(rsq00,rcutoff2))
719             {
720
721             /* Compute parameters for interactions between i and j atoms */
722             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
723                                             vdwioffsetptr0+vdwjidx0B,
724                                             vdwioffsetptr0+vdwjidx0C,
725                                             vdwioffsetptr0+vdwjidx0D,
726                                             vdwioffsetptr0+vdwjidx0E,
727                                             vdwioffsetptr0+vdwjidx0F,
728                                             vdwioffsetptr0+vdwjidx0G,
729                                             vdwioffsetptr0+vdwjidx0H,
730                                             &c6_00,&c12_00);
731
732             /* LENNARD-JONES DISPERSION/REPULSION */
733
734             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
735             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
736
737             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
738
739             fscal            = fvdw;
740
741             fscal            = _mm256_and_ps(fscal,cutoff_mask);
742
743             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
744
745             /* Calculate temporary vectorial force */
746             tx               = _mm256_mul_ps(fscal,dx00);
747             ty               = _mm256_mul_ps(fscal,dy00);
748             tz               = _mm256_mul_ps(fscal,dz00);
749
750             /* Update vectorial force */
751             fix0             = _mm256_add_ps(fix0,tx);
752             fiy0             = _mm256_add_ps(fiy0,ty);
753             fiz0             = _mm256_add_ps(fiz0,tz);
754
755             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
756             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
757             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
758             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
759             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
760             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
761             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
762             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
763             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
764
765             }
766
767             /* Inner loop uses 30 flops */
768         }
769
770         /* End of innermost loop */
771
772         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
773                                                  f+i_coord_offset,fshift+i_shift_offset);
774
775         /* Increment number of inner iterations */
776         inneriter                  += j_index_end - j_index_start;
777
778         /* Outer loop uses 6 flops */
779     }
780
781     /* Increment number of outer iterations */
782     outeriter        += nri;
783
784     /* Update outer/inner flops */
785
786     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*30);
787 }